Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 26(6): 5738-5750, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30612347

ABSTRACT

The port regions of the Amazon are subject to environmental impacts high shipping traffic. In October 2015, a cargo ship containing 5000 oxen sank in the Port of Vila do Conde, northern Brazil, releasing large amounts of organic matter and diesel oil into the aquatic environment. We evaluated the consequences of this shipwreck on the zooplankton community. Sampling was carried out using a phytoplankton net (64 µm) at two locations close to the port. We calculated the frequency of occurrence, relative abundance, and trophic state index and performed a canonical redundancy analysis of zooplankton in this area. Total density values ranged from 371 to 8600 organisms/m3, with minimum values being recorded during the period of the shipwreck and maximum values after the shipwreck. The areas categorized as super eutrophic had the lowest density values. The most abundant species/groups were nauplii and copepodites of the orders Cyclopoida and Calanoida. Of the environmental variables, only biochemical oxygen demand, chemical oxygen demand, and total dissolved solids were selected by the redundancy canonical analysis. The environmental conditions of the region and the ongoing environmental impacts might substantially influence the structure of the zooplankton community. The predominance of these organisms, in addition to the high densities of nauplii and copepodites, was likely related to the large amounts of nutrients generated by the shipwreck.


Subject(s)
Environmental Monitoring , Zooplankton/physiology , Animals , Biological Oxygen Demand Analysis , Brazil , Copepoda , Phytoplankton , Ships
2.
F1000Res ; 6: 1834, 2017.
Article in English | MEDLINE | ID: mdl-30109018

ABSTRACT

Background: Shipwrecks serve as a rich source for novel microbial populations that have largely remained undiscovered. Low temperatures, lack of sunlight, and the availability of substrates derived from the shipwreck's hull and cargo may provide an environment in which microbes can develop unique metabolic adaptations.   Methods: To test our hypothesis that shipwrecks could influence the microbial population involved in denitrification when a consortium is grown in the laboratory, we collected samples proximate to two steel shipwrecks in the northern Gulf of Mexico. Then under laboratory conditions, we grew two independent denitrifying microbial consortia. Each consortium was grown by using the BART assay system and analyzed based on growth kinetics, ion chromatography and 16S amplicon sequencing. Results: Both denitrifying consortia were different from each other based on varied growth profiles, rates of nitrate utilization and 16S amplicon sequencing. Conclusions: Our observations conclude that the laboratory grown water column microbial consortia from deep-sea shipwrecks in the Gulf of Mexico are able to undergo aggressive denitrification.

3.
Biofouling ; 31(5): 405-16, 2015.
Article in English | MEDLINE | ID: mdl-26087877

ABSTRACT

Corrosion and biofouling phenomena of cast iron and brass were evaluated under natural conditions to determine the degradation process of archeological artifacts. Field exposure studies of experimental materials were conducted over 15 months at an offshore position in the sea of Campeche in the Gulf of Mexico. Corrosion was determined by gravimetric measurements. The community structure of the benthic assemblage inhabiting the surfaces of both materials was evaluated. A total of 53 species was identified. The community in both cases was composed of a small number of species. Encrusting, attached and erect life forms were dominant on iron. Attached life forms were dominant on brass. Biofouling produced a decrease in the weight loss measurements of cast iron samples. Biofouling provided a beneficial factor for in situ preservation of iron archeological artifacts in wreck sites.


Subject(s)
Archaeology/methods , Biofouling , Metals/chemistry , Corrosion , Gulf of Mexico , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL