Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 316
Filter
1.
Cancer Genomics Proteomics ; 21(4): 327-349, 2024.
Article in English | MEDLINE | ID: mdl-38944427

ABSTRACT

We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.


Subject(s)
Pancreatic Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Animals , Molecular Targeted Therapy/methods
2.
Neurosci Lett ; : 137881, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38909838

ABSTRACT

Brain somatic variants in SLC35A2, an intracellular UDP-galactose transporter, are commonly identified mutations associated with drug-resistant neocortical epilepsy and developmental brain malformations, including focal cortical dysplasia type I and mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). However, the causal effects of altered SLC35A2 function on cortical development remain untested. We hypothesized that focal Slc35a2 knockout (KO) or knockdown (KD) in the developing mouse cortex would disrupt cortical development and change network excitability. Through two independent studies, we used in utero electroporation (IUE) to introduce CRISPR/Cas9/targeted guide RNAs or short-hairpin RNAs into the embryonic mouse brain at day 14.5-15.5 to achieve Slc35a2 KO or KD, respectively, from neural precursor cells. Slc35a2 KO or KD caused disrupted radial migration of electroporated neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. Slc35a2 KO in neurons did not induce changes in oligodendrocyte number, importantly suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects of Slc35a2 mutations. Adult KO mice were implanted with EEG electrodes for 72-hour continuous recording. Spontaneous seizures were not observed in focal Slc35a2 KO mice, but there was reduced seizure threshold following pentylenetetrazol injection. Here we demonstrate that focal Slc35a2 KO or KD in vivo disrupts corticogenesis through altered neuronal migration and that KO leads to reduced seizure threshold. Together these results demonstrate a direct causal role for SLC35A2 in cortical development.

3.
Int J Mol Sci ; 25(8)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38673939

ABSTRACT

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Subject(s)
Ataxin-7 , Dependovirus , Disease Models, Animal , Peptides , Phenotype , RNA, Small Interfering , Spinocerebellar Ataxias , Trinucleotide Repeat Expansion , Animals , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/therapy , Spinocerebellar Ataxias/metabolism , Peptides/genetics , Dependovirus/genetics , Mice , Ataxin-7/genetics , Ataxin-7/metabolism , Trinucleotide Repeat Expansion/genetics , RNA, Small Interfering/genetics , Genetic Vectors/genetics , Genetic Vectors/administration & dosage , Purkinje Cells/metabolism , Purkinje Cells/pathology , Mice, Transgenic , Cerebellum/metabolism , Cerebellum/pathology , Humans , Genetic Therapy/methods , Alleles
4.
Int J Mol Sci ; 25(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38542074

ABSTRACT

Lethal toxin (LT) is the critical virulence factor of Bacillus anthracis, the causative agent of anthrax. One common symptom observed in patients with anthrax is thrombocytopenia, which has also been observed in mice injected with LT. Our previous study demonstrated that LT induces thrombocytopenia by suppressing megakaryopoiesis, but the precise molecular mechanisms behind this phenomenon remain unknown. In this study, we utilized 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced megakaryocytic differentiation in human erythroleukemia (HEL) cells to identify genes involved in LT-induced megakaryocytic suppression. Through cDNA microarray analysis, we identified Dachshund homolog 1 (DACH1) as a gene that was upregulated upon TPA treatment but downregulated in the presence of TPA and LT, purified from the culture supernatants of B. anthracis. To investigate the function of DACH1 in megakaryocytic differentiation, we employed short hairpin RNA technology to knock down DACH1 expression in HEL cells and assessed its effect on differentiation. Our data revealed that the knockdown of DACH1 expression suppressed megakaryocytic differentiation, particularly in polyploidization. We demonstrated that one mechanism by which B. anthracis LT induces suppression of polyploidization in HEL cells is through the cleavage of MEK1/2. This cleavage results in the downregulation of the ERK signaling pathway, thereby suppressing DACH1 gene expression and inhibiting polyploidization. Additionally, we found that known megakaryopoiesis-related genes, such as FOSB, ZFP36L1, RUNX1, FLI1, AHR, and GFI1B genes may be positively regulated by DACH1. Furthermore, we observed an upregulation of DACH1 during in vitro differentiation of CD34-megakaryocytes and downregulation of DACH1 in patients with thrombocytopenia. In summary, our findings shed light on one of the molecular mechanisms behind LT-induced thrombocytopenia and unveil a previously unknown role for DACH1 in megakaryopoiesis.


Subject(s)
Anthrax , Bacillus anthracis , Leukemia, Erythroblastic, Acute , Thrombocytopenia , Animals , Humans , Mice , Antigens, Bacterial/metabolism , Bacillus anthracis/metabolism , Butyrate Response Factor 1/metabolism , Cell Differentiation , Thrombocytopenia/chemically induced , Thrombocytopenia/genetics
5.
Methods Mol Biol ; 2766: 163-168, 2024.
Article in English | MEDLINE | ID: mdl-38270876

ABSTRACT

Lentiviral-mediated transfection technique is a powerful tool for gene modification in preclinical studies. By using this technique, the desired gene modification can be achieved easily in immune cells, nondividing, and terminally differentiated cells, including hematopoietic stem cells, neurons, and even tumor cells, which other viral vectors cannot do. The main considerations of therapeutic gene delivery using a lentiviral system are the risk of insertional mutagenesis and the immune reaction elicited by infected cells. Although some biosafety concerns need to be addressed before clinical trials in rheumatoid arthritis, the lentiviral system targeting therapeutic targets has been widely used for in vivo gene transfer in animal models. In this chapter, the protocols for production of viral particles and viral concentration are provided. As an alternative utilization, this lentiviral production platform could also be employed to produce a pseudotype severe acute respiratory syndrome-related coronavirus 2 in which the spike glycoprotein of SARS-CoV-2 was incorporated into pseudovirions for viral study.


Subject(s)
Arthritis, Rheumatoid , Lentivirus , Animals , Lentivirus/genetics , Cell Differentiation , Gene Editing , Genetic Therapy
6.
Mol Ther ; 32(2): 384-394, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38087779

ABSTRACT

Hematopoietic stem/progenitor cell (HSPC)-based anti-HIV-1 gene therapy holds great promise to eradicate HIV-1 or to provide long-term remission through a continuous supply of anti-HIV-1 gene-modified cells without ongoing antiretroviral therapy. However, achieving sufficient engraftment levels of anti-HIV gene-modified HSPC to provide therapeutic efficacy has been a major limitation. Here, we report an in vivo selection strategy for anti-HIV-1 gene-modified HSPC by introducing 6-thioguanine (6TG) chemoresistance through knocking down hypoxanthine-guanine phosphoribosyl transferase (HPRT) expression using RNA interference (RNAi). We developed a lentiviral vector capable of co-expressing short hairpin RNA (shRNA) against HPRT alongside two anti-HIV-1 genes: shRNA targeting HIV-1 co-receptor CCR5 and a membrane-anchored HIV-1 fusion inhibitor, C46, for efficient in vivo selection of anti-HIV-1 gene-modified human HSPC. 6TG-mediated preconditioning and in vivo selection significantly enhanced engraftment of HPRT-knockdown anti-HIV-1 gene-modified cells (>2-fold, p < 0.0001) in humanized bone marrow/liver/thymus (huBLT) mice. Viral load was significantly reduced (>1 log fold, p < 0.001) in 6TG-treated HIV-1-infected huBLT mice compared to 6TG-untreated mice. We demonstrated that 6TG-mediated preconditioning and in vivo selection considerably improved engraftment of HPRT-knockdown anti-HIV-1 gene-modified HSPC and repopulation of anti-HIV-1 gene-modified hematopoietic cells in huBLT mice, allowing for efficient HIV-1 inhibition.


Subject(s)
HIV-1 , Hematopoietic Stem Cell Transplantation , Humans , Mice , Animals , HIV-1/physiology , Hypoxanthine Phosphoribosyltransferase/genetics , Hypoxanthine Phosphoribosyltransferase/metabolism , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Thioguanine/metabolism , Thioguanine/pharmacology , RNA, Small Interfering/genetics
7.
J Radiat Res ; 65(1): 47-54, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-37948449

ABSTRACT

The aim of the present work was to examine the effect of polyethylene glycol (PEG)-coated superparamagnetic iron oxide (SPIO) nanoparticles carrying Pik3cb short hairpin RNA (shRNA) in the prevention of restenosis with the aid of ultrasound and a magnetic field. SPIO is a type of contrast agent used in medical imaging to enhance the visibility of specific tissues or organs. It consists of tiny iron oxide nanoparticles that can be targeted to specific areas of interest in the body. PEG-coated SPIO nanoparticles carrying Pik3cb shRNA (SPIO-shPik3cb) were prepared, and the particle size and zeta potential of PEG-coated SPIO nanoparticles with and without Pik3cb shRNA were examined. After a right common artery balloon-injured rat model was established, the rats were randomly divided into four groups, and the injured arteries were transfected with SPIO-shPik3cb, saline, SPIO-shcontrol and naked shRNA Pik3cb. During the treatment, each group was placed under a magnetic field and was transfected with the aid of ultrasound. Rats were sacrificed, and the tissue was harvested for analysis after 14 days. The results suggested that the mean particle size and zeta potential of SPIO-shPik3cbs were 151.45 ± 11 nm and 10 mV, respectively. SPIO-shPik3cb showed higher transfection efficiency and significantly inhibited the intimal thickening compared with naked Pik3cb shRNA in vascular smooth muscle cells (VSMCs) (*P < 0.05). Moreover, SPIO-shPik3cb could also significantly downregulate the expression of pAkt protein compared with naked Pik3cb shRNA. According to the results, SPIO-shPik3cb can remarkably inhibit the intimal thickening under a combination of magnetic field exposure and ultrasound.


Subject(s)
Coronary Restenosis , Ferric Compounds , Magnetite Nanoparticles , Rats , Animals , RNA, Small Interfering/genetics , Magnetic Resonance Imaging/methods
8.
bioRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38077069

ABSTRACT

Brain somatic variants in SLC35A2 are associated with clinically drug-resistant epilepsy and developmental brain malformations, including mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy (MOGHE). SLC35A2 encodes a uridine diphosphate galactose translocator that is essential for protein glycosylation; however, the neurodevelopmental mechanisms by which SLC35A2 disruption leads to clinical and histopathological features remain unspecified. We hypothesized that focal knockout (KO) or knockdown (KD) of Slc35a2 in the developing mouse cortex would disrupt cerebral cortical development through altered neuronal migration and cause changes in network excitability. We used in utero electroporation (IUE) to introduce CRISPR/Cas9 and targeted guide RNAs or short-hairpin RNAs to achieve Slc35a2 KO or KD, respectively, during early corticogenesis. Following Slc35a2 KO or KD, we observed disrupted radial migration of transfected neurons evidenced by heterotopic cells located in lower cortical layers and in the sub-cortical white matter. Slc35a2 KO in neurons did not induce changes in oligodendrocyte number, suggesting that the oligodendroglial hyperplasia observed in MOGHE originates from distinct cell autonomous effects. Spontaneous seizures were not observed, but intracranial EEG recordings after focal KO showed a reduced seizure threshold following pentylenetetrazol injection. These results demonstrate that Slc35a2 KO or KD in vivo disrupts corticogenesis through altered neuronal migration.

9.
Cancer Genomics Proteomics ; 20(6suppl): 646-668, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38035705

ABSTRACT

Despite availability of several treatment options for non-small cell lung cancer (NSCLC), such as surgery, chemotherapy, radiation, targeted therapy and immunotherapy, the survival rate of patients for five years is in the range of 22%. Therefore, identification of new targets and treatment modalities for this disease is an important issue. In this context, we screened the PubMed database for up-regulated circular RNAs (circRNAs) which promote growth of NSCLC in preclinical models in vitro as well as in vivo xenograft models in immuno-compromised mice. This approach led to potential targets for further validation and inhibition with small molecules or antibody-derived entities. In case of preclinical validation, the corresponding circRNAs can be inhibited with small interfering RNAs (siRNA) or short hairpin RNAs (shRNA). The identified circRNAs act by sponging microRNAs (miRs) preventing cleavage of the mRNA of the corresponding targets. We identified nine circRNAs up-regulating transmembrane receptors, five circRNAs increasing expression of secreted proteins, nine circRNAs promoting expression of components of signaling pathways, six circRNAs involved in regulation of splicing and RNA processing, six circRNAs up-regulating actin-related and RNA processing components, seven circRNAs increasing the steady-state levels of transcription factors, two circRNAs increasing high-mobility group proteins, four circRNAs increasing components of the epigenetic modification system and three circRNAs up-regulating protein components of additional systems.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , Animals , Mice , RNA, Circular/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/therapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger/genetics , RNA, Small Interfering
10.
Int J Mol Med ; 52(6)2023 Dec.
Article in English | MEDLINE | ID: mdl-37830154

ABSTRACT

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 2 on p. 1408, the microscopic images shown for the light scope images (upper row) and the green fluorescence images (lower row) appeared to be overlapping, such that these images appeared to have been derived from the same original sources even though they were intended to portray the results from differently performed experiments. After having re­examined their figures, the authors realized that this figure was assembled incorrectly. The revised version of Fig. 2, showing the correct data for all four experimental panels, is shown below. Note that the errors made during the assembly of these figures did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [International Journal of Molecular Medicine 37: 1405­1411, 2016; DOI: 10.3892/ijmm.2016.2539].

12.
Mol Ther ; 31(11): 3127-3145, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37735876

ABSTRACT

In recent years, there has been a surge in the innovative modification and application of the viral vector-based gene therapy field. Significant and consistent improvements in the engineering, delivery, and safety of viral vectors have set the stage for their application as RNA interference (RNAi) delivery tools. Viral vector-based delivery of RNAi has made remarkable breakthroughs in the treatment of several debilitating diseases and disorders (e.g., neurological diseases); however, their novelty has yet to be fully applied and utilized for the treatment of cancer. This review highlights the most promising and emerging viral vector delivery tools for RNAi therapeutics while discussing the variables limiting their success and suitability for cancer therapy. Specifically, we outline different integrating and non-integrating viral platforms used for gene delivery, currently employed RNAi targets for anti-cancer effect, and various strategies used to optimize the safety and efficacy of these RNAi therapeutics. Most importantly, we provide great insight into what challenges exist in their application as cancer therapeutics and how these challenges can be effectively navigated to advance the field.


Subject(s)
Genetic Vectors , Neoplasms , RNA Interference , Genetic Vectors/genetics , Genetic Therapy , Gene Transfer Techniques , Neoplasms/genetics , Neoplasms/therapy
13.
Cancers (Basel) ; 15(10)2023 May 20.
Article in English | MEDLINE | ID: mdl-37345185

ABSTRACT

Short hairpin RNAs (shRNAs) have emerged as a powerful tool for gene knockdown in various cellular systems, including chimeric antigen receptor (CAR) T cells. However, the elements of shRNAs that are crucial for their efficacy in developing shRNA-containing CAR T cells remain unclear. In this study, we evaluated the impact of different shRNA elements, including promoter strength, orientation, multiple shRNAs, self-targeting, and sense and antisense sequence composition on the knockdown efficiency of the target gene in CAR T cells. Our findings highlight the importance of considering multiple shRNAs and their orientation to achieve effective knockdown. Moreover, we demonstrate that using a strong promoter and avoiding self-targeting can enhance CAR T cell functionality. These results provide a framework for the rational design of CAR T cells with shRNA-mediated knockdown capabilities, which could improve the therapeutic efficacy of CAR T cell-based immunotherapy.

14.
Tissue Cell ; 82: 102081, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37018927

ABSTRACT

The N6-methyladenosine (m6A) modification has been proven to be involved in various physiological and pathological processes. The m6A is catalyzed by methyltransferase complex, which mainly consist of methyltransferase (METTL) 3 and 14 heterodimer. The present study aimed to investigate the role of METTL 3 and 14 in biological properties of periodontal ligament cells (PDLCs) via RNA-sequencing and specific cell assays. Firstly, the expressions of METTL3 and METTL14 were observed in PDLCs. Then, RNA-sequencing showed that cell properties were influenced after METTL3 or METTL14 was knocked down via short hairpin RNA (shRNA). In sh-METTL3 or METTL14 PDLCs, cell counting kit 8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays showed a down-regulated proliferation, transwell system indicated suppressed migration. Lastly, alkaline phosphatase (ALP) and alizarin red staining (ARS) staining, quantitative polymerase chain reaction (qPCR) and western blot demonstrated the inhibited osteogenic potentials. It could be concluded that METTL3 and METTL14 play indispensable roles in the regenerative potential of PDLCs.


Subject(s)
Adenosine , Periodontal Ligament , Adenosine/metabolism , Periodontal Ligament/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , RNA, Small Interfering
15.
Comput Struct Biotechnol J ; 21: 1292-1311, 2023.
Article in English | MEDLINE | ID: mdl-36817960

ABSTRACT

Transcriptome analysis of head and neck squamous cell carcinoma (HNSCC) has been pivotal to comprehending the convoluted biology of HNSCC tumors. MAPKAPK2 or MK2 is a critical modulator of the mRNA turnover of crucial genes involved in HNSCC progression. However, MK2-centric transcriptome profiles of tumors are not well known. This study delves into HNSCC progression with MK2 at the nexus to delineate the biological relevance and intricate crosstalk of MK2 in the tumor milieu. We performed next-generation sequencing-based transcriptome profiling of HNSCC cells and xenograft tumors to ascertain mRNA expression profiles in MK2-wild type and MK2-knockdown conditions. The findings were validated using gene expression assays, immunohistochemistry, and transcript turnover studies. Here, we identified a pool of crucial MK2-regulated candidate genes by annotation and differential gene expression analyses. Regulatory network and pathway enrichment revealed their significance and involvement in the HNSCC pathogenesis. Additionally, 3'-UTR-based filtering recognized important MK2-regulated downstream target genes and validated them by nCounter gene expression assays. Finally, immunohistochemistry and transcript stability studies revealed the putative role of MK2 in regulating the transcript turnover of IGFBP2, MUC4, and PRKAR2B in HNSCC. Conclusively, MK2-regulated candidate genes were identified in this study, and their plausible involvement in HNSCC pathogenesis was elucidated. These genes possess investigative values as targets for diagnosis and therapeutic interventions for HNSCC.

16.
Neurotherapeutics ; 20(2): 564-577, 2023 03.
Article in English | MEDLINE | ID: mdl-36401079

ABSTRACT

Neuropathic pain following spinal cord injury (SCI) remains a difficult problem that affects more than 80% of SCI patients. Growing evidence indicates that neuroinflammatory responses play a key role in neuropathic pain after SCI. Short hairpin RNA (shRNA) interference is an efficient tool for the knockdown of disease-related specific gene expression after SCI, yet insufficient data is available to establish guidelines. In this study, we have constructed the transient receptor potential ankyrin 1 (TRPA1) shRNA encoded-lentiviral vector (LV-shTRPA1) and P38 MAPK shRNA encoded-lentiviral vector (LV-shP38) to investigate the silencing effects of shRNAs and their ability to reprogram the neuroinflammatory responses, thereby enhancing somatosensory recovery after SCI. Our in vitro data employing HEK293-FT and activated macrophages demonstrated that delivered LV-shRNAs showed high transduction efficacy with no cytotoxicity. Furthermore, a combination of LV-shP38 and LV-shTRPA1 was found to be most effective at suppressing target genes, cutting the expression of pro-inflammatory and pro-nociceptive factors in the dorsal horn of the spinal cord and dorsal root ganglia, thus contributing to the alleviation of neuronal hypersensitivities after SCI. Overall, our data demonstrated that the combination LV-shP38/shTRPA1 produced a synergistic effect for immunomodulation and reduced neuropathic pain with a favorable risk-to-benefit ratio. Collectively, our LV-mediated shRNA delivery will provide an efficient tool for gene silencing therapeutic approaches to treat various incurable disorders.


Subject(s)
Neuralgia , Spinal Cord Injuries , Rats , Animals , Humans , RNA, Small Interfering/genetics , Rats, Sprague-Dawley , Lentivirus/genetics , HEK293 Cells , Genetic Vectors , Spinal Cord Injuries/genetics , Spinal Cord Injuries/therapy , Neuralgia/genetics , Neuralgia/therapy , Gene Silencing
17.
Mol Med Rep ; 27(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-36484386

ABSTRACT

Subsequently to the publication of this paper, an interested reader drew to the authors' attention that, on p. 2174 in the Materials and methods section (subsection "Lentivirus production and lentiviral transduction"), the sequence presented for the shRNA targeting the gene NOB1 appeared to conform with the sequence that would have been predicted to target PNO1, according to a blastn search. The authors have checked their original paper, and realize that the sequence of this shRNA was written incorrectly in the paper; the sequence for the shRNA targeting the gene NOB1 should have been written as: GCTTGCACTCACATACCAGTTCTCGAG- AACTGGTATGTGAGTGCAAGC. Furthermore, the published version of Fig. 5A on p. 2178 contained a pair of overlapping panels, such that data were apparently derived from the same original source even though they were intended to show the results from differently performed experiments. After having re­examined their original data, the authors have realized that a pair of data panels were inadvertently incorporated into this figure incorrectly; specifically, the centre panel of the Lv­shCon group and the right­hand panel of the Lv­shNOB1 group. The revised version of Fig. 5, showing the correct images for the abovementioned pair of data panels in Fig. 5A, is shown opposite. Note that these errors did not significantly affect either the results or the conclusions reported in this paper, and all the authors agree to this corrigendum. Furthermore, the authors thank the Editor of Molecular Medicine Reports for allowing them the opportunity to publish this corrigendum, and apologize to the readership for any inconvenience caused. [Molecular Medicine Reports 9: 2173­2179, 2014; DOI: 10.3892/mmr.2014.2119].

18.
J Biochem ; 173(2): 129-138, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36477205

ABSTRACT

Mechanistic target of rapamycin complex 1 (mTORC1) is a serine-threonine kinase that is activated by extracellular signals, such as nutrients and growth factors. It plays a key role in the control of various biological processes, such as protein synthesis and energy metabolism by mediating or regulating the phosphorylation of multiple target molecules, some of which remain to be identified. We have here reanalysed a large-scale phosphoproteomics data set for mTORC1 target molecules and identified pre-B cell leukemia transcription factor 2 (PBX2) as such a novel target that is dephosphorylated downstream of mTORC1. We confirmed that PBX2, but not other members of the PBX family, is dephosphorylated in an mTORC1 activity-dependent manner. Furthermore, pharmacological and gene knockdown experiments revealed that glycogen synthase kinase 3 (GSK3) and protein phosphatase 1 (PP1) are responsible for the phosphorylation and dephosphorylation of PBX2, respectively. Our results thus suggest that the balance between the antagonistic actions of GSK3 and PP1 determines the phosphorylation status of PBX2 and its regulation by mTORC1.


Subject(s)
Glycogen Synthase Kinase 3 , Signal Transduction , Mechanistic Target of Rapamycin Complex 1/metabolism , Glycogen Synthase Kinase 3/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphorylation , Protein Phosphatase 1/metabolism
19.
Front Pharmacol ; 13: 986668, 2022.
Article in English | MEDLINE | ID: mdl-36339626

ABSTRACT

Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.

20.
JACC Basic Transl Sci ; 7(9): 880-895, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36317130

ABSTRACT

The most devastating and catastrophic deterioration of myocardial ischemia-reperfusion injury (MIRI) is cardiomyocyte death. Here we aimed to evaluate the role of lncRNA-ZFAS1 in MIRI and delineate its mechanism of action. The level of lncRNA-ZFAS1 was elevated in MIRI hearts, and artificial knockdown of lncRNA-ZFAS1 in mice improved cardiac function. Notch1 is a potential target of lncRNA-ZFAS1, and lncRNA-ZFAS1 could bind to the promoter region of Notch1 and recruit DNMT3b to induce Notch1 methylation. Nicotinamide mononucleotide could promote the expression of Notch1 by competitively inhibiting the expression of DNMT3b and improving the apoptosis of cardiomyocytes and cardiac function.

SELECTION OF CITATIONS
SEARCH DETAIL
...