Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Materials (Basel) ; 17(18)2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39336306

ABSTRACT

To study the ablation properties and differences of plain-woven SiC/SiC composites under single and cyclic ablation. The ablation test of plain-woven SiC/SiC composites was conducted under an oxyacetylene torch. The results indicate that the mass ablation rate of cyclic ablation is lower than that of single ablation, whereas the line ablation rate is higher. Macro-microstructural characterization revealed the presence of white oxide formed by silica on the surface of the ablation center region. The fibers in the central region of the ablation were ablated layer by layer, and the broken fiber bundles exhibited a spiky morphology with numerous silica particles attached. The oxide layer on the surface and the silica particles on the fibers, which are in the molten state formed in the high-temperature ablation environment, contribute to resisting ablation. Thermal shock during cyclic ablation also played a role in the ablation process. The thermal shock causes cracks in the fiber bundles and matrix of the SiC/SiC composites. This study helps to apply SiC/SiC composite to complex thermal shock environments.

2.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683111

ABSTRACT

The implementation of SiC fiber reinforced SiC/SiC composites to aero-engine hot components has attracted wide attention, due to their many excellent properties. Along these lines, in order to predict the oxidation behavior of the material in extreme environments and to explore the effect of different preforms on the oxidative behavior of the composites, four SiC/SiC composites, with different preforms, were oxidized under environmental conditions of pressure of 12 kPa H2O:8 kPa O2:80 kPa Ar, at 1400 °C temperature. Moreover, the morphology and defect distribution of the samples were characterized by carrying out scanning electron microscopy, and micro-computed X-ray tomography measurements. Furthermore, the relation between the micro- and macro-scales was established, so as to be able to predict the oxidation behavior of the composites; not only the quantitative relationship between the mass change rate and the defect volume change rate, but also the combination of micro-computed X-ray images.

3.
Materials (Basel) ; 14(20)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34683693

ABSTRACT

In this paper, the SiC/SiC high-pressure turbine twin guide vanes were fabricated using the chemical vapor infiltration (CVI) method. Cyclic thermal shock tests at different target temperatures (i.e., 1400, 1450, and 1480 °C) in a gas environment were conducted to investigate the damage mechanisms and failure modes. During the thermal shock test, large spalling areas appeared on the leading edge and back region. After 400 thermal shock cycles, the spalling area of the coating at the basin and back region of the guide vane was more than 30%, and the whole guide vane turned gray, due to the formation of SiO2. When the thermal shock temperature increased from 1400 to 1450 and 1480 °C, the spalling area of the basin and the back region of the guide vane did not increase significantly, but the delamination occurred at the tenon, upper surface of the guide vane near the trailing edge of the guide vane. Through the X-ray Computed Tomography (XCT) analysis for the guide vanes before and after thermal shock, there was no obvious damage inside of guide vanes. The oxidation of SiC coating and the formation of SiO2 protects the internal fibers from oxidation and damage. Further investigation on the effect of thermal shock on the mechanical properties of SiC/SiC composites should be conducted in the future.

4.
Materials (Basel) ; 14(15)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34361383

ABSTRACT

A multi-scale fatigue analysis method for braided ceramic matrix composites (CMCs) based on sub-models is developed in this paper. The finite element shape function is used as the interpolation function for transferring the displacement information between the macro-scale and meso-scale models. The fatigue failure criterion based on the shear lag theory is used to implement the coupling calculation of the meso-scale and micro-scale. Combining the meso-scale cell model and the fatigue failure criterion based on the shear lag theory, the fatigue life of 2D SiC/SiC is analyzed. The analysis results are in good agreement with the experimental results, which proves the accuracy of the meso-scale cell model and the fatigue life calculation method. A multi-scale sub-model fatigue analysis method is used to study the fatigue damage of 2D SiC/SiC stiffened plates under random tension-tension loads. The influence of the sub-models at different positions in the macro-model element on the analysis results was analyzed. The results shows that the fatigue analysis method proposed in this paper takes into account the damage condition of the meso-structured of composite material, and at the same time has high calculation efficiency, and has low requirements for modeling of the macro finite element model, which can be better applied to the fatigue analysis of CMCs structure.

5.
Sci Bull (Beijing) ; 64(16): 1152-1157, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-36659686

ABSTRACT

For the purpose of stable performance in energy storage systems, a new hollow nanostructure of sea-sponge-C/SiC@SiC/C (SCS/SiC@SiC/C) has been successfully fabricated by the SCS/SiC nanospheres coated with SiC/C shells through an in situ reduction process. Based on SCSs and the carbon shells, the stable hollow structures of SCS/SiC@SiC/C can contain large proportion of active SiC layers, which are adhered to both SCSs and the inner surfaces of carbon shells. Such nanostructured anode enables an excellent cycling stability with a capacity of 612 mAh/g at a current density of 0.5 A/g after 1,800 cycles, achieving an excellent stable Li+-storage capability.

SELECTION OF CITATIONS
SEARCH DETAIL