Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.194
Filter
1.
ACS Nano ; 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39392594

ABSTRACT

The integration of functional materials into electronic devices has become a key approach to extending Moore's law by increasing the functional density of electronic circuits. Here, we present a device technology based on ultrascaled ferroelectric, antiambipolar transistors (ferro-AAT) with robust negative transconductance, enabling a wide range of reconfigurable functionalities with applications in both the digital and analog domains. The device relies on the integration of a hafnia-based ferroelectric gate stack on a vertical nanowire tunnel field-effect transistor. Through intentional gate/source overlap and tunnel-junction engineering, we demonstrate enhanced antiambipolarity with a high negative transconductance that is reconfigurable using the nonvolatile remanent polarization of the ferroelectric. Experimental validation highlights the versatility of this ferro-AAT in two implementation scenarios: content addressable memory (CAM) for high-density data search and reconfigurable signal processing in analog circuits. As a single-transistor cell for CAMs, the ferro-AAT shows subpicojoule operation for one search with a compact footprint of ∼0.01 µm2. For single-transistor-based signal modulation, multistate reconfigurations and high power conversion (>95%) are achieved in the ferro-AAT, resulting in a significant reduction in the complexity of analog circuit design. Our results reveal that the distinctive device properties allow ferro-AATs to operate beyond conventional transistors with multiple reconfigurable functionalities, ultrascaled footprint, and low power consumption.

2.
Data Brief ; 57: 110949, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39391001

ABSTRACT

Keyboard acoustic recognition is a pivotal area within cybersecurity and human-computer interaction, where the identification and analysis of keyboard sounds are used to enhance security measures. The performance of acoustic-based security systems can be influenced by factors such as the platform used, typing style, and environmental noise. To address these variations and provide a comprehensive resource, we present the Multi-Keyboard Acoustic (MKA) Datasets. These extensive datasets, meticulously gathered by a team in the Computer Science Department at the University of Halabja, include recordings from six widely-used platforms: HP, Lenovo, MSI, Mac, Messenger, and Zoom. The MKA datasets have structured data for each platform, including raw recordings, segmented sound files, and matrices derived from these sounds. They can be used by researchers in keylogging detection, cybersecurity, and other fields related to acoustic emanation attacks on keyboards. Moreover, the datasets capture the intricacies of typing behaviour with both hands and all ten fingers by carefully segmenting and pre-processing the data using the Praat tool, thus ensuring high-quality and dependable data. This comprehensive approach allows researchers to explore various aspects of keyboard sound recognition, contributing to the development of robust recognition algorithms and enhanced security measures. The MKA Datasets stand as one of the largest and most detailed datasets in this domain, offering significant potential for advancing research and improving defences against acoustic-based threats.

3.
iScience ; 27(10): 110927, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39391728

ABSTRACT

Compared to traditional bio-mimic robots, animal robots show superior locomotion, energy efficiency, and adaptability to complex environments but most remained in laboratory stage, needing further development for practical applications like exploration and inspection. Our pigeon robots validated in both laboratory and field, tested with an electrical stimulus unit (2-s duration, 0.5 ms pulse width, 80 Hz frequency). In a fixed stimulus procedure, hovering flight was conducted with 8 stimulus units applied every 2 s after flew over the trigger boundary. In a flexible procedure, stimulus was applied whenever they deviated from a virtual circle, with pulse width gains of 0.1 ms or 0.2 ms according to the trajectory angle. These optimized protocols achieved a success hovering rate of 87.5% and circle curvatures of 0.008 m-1-0.024 m-1, largely advancing the practical application of animal robots.

4.
Sci Rep ; 14(1): 23427, 2024 10 08.
Article in English | MEDLINE | ID: mdl-39379545

ABSTRACT

Insomnia was diagnosed by analyzing sleep stages obtained during polysomnography (PSG) recording. The state-of-the-art insomnia detection models that used physiological signals in PSG were successful in classification. However, the sleep stages of unbalanced data in small-time intervals were fed for classification in previous studies. This can be avoided by analyzing the insomnia detection structure in different frequency bands with artificially generated data from the existing one at the preprocessing and post-processing stages. Hence, the paper proposes a double-layered augmentation model using Modified Conventional Signal Augmentation (MCSA) and a Conditional Tabular Generative Adversarial Network (CTGAN) to generate synthetic signals from raw EEG and synthetic data from extracted features, respectively, in creating training data. The presented work is independent of sleep stage scoring and provides double-layered data protection with the utility of augmentation methods. It is ideally suited for real-time detection using a single-channel EEG provides better mobility and comfort while recording. The work analyzes each augmentation layer's performance individually, and better accuracy was observed when merging both. It also evaluates the augmentation performance in various frequency bands, which are decomposed using discrete wavelet transform, and observed that the alpha band contributes more to detection. The classification is performed using Decision Tree (DT), Ensembled Bagged Decision Tree (EBDT), Gradient Boosting (GB), Random Forest (RF), and Stacking classifier (SC), attaining the highest classification accuracy of 94% using RF with a greater Area Under Curve (AUC) value of 0.97 compared to the existing works and is best suited for small datasets.


Subject(s)
Electroencephalography , Polysomnography , Sleep Initiation and Maintenance Disorders , Humans , Sleep Initiation and Maintenance Disorders/physiopathology , Sleep Initiation and Maintenance Disorders/diagnosis , Electroencephalography/methods , Polysomnography/methods , Adult , Male , Female , Signal Processing, Computer-Assisted , Sleep Stages/physiology , Algorithms , Neural Networks, Computer , Middle Aged , Young Adult
5.
Data Brief ; 57: 110922, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39328965

ABSTRACT

This study presents a dataset of bacterial isolates collected from abattoirs in Osun State, Nigeria, designed to support research on antimicrobial resistance (AMR). The environment plays a critical role in the development and spread of AMR, posing a growing threat to global health. This dataset aims to address challenges in antibiotic selection by enabling the prediction of effective drugs for specific bacterial infections.

6.
J Neural Eng ; 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39326451

ABSTRACT

Modern brain-computer interfaces and neural implants allow interaction between the tissue, the user and the environment, where people suffer from neurodegenerative diseases or injuries. This interaction can be achieved by using penetrating/invasive microelectrodes for extracellular recordings and stimulation, such as Utah or Michigan arrays. The application-specific signal processing of the extracellular recording enables the detection of interactions and enables user interaction. For example, it allows to read out movement intentions from recordings of brain signals for controlling a prosthesis or an exoskeleton. To enable this, computationally complex algorithms are used in research that cannot be executed onchip or on embedded systems. Therefore, an optimization of the end-to-end processing pipeline, from the signal condition on the electrode array over the analog pre-processing to spike-sorting and finally the neural decoding process, is necessary for hardware inference in order to enable a local signal processing in real-time and to enable a compact system for achieving a high comfort level. is This paper presents a survey of system architectures and algorithms for end-to-end signal processing pipelines of neural activity on the hardware of such neural devices, including (i) on-chip signal pre-processing, (ii) spike-sorting on-chip or on embedded hardware and (iii) neural decoding on workstations. A particular focus for the hardware implementation is on low-power electronic design and artifact-robust algorithms with low computational effort and very short latency. For this, current challenges and possible solutions with support of novel machine learning techniques are presented in brief. In addition, we describe our future vision for next-generation BCIs.

7.
J Neural Eng ; 21(5)2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39284360

ABSTRACT

In the context of electroencephalographic (EEG) signal processing, artifacts generated by ocular movements, such as blinks, are significant confounding factors. These artifacts overwhelm informative EEG features and may occur too frequently to simply remove affected epochs without losing valuable data. Correcting these artifacts remains a challenge, particularly in out-of-lab and online applications using wearable EEG systems (i.e. with low number of EEG channels, without any additional channels to track EOG).Objective.The main objective of the present work consisted in validating a novel ocular blinks artefacts correction method, named multi-stage OCuLar artEfActs deNoising algorithm (o-CLEAN), suitable for online processing with minimal EEG channels.Approach.The research was conducted considering one EEG dataset collected in highly controlled environment, and a second one collected in real environment. The analysis was performed by comparing the o-CLEAN method with previously validated state-of-art techniques, and by evaluating its performance along two dimensions: (a) the ocular artefacts correction performance (IN-Blink), and (b) the EEG signal preservation when the method was applied without any ocular artefacts occurrence (OUT-Blink).Main results.Results highlighted that (i) o-CLEAN algorithm resulted to be, at least, significantly reliable as the most validated approaches identified in scientific literature in terms of ocular blink artifacts correction, (ii) o-CLEAN showed the best performances in terms of EEG signal preservation especially with a low number of EEG channels.Significance.The testing and validation of the o-CLEAN addresses a relevant open issue in bioengineering EEG processing, especially within out-of-the-lab application. In fact, the method offers an effective solution for correcting ocular artifacts in EEG signals with a low number of available channels, for online processing, and without any specific template of the EOG. It was demonstrated to be particularly effective for EEG data gathered in real environments using wearable systems, a rapidly expanding area within applied neuroscience.


Subject(s)
Algorithms , Artifacts , Blinking , Electroencephalography , Eye Movements , Humans , Electroencephalography/methods , Blinking/physiology , Eye Movements/physiology , Male , Female , Adult , Young Adult , Signal Processing, Computer-Assisted
8.
Comput Biol Med ; 182: 109169, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39341104

ABSTRACT

An Electromyography (EMG) based pattern recognition system constitutes various steps of signal processing and control engineering from signal acquisition to real-time control. Efficient control of external devices largely depends on the signal processing steps executed before the final output. This work presents a new approach to signal processing using Motor Unit Action Potential (MUAP) based signal decomposition and segmentation. An MUAP is a neurological response during muscle contraction. Due to the higher contact area of surface electrodes, MUAPs from multiple muscles are captured. An MUAP generated from a single muscle usually has identical waveshapes and similar discharging rates and usually lasts for 8-15 ms. These are known as primary MUAPs. The proposed algorithm identifies and uses the primary observed MUAPs for feature extraction and classification. Firstly, noise signals are eliminated by a determined noise margin, which also separates the active muscle movement signals. Next, a novel MUAP identification algorithm is implemented to detect the MUAP trains. Then, identified primary MUAPs are used to make segments with variable widths to extract feature vectors. Based on the correlation score of all the primary MUAPs, the segmentation is performed, which results in segmentation width varying from 110-200 ms. The achieved segmentation width is lesser than the conventional overlapping and non-overlapping methods - the proposed approach results in a 20 to 50% reduction in the segmentation width. Four different classifiers are tested during the machine learning stage to investigate the performance of the proposed approach. The obtained feature sets are then used to train the Linear Discriminant Analysis (LDA), K-Nearest Neighbor (kNN), Decision Tree (DT), and Random Forest (RF) classifiers. The classifiers are tested with precision, recall, F1 score, and accuracy. The kNN and DT classifiers performed better than the LDA and RF classifiers. The maximum precision and recall are 100% while the maximum achieved accuracy is 98.56%. The comparative results show higher accuracy even at lower segmentation widths than the conventional constant window scheme. The kNN and DT classifiers provide a 5% to 15% increment in accuracy compared to the constant window segmentation-based approach.

9.
Bio Protoc ; 14(18): e5072, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39346757

ABSTRACT

Expansion microscopy (ExM) has significantly reformed the field of super-resolution imaging, emerging as a powerful tool for visualizing complex cellular structures with nanoscale precision. Despite its capabilities, the epitope accessibility, labeling density, and precision of individual molecule detection pose challenges. We recently developed an iterative indirect immunofluorescence (IT-IF) method to improve the epitope labeling density, improving the signal and total intensity. In our protocol, we iteratively apply immunostaining steps before the expansion and exploit signal processing through noise estimation, denoising, and deblurring (NEDD) to aid in quantitative image analyses. Herein, we describe the steps of the iterative staining procedure and provide instructions on how to perform NEDD-based signal processing. Overall, IT-IF in ExM-laser scanning confocal microscopy (LSCM) represents a significant advancement in the field of cellular imaging, offering researchers a versatile tool for unraveling the structural complexity of biological systems at the molecular level with an increased signal-to-noise ratio and fluorescence intensity. Key features • Builds upon the method developed by Mäntylä et al. [1] and introduces the IT-IF method and signal-processing platform for several nanoscopy imaging applications. • Retains signal-to-noise ratio and significantly enhances the fluorescence intensity of ExM-LSCM data. • Automatic estimation of noise, signal reconstruction, denoising, and deblurring for increased reliability in image quantifications. • Requires at least seven days to complete.

10.
PeerJ Comput Sci ; 10: e2256, 2024.
Article in English | MEDLINE | ID: mdl-39314688

ABSTRACT

Electroencephalography (EEG) is a medical engineering technique aimed at recording the electric activity of the human brain. Brain signals derived from an EEG device can be processed and analyzed through computers by using digital signal processing, computational statistics, and machine learning techniques, that can lead to scientifically-relevant results and outcomes about how the brain works. In the last decades, the spread of EEG devices and the higher availability of EEG data, of computational resources, and of software packages for electroencephalography analysis has made EEG signal processing easier and faster to perform for any researcher worldwide. This increased ease to carry out computational analyses of EEG data, however, has made it easier to make mistakes, as well. And these mistakes, if unnoticed or treated wrongly, can in turn lead to wrong results or misleading outcomes, with worrisome consequences for patients and for the advancements of the knowledge about human brain. To tackle this problem, we present here our ten quick tips to perform electroencephalography signal processing analyses avoiding common mistakes: a short list of guidelines designed for beginners on what to do, how to do it, and what not to do when analyzing EEG data with a computer. We believe that following our quick recommendations can lead to better, more reliable and more robust results and outcome in clinical neuroscientific research.

11.
PeerJ Comput Sci ; 10: e2295, 2024.
Article in English | MEDLINE | ID: mdl-39314696

ABSTRACT

The electrocardiogram (ECG) is a powerful tool to measure the electrical activity of the heart, and the analysis of its data can be useful to assess the patient's health. In particular, the computational analysis of electrocardiogram data, also called ECG signal processing, can reveal specific patterns or heart cycle trends which otherwise would be unnoticeable by medical experts. When performing ECG signal processing, however, it is easy to make mistakes and generate inflated, overoptimistic, or misleading results, which can lead to wrong diagnoses or prognoses and, in turn, could even contribute to bad medical decisions, damaging the health of the patient. Therefore, to avoid common mistakes and bad practices, we present here ten easy guidelines to follow when analyzing electrocardiogram data computationally. Our ten recommendations, written in a simple way, can be useful to anyone performing a computational study based on ECG data and eventually lead to better, more robust medical results.

12.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338616

ABSTRACT

Vibration-based structural health monitoring (SHM) is essential for evaluating structural integrity. Traditional methods using contact vibration sensors like accelerometers have limitations in accessibility, coverage, and impact on structural dynamics. Recent digital advancements offer new solutions through high-speed camera-based measurements. This study explores how camera settings (speed and resolution) influence the accuracy of dynamic response measurements for detecting small cracks in damped cantilever beams. Different beam thicknesses affect damping, altering dynamic response parameters such as frequency and amplitude, which are crucial for damage quantification. Experiments were conducted on 3D-printed Acrylonitrile Butadiene Styrene (ABS) cantilever beams with varying crack depth ratios from 0% to 60% of the beam thickness. The study utilised the Canny edge detection technique and Fast Fourier Transform to analyse vibration behaviour captured by cameras at different settings. The results show an optimal set of camera resolutions and frame rates for accurately capturing dynamic responses. Empirical models based on four image resolutions were validated against experimental data, achieving over 98% accuracy for predicting the natural frequency and around 90% for resonance amplitude. The optimal frame rate for measuring natural frequency and amplitude was found to be 2.4 times the beam's natural frequency. The findings provide a method for damage assessment by establishing a relationship between crack depth, beam thickness, and damping ratio.

13.
Sensors (Basel) ; 24(18)2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39338629

ABSTRACT

Forward jammers replicate and retransmit radar signals back to generate coherent jamming signals and false targets, making anti-jamming an urgent issue in electronic warfare. Jamming transmitters work at saturation to maximize the retransmission power such that only the phase information of the angular waveform at the designated direction of arrival (DOA) is retained. Therefore, amplitude modulation of MIMO radar angular waveforms offers an advantage in combating forward jamming. We address both the design of unimodular MIMO waveforms and their associated mismatch filters to confront mainlobe jamming in this paper. Firstly, we design the MIMO waveforms to maximize the discrepancy between the retransmitted jamming and the spatially synthesized radar signal. We formulate the problem as unconstrained non-linear optimization and solve it using the conjugate gradient method. Particularly, we introduce fast Fourier transform (FFT) to accelerate the numeric calculation of both the objection function and its gradient. Secondly, we design a mismatch filter to further suppress the filtered jamming through convex optimization in polynomial time. The simulation results show that for an eight-element MIMO radar, we are able to reduce the correlation between the angular waveform and saturated forward jamming to -6.8 dB. Exploiting this difference, the mismatch filter can suppress the jamming peak by 19 dB at the cost of an SNR loss of less than 2 dB.

14.
Sensors (Basel) ; 24(18)2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39338765

ABSTRACT

Optical-based sensing techniques and instruments, such as fluorometric systems, absorbance-based sensors, and photoacoustic spectrometers, are important tools for detecting food fraud, adulteration, and contamination for health and environmental purposes. All the aforementioned optical equipments generally require one or more low-frequency Lock-In Amplifiers (LIAs) to extract the signal of interest from background noise. In the cited applications, the required LIA frequency is quite low (up to 1 kHz), and this leads to a simplification of the hardware with consequent good results in portability, reduced size, weight, and low-cost characteristics. The present system, called ENEA DSP Box Due, is based on a very inexpensive microcontroller proto-board and can replace four commercial LIAs, resulting in significant savings in both cost and space. Furthermore, it incorporates a dual-channel oscilloscope and a sinusoidal function generator. This article outlines the architecture of the ENEA DSP Box Due, its electrical characterization, and its applications within a project concerning laser techniques for food and water safety.

15.
Sensors (Basel) ; 24(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39338853

ABSTRACT

Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes-such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential-often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes. This instrument not only significantly accelerates the acquisition of atomic-scale images by orders of magnitude but also enables the tracking of moving features such as adatoms, vacancies, or clusters across the surface ("atom tracking") due to the parallel execution of sophisticated control and acquisition algorithms and the fast exchange of data with an external processor. Each of these measurement modes requires a complex series of operations within the FPGA that are explained in detail.

16.
Adv Sci (Weinh) ; : e2404695, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39319607

ABSTRACT

Time-varying metamaterials offer new degrees of freedom for wave manipulation and enable applications unattainable with conventional materials. In these metamaterials, the pattern of temporal inhomogeneity is crucial for effective wave control. However, existing studies have only demonstrated abrupt changes in properties within a limited range or time modulation following simple patterns. This study presents the design, construction, and characterization of a novel temporal elastic metamaterial with complex time-varying constitutive parameters induced by self-reconfigurable virtual resonators (VRs). These VRs, achieved by simulating the resonating behavior of mechanical resonators in digital space, function as virtualized meta-atoms. The autonomously time-varying VRs cause significant temporal variations in both the stiffness and loss factor of the metamaterial. By programming the time-domain behavior of the VRs, the metamaterial's constitutive parameters can be modulated according to desired periodic or aperiodic patterns. The proposed time-varying metamaterial has demonstrated capabilities in shaping the amplitudes and frequency spectra of waves in the time domain. This work not only facilitates the development of materials with sophisticated time-varying properties but also opens new avenues for low-frequency signal processing in future communication systems.

17.
Stud Health Technol Inform ; 318: 138-143, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39320195

ABSTRACT

Wearable sensors, among other informatics solutions, are readily accessible to enable noninvasive remote monitoring in healthcare. While providing a wealth of data, the wide variety of such sensing systems and the differing implementations of the same or similar sensors by different developers complicate comparisons of collected data. An online application as a platform technology that provides uniform methods for analysing balance data is presented as a case study. The development of balance problems is common in neurodegenerative conditions, leading to falls and a reduced quality of life. While balance can be assessed using, for example, perturbation tests, sensors offer a more quantitative and scalable way. Researchers can adjust the platform to integrate the sensors of their choice or upload data and then preprocess, featurise, analyse, and visualise them. This eases performing comparative analyses across the sensors and datasets through a reduction of heterogeneity and facilitates easy integration of machine learning and other advanced data analytics, thereby targeting personalising medical insights.


Subject(s)
Precision Medicine , Humans , Wearable Electronic Devices , Machine Learning
18.
Front Bioeng Biotechnol ; 12: 1417497, 2024.
Article in English | MEDLINE | ID: mdl-39262630

ABSTRACT

Stroke rehabilitation interventions require multiple training sessions and repeated assessments to evaluate the improvements from training. Biofeedback-based treadmill training often involves 10 or more sessions to determine its effectiveness. The training and assessment process incurs time, labor, and cost to determine whether the training produces positive outcomes. Predicting the effectiveness of gait training based on baseline minimum foot clearance (MFC) data would be highly beneficial, potentially saving resources, costs, and patient time. This work proposes novel features using the Short-term Fourier Transform (STFT)-based magnitude spectrum of MFC data to predict the effectiveness of biofeedback training. This approach enables tracking non-stationary dynamics and capturing stride-to-stride MFC value fluctuations, providing a compact representation for efficient processing compared to time-domain analysis alone. The proposed STFT-based features outperform existing wavelet, histogram, and Poincaré-based features with a maximum accuracy of 95%, F1 score of 96%, sensitivity of 93.33% and specificity of 100%. The proposed features are also statistically significant (p < 0.001) compared to the descriptive statistical features extracted from the MFC series and the tone and entropy features extracted from the MFC percentage index series. The study found that short-term spectral components and the windowed mean value (DC value) possess predictive capabilities regarding the success of biofeedback training. The higher spectral amplitude and lower variance in the lower frequency zone indicate lower chances of improvement, while the lower spectral amplitude and higher variance indicate higher chances of improvement.

19.
Front Chem ; 12: 1409527, 2024.
Article in English | MEDLINE | ID: mdl-39301414

ABSTRACT

A novel neural network adaptive filter algorithm is proposed to address the challenge of weak spectral signals and low accuracy in micro-spectrometer detection. This algorithm bases on error backpropagation (BP) and least mean square (LMS), introduces an innovative BP neural network model incorporating instantaneous error function and error factor to optimize the learning process. It establishes a network relationship through the input signal, output signal, error and step factor of the adaptive filter, and defines a training optimization learning method for this relationship. To validate the effectiveness of the algorithm, experiments were conducted on simulated noisy signals and actual spectral signals. Results show that the algorithm effectively denoises signals, reduces noise interference, and enhances signal quality, the SNR of the proposed algorithm is 3-4 dB higher than that of the traditional algorithm. The experimental spectral results showed that the proposed neural network adaptive filter algorithm combined with partial least squares regression is suitable for simultaneous detection of copper and cobalt based on ultraviolet-visible spectroscopy, and has broad application prospects.

20.
Neural Netw ; 180: 106731, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39303603

ABSTRACT

Estimating intracranial current sources underlying the electromagnetic signals observed from extracranial sensors is a perennial challenge in non-invasive neuroimaging. Established solutions to this inverse problem treat time samples independently without considering the temporal dynamics of event-related brain processes. This paper describes current source estimation from simultaneously recorded magneto- and electro-encephalography (MEEG) using a recurrent neural network (RNN) that learns sequential relationships from neural data. The RNN was trained in two phases: (1) pre-training and (2) transfer learning with L1 regularization applied to the source estimation layer. Performance of using scaled labels derived from MEEG, magnetoencephalography (MEG), or electroencephalography (EEG) were compared, as were results from volumetric source space with free dipole orientation and surface source space with fixed dipole orientation. Exact low-resolution electromagnetic tomography (eLORETA) and mixed-norm L1/L2 (MxNE) source estimation methods were also applied to these data for comparison with the RNN method. The RNN approach outperformed other methods in terms of output signal-to-noise ratio, correlation and mean-squared error metrics evaluated against reference event-related field (ERF) and event-related potential (ERP) waveforms. Using MEEG labels with fixed-orientation surface sources produced the most consistent estimates. To estimate sources of ERF and ERP waveforms, the RNN generates temporal dynamics within its internal computational units, driven by sequential structure in neural data used as training labels. It thus provides a data-driven model of computational transformations from psychophysiological events into corresponding event-related neural signals, which is unique among MEEG source reconstruction solutions.

SELECTION OF CITATIONS
SEARCH DETAIL