Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Anal Chim Acta ; 1304: 342558, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38637055

ABSTRACT

Quorum sensing signal molecule is an important biomarker released by some microorganisms, which can regulate the adhesion and aggregation of marine microorganisms on the surface of engineering facilities. Thus, it is significant to exploit a convenient method that can effectively monitor the formation and development of marine biofouling. In this work, an advanced photoelectrochemical (PEC) aptamer biosensing platform was established and firstly applied for the rapid and ultrasensitive determination of N-(3-Oxodecanoyl)-l-homoserine lactone (3-O-C10-HL) released from marine fouling microorganism Ponticoccus sp. PD-2. The visible-light-driven Bi2WO6/Bi2S3 heterojunction derived from metal-organic frameworks (MOFs) CAU-17 and self-screened aptamer were employed as the photoactive materials and bioidentification elements, respectively. Appropriate amount of MoS2 quantum dots (QDs) conjugated with single-stranded DNA were introduced by hybridization to enhance the photocurrent response of the PEC biosensor. The self-screening aptamer can specifically recognize 3-O-C10-HL, accompanied by increasing the steric hindrance and forcing MoS2 QDs to leave the electrode surface, resulting in an obvious reduction of photocurrent and achieving a dual-inhibition signal amplification effect. Under the optimized conditions, the photocurrent response of PEC aptasensor was linear with 3-O-C10-HL concentration from 1 nM to 10 µM, and the detection limit was as low as 0.26 nM. The detection strategy also showed a high reproducibility, superior specificity and good stability. This work not only provides a simple, rapid and ultrasensitive PEC aptamer biosensing strategy for monitoring quorum sensing signal molecules in marine biofouling, but also broadens the application of MOFs-based heterojunctions in PEC sensors.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques/methods , Reproducibility of Results , Molybdenum , Quorum Sensing , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Limit of Detection
2.
Cancer Biol Ther ; 25(1): 2322206, 2024 12 31.
Article in English | MEDLINE | ID: mdl-38436092

ABSTRACT

Salidroside inhibited the proliferation of cancer cell. Nevertheless, the mechanism has not been completely clarified. The purpose of the study is to explore the mechanisms of salidroside against gastric cancer. To analyze the changes of microRNA (miRNA) in gastric cancer cells under the treatment of salidroside, the miRNA expression was analyzed by using RNA-seq in cancer cells for 24 h after salidroside treatment. The differentially expressed miRNAs were clustered and their target genes were analyzed. Selected miRNA and target mRNA genes were further verified by q-PCR. The expressions of target genes in cancer cells were detected by immunohistochemistry. Cancer cell apoptotic index was significantly increased after salidroside treatment. The proliferation of gastric cancer cells were blocked at S-phase cell cycle. The expression of 44 miRNAs changed differentially after salidroside treatment in cancer cells. Bioinformatic analysis showed that there were 1384 target mRNAs corresponding to the differentially expressed miRNAs. Surprisingly, salidroside significantly up-regulated the expression of tumor suppressor miR-1343-3p, and down-regulated the expression of MAP3K6, STAT3 and MMP24-related genes. Salidroside suppressed the growth of gastric cancer by inducing the cancer cell apoptosis, arresting the cancer cell cycle and down-regulating the related signal transduction pathways. miRNAs are expressed differentially in gastric cancer cells after salidroside treatment, playing important roles in regulating proliferation and metastasis. Salidroside may suppress the growth of gastric cancer by up-regulating the expression of the tumor suppressor miR-1343-3p and down-regulating the expression of MAP3K6 and MMP24 signal molecules.


Subject(s)
Glucosides , MicroRNAs , Phenols , Stomach Neoplasms , Humans , Cell Proliferation , Matrix Metalloproteinases, Membrane-Associated , MicroRNAs/drug effects , MicroRNAs/genetics , MicroRNAs/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , MAP Kinase Kinase Kinases/drug effects , MAP Kinase Kinase Kinases/metabolism
3.
Microbiol Res ; 281: 127606, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277718

ABSTRACT

The present study explores the potential of rhizobacteria isolated from Baccharis linearis and Solidago chilensis in metal(loid)-contaminated soil for producing N-acyl-homoserine lactones (AHLs)-type signal molecules and promoting plant growth. A total of 42 strains were isolated, four demonstrating the production of AHL-type signal molecules. Based on 16S rRNA gene sequencing analyses and MALDI-TOF analyses, these four isolates were identified as belonging to the Pseudomonas genus, specifically P. brassicacearum, P. frederickberguensis, P. koreensis, and P. orientalis. The four AHL-producing strains were evaluated for metal(loid)s tolerance, their plant growth promotion traits, AHL quantification, and their impact on in vitro Lactuca sativa plant growth. The study found that four strains exhibited high tolerance to metal(loid)s, particularly As, Cu, and Zn. Additionally, plant growth-promoting traits were detected in AHL-producing bacteria, such as siderophore production, ammonia production, ACC deaminase activity, and P solubilization. Notably, AHL production varied among strains isolated from B. linearis, where C7-HSL and C9-HSL signal molecules were detected, and S. chilensis, where only C7-HSL signal molecules were observed. In the presence of copper, the production of C7-HSL and C9-HSL significantly decreased in B. linearis isolates, while in S. chilensis isolates, C7-HSL production was inhibited. Further, when these strains were inoculated on lettuce seeds and in vitro plants, a significant increase in germination and plant growth was observed. Mainly, the inoculation of P. brassicacearum and P. frederickberguensis led to extensive root hair development, significantly increasing length and root dry weight. Our results demonstrate that rhizospheric strains produce AHL molecules and stimulate plant growth, primarily through root development. However, the presence of copper reduces the production of these molecules, potentially affecting the root development of non-metalloid tolerant plants such as S. chilensis, which would explain its low population in this hostile environment.


Subject(s)
Acyl-Butyrolactones , Quorum Sensing , Quorum Sensing/genetics , Copper , RNA, Ribosomal, 16S/genetics , Plants/genetics , Soil
4.
J Chemother ; 36(1): 11-23, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37873740

ABSTRACT

Among promising antibiofilm compounds, quorum-sensing (QS) molecules that regulate biological processes such as biofilm formation and intra- or interspecies communication appear to be good candidates. The invitro antibiotic-adjuvant effects of QS molecules diffusible signal factor (DSF) and B. cenocepacia producing-DSF (BDSF) were investigated against mature Staphylococcal biofilms. Broth microdilution methods were used for the determinations of MIC, MBC, MBIC, and MBEC, and bactericidal activities were determined by TKC method. The lowest MICs were obtained with ciprofloxacin and gentamicin, and MBECs with ciprofloxacin. DSF and BDSF at 0.5 µM decreased the MICs as 2-8, and 2-32 fold, respectively. In TKC studies, -cidal activities were achieved by BDSF + gentamycin, or ciprofloxacin, and DSF + daptomycin, vancomycin, meropenem or gentamycin combinations. Synergistic effects were generally obtained with BDSF + gentamicin combinations, followed by DSF + daptomycin against most S. aureus; while BDSF + gentamicin or ciprofloxacin, and DSF + vancomycin or meropenem were synergist against some S. epidermidis biofilms. Also, the antagonist effects were observed with BDSF + meropenem or ciprofloxacin against each MSSE and MSSA. It is estimated that these QS molecules, although it was strain dependent, generally enhanced the antibiotic activity, and would be a new and effective treatment strategy for biofilm control, either alone or as an antibiotic adjuvant.


Subject(s)
Daptomycin , Quorum Sensing , Suppressor Factors, Immunologic , Humans , Anti-Bacterial Agents/pharmacology , Vancomycin/pharmacology , Staphylococcus , Staphylococcus aureus , Meropenem/pharmacology , Daptomycin/pharmacology , Biofilms , Gentamicins , Ciprofloxacin
5.
Physiol Rep ; 11(21): e15867, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37962014

ABSTRACT

This study aimed to determine effects of cooling on contraction-induced peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and vascular endothelial growth factor (VEGF) gene expression, phosphorylations of its related protein kinases, and metabolic responses. Male rats were separated into two groups; room temperature (RT) or ice-treated (COLD) on the right tibialis anterior (TA). The TA was contracted isometrically using nerve electrical stimulation (1-s stimulation × 30 contractions, with 1-s intervals, for 10 sets with 1-min intervals). The TA was treated before the contraction and during 1-min intervals with an ice pack for the COLD group and a water pack at RT for the RT group. The muscle temperature of the COLD group decreased to 19.42 ± 0.44°C (p < 0.0001, -36.4%) compared with the RT group after the experimental protocol. An increase in mRNA expression level of PGC-1α, not VEGF, after muscle contractions was significantly lower in the COLD group than in the RT group (p < 0.0001, -63.0%). An increase in phosphorylated AMP-activated kinase (AMPK) (p = 0.0037, -28.8%) and a decrease in glycogen concentration (p = 0.0231, +106.3%) after muscle contraction were also significantly inhibited by cooling. Collectively, muscle cooling attenuated the post-contraction increases in PGC-1α mRNA expression coinciding with decreases in AMPK phosphorylation and glycogen degradation.


Subject(s)
AMP-Activated Protein Kinases , Vascular Endothelial Growth Factor A , Animals , Male , Rats , AMP-Activated Protein Kinases/metabolism , Glycogen/metabolism , Ice , Muscle Contraction , Muscle, Skeletal/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
Water Res ; 246: 120690, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37804807

ABSTRACT

Bacterial communication interruption based on quorum quenching (QQ) has been proven its potential in biofilm formation inhibition and biofouling control. However, it would be more satisfying if QQ could be combined with the efficient degradation of contaminants in environmental engineering. In this study, we engineered a biofilm of Pseudomonas putida through introducing a QQ synthetic gene, which achieved both biofilm formation inhibition and efficient degradation of benzene series in wastewater. The aiiO gene introduced into the P. putida by heat shock method was highly expressed to produce QQ enzyme to degrade AHL-based signal molecules. The addition of this engineered P. putida reduced the AHLs concentration, quorum sensing gene expression, and connections of the microbial community network in activated sludge and therefore inhibited the biofilm formation. Meanwhile, the sodium benzoate degradation assay indicated an enhanced benzene series removal ability of the engineering bacteria on activated sludge. Besides, we also demonstrated a controllable environmental risk of this engineered bacteria through monitoring its abundance and horizontal gene transfer test. Overall, the results of this study suggest an alternative strategy to solve multiple environmental problems through genetic engineering means and provide support for the application of engineered bacteria in environmental biotechnology.


Subject(s)
Pseudomonas putida , Sewage , Sewage/microbiology , Pseudomonas putida/genetics , Benzene , Biofilms , Quorum Sensing/physiology , Bioreactors/microbiology
7.
Animals (Basel) ; 13(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37685035

ABSTRACT

This study aimed to assess the effects of partially substituting soybean meal in the diet with slow-release urea (SRU) on the lactation performance, heat shock signal molecules, and environmental sustainability of heat-stressed lactating cows in the middle stage of lactation. In this study, 30 healthy Holstein lactating dairy cattle with a similar milk yield of 22.8 ± 3.3 kg, days in milk of 191.14 ± 27.24 days, and 2.2 ± 1.5 parity were selected and randomly allocated into two groups. The constituents of the two treatments were (1) basic diet plus 500 g soybean meal (SM) for the SM group and (2) basic diet plus 100 g slow-release urea and 400 g corn silage for the SRU group. The average temperature humidity index (THI) during the experiment was 84.47, with an average THI of >78 from day 1 to day 28, indicating the cow experienced moderate heat stress conditions. Compared with the SM group, the SRU group showed decreasing body temperature and respiratory rate trends at 20:00 (p < 0.1). The substitution of SM with SRU resulted in an increasing trend in milk yield, with a significant increase of 7.36% compared to the SM group (p < 0.1). Compared to the SM group, AST, ALT, and γ-GT content levels were significantly increased (p < 0.05). Notably, the levels of HSP-70 and HSP-90α were significantly reduced (p < 0.05). The SRU group showed significantly increased acetate and isovalerate concentrations compared with the SM group (p < 0.05). The prediction results indicate that the SRU group exhibits a significant decrease in methane (CH4) emissions when producing 1 L of milk compared to the SM group (p < 0.05). In summary, dietary supplementation with SRU tended to increase the milk yield and rumen fermentation and reduce plasma heat shock molecules in mid-lactation, heat-stressed dairy cows. In the hot summer, using SRU instead of some soybean meal in the diet alleviates the heat stress of dairy cows and reduces the production of CH4.

8.
Eur J Pharmacol ; 959: 176057, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37751832

ABSTRACT

Mitochondrial autophagy plays an important role in maintaining the complexity of mitochondrial functions and removing damaged mitochondria, of which the PINK1-Parkin signal pathway is one of the most classical pathways. Thus, a comprehensive and in-depth interpretation of the PINK1-Parkin signal pathway might deepen our understanding on the impacts of mitochondrial autophagy. Alzheimer's disease (AD) is a classical example of neurodegenerative disease. Research on the pathogenesis and treatments of AD has been a focus of scientific research because of its complexity and the limitations of current drug therapies. It was reported that the pathogenesis of AD might be related to mitochondrial autophagy due to excessive deposition of Aß protein and aggravation of the phosphorylation of Tau protein. Two key proteins in the PINK1-Parkin signaling pathway, PINK1 and Parkin, have important roles in the folding and accumulation of Aß protein and the phosphorylation of Tau protein. In addition, the intermediate signal molecules in the PINK1-Parkin signal pathway also have certain effects on AD. In this paper, we first described the role of PINK1-Parkin signal pathway on mitochondrial autophagy, then discussed and analyzed the effect of the PINK1-Parkin signal pathway in AD and other metabolic diseases. Our aim was to provide a theoretical direction to further elucidate the pathogenesis of AD and highlight the key molecules related to AD that could be important targets used for AD drug development.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Protein Kinases/metabolism , Neurodegenerative Diseases/metabolism , Autophagy , Ubiquitin-Protein Ligases/metabolism , Mitochondria
9.
Bioresour Technol ; 387: 129644, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37558106

ABSTRACT

Anaerobic granular sludge (AnGS) has a complex and important internal microbial communication system due to its unique microbial layered structure. As a concentration-dependent communication system between bacterial cells through signal molecules, QS (quorum sensing) is widespread in AnGS and exhibits great potential to regulate microbial behaviors. Therefore, the universal functions of QS in AnGS have been systematically summarized in this paper, including the influence on the metabolic activity, physicochemical properties, and microbial community of AnGS. Subsequently, the common QS-based AnGS regulation approaches are reviewed and analyzed comprehensively. The regulation mechanism of QS in AnGS is analyzed from two systems of single bacterium and mixed bacteria. This review can provide a comprehensive understanding of QS functions in AnGS systems, and promote the practical application of QS-based strategies in optimization of AnGS treatment process.


Subject(s)
Microbiota , Sewage , Sewage/microbiology , Quorum Sensing , Anaerobiosis , Bacteria/metabolism
10.
Chemosphere ; 336: 139244, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37330061

ABSTRACT

Antibiotics are widely used drugs in the world and pose serious threats to ecosystems and human health. Although it has been reported that ammonia oxidizing bacteria (AOB) can cometabolize antibiotics, little has been reported on how AOB would respond to the exposure of antibiotics on extracellular and enzymatic levels, as well as the impact of antibiotics on the bioactivity of AOB. Therefore, in this study, a typical antibiotic, sulfadiazine (SDZ), was selected, and a series short-term batch tests using enriched AOB sludge were conducted to investigate the intracellular and extracellular responses of AOB along the cometabolic degradation process of SDZ. The results showed the cometabolic degradation of AOB made the main contribution to SDZ removal. When the enriched AOB sludge was exposed to SDZ, ammonium oxidation rate, ammonia monooxygenase activity, adenosine triphosphate concentration and dehydrogenases activity were negatively affected. The amoA gene abundance increased 1.5 folds within 24 h, which may enhance the uptake and utilization of substrates and maintain stable metabolic activity. In the tests with and without ammonium, the concentration of total EPS increased from 264.9 to 231.1 mg/gVSS to 607.7 and 538.2 mg/gVSS, respectively, under the exposure to SDZ, which was mainly contributed by the increase of proteins in tightly bound extracellular polymeric substances (EPS) and polysacharides in tightly bound EPS and soluble microbial products. The proportion of tryptophan-like protein and humic acid-like organics in EPS also increased. Moreover, SDZ stress stimulated the secretion of three quorum sensing signal molecules, C4-HSL (from 140.3 to 164.9 ng/L), 3OC6-HSL (from 17.8 to 42.4 ng/L) and C8-HSL (from 35.8 to 95.9 ng/L) in the enriched AOB sludge. Among them, C8-HSL may be a key signal molecule that promoted the secretion of EPS. The findings of this study could shed more light on the cometabolic degradation of antibiotics by AOB.


Subject(s)
Ammonium Compounds , Sulfadiazine , Humans , Sulfadiazine/pharmacology , Sulfadiazine/metabolism , Ammonia/metabolism , Sewage/microbiology , Ecosystem , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Ammonium Compounds/metabolism , Oxidation-Reduction , Bacteria/metabolism , Archaea/metabolism
11.
Polymers (Basel) ; 15(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37376340

ABSTRACT

The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.

12.
Waste Manag Res ; 41(9): 1480-1485, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36912483

ABSTRACT

Co-landfilling of bottom ash (BA) accelerates the clogging of leachate collection systems (LCSs) and increases the risk of landfill failure. The clogging was mainly associated with bio-clogging, which may be reduced by quorum quenching (QQ) strategies. This communication reports on a study of how isolated facultative QQ bacterial strains from municipal solid waste (MSW) landfills and BA co-disposal landfills. In MSW landfills, two novel QQ strains (Brevibacillus agri and Lysinibacillus sp. YS11) can degrade the signal molecule hexanoyl-l-homoserine lactone (C6-HSL) and octanoyl-l-homoserine lactone (C8-HSL), respectively. Pseudomonas aeruginosa could degrade C6-HSL and C8-HSL in BA co-disposal landfills. Moreover, P. aeruginosa (0.98) was observed with a higher growth rate (OD600) compared to that of B. agri (0.27) and Lysinibacillus sp. YS11 (0.53). These results indicated that the QQ bacterial strains were associated with leachate characteristics and signal molecules and could be used for controlling bio-clogging in landfills.


Subject(s)
Refuse Disposal , Solid Waste , Solid Waste/analysis , Coal Ash , Quorum Sensing , Bacteria , Waste Disposal Facilities , Refuse Disposal/methods
13.
Plant Physiol Biochem ; 196: 431-443, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36758290

ABSTRACT

Salicylic acid (SA) is one of the potential plant growth regulators (PGRs) that regulate plant growth and development by triggering many physiological and metabolic processes. It is also known to be a crucial component of plant defense mechanisms against environmental stimuli. In stressed plants, it is documented that it can effectively modulate a myriad of metabolic processes including strengthening of oxidative defense system by directly or indirectly limiting the buildup of reactive nitrogen and oxygen radicals. Although it is well recognized that it performs a crucial role in plant tolerance to various stresses, it is not fully elucidated that whether low or high concentrations of this PGR is effective to achieve optimal growth of plants under stressful environments. It is also not fully understood that to what extent and in what manner it cross-talks with other potential growth regulators and signalling molecules within the plant body. Thus, this critical review discusses how far SA mediates crosstalk with other key PGRs and molecular components of signalling pathways mechanisms, particularly in plants exposed to environmental cues. Moreover, the function of SA exogenously applied in regulation of growth and development as well as reinforcement of oxidative defense system of plants under abiotic stresses is explicitly elucidated.


Subject(s)
Plant Growth Regulators , Salicylic Acid , Plant Growth Regulators/metabolism , Salicylic Acid/metabolism , Plant Development , Plants/metabolism , Signal Transduction , Stress, Physiological/physiology
14.
Environ Technol ; 44(6): 841-852, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34559602

ABSTRACT

A high rate of elemental sulfur (S0) accumulation from sulfide-containing wastewater has great significance in terms of resource recovery and pollution control. This experimental study used Thiobacillus denitrificans and denitrifying bacteria incorporated with signal molecules (C6 and OHHL) for simultaneous sulfide (S2-) and nitrate (NO3-) removal in synthetic wastewater. Also, the effects on S0 accumulation due to changes in organic matter composition and bacteria proportion through signal molecules were analyzed. The 99.0% of S2- removal and 99.3% of NO3- was achieved with 66% of S0 accumulation under the active S2- removal group. The S0 accumulation, S2- and NO3- removal mainly occurred in 0-48 h. The S0 accumulation in the active S2- removal group was 2.0-6.3 times higher than the inactive S2- removal groups. In addition, S0/SO42- ratio exhibited that S0 conversion almost linearly increased with reaction time under the active S2- removal group. The proportion of Thiobacillus denitrificans and H+ consumption showed a positive correlation with S0 accumulation. However, a very high or low ratio of H+/S0 is not suitable for S0 accumulation. The signal molecules greatly increased the concentration of protein-I and protein-II, which resulted in the high proportion of Thiobacillus denitrificans. Therefore, high S0 accumulation was achieved as Thiobacillus denitrificans regulated the H+ consumption and electron transfer rate and provided suppressed oxygen environment. This technology is cost-effective and commercially applicable for recovering S0 from wastewater.


Subject(s)
Thiobacillus , Wastewater , Denitrification , Bioreactors/microbiology , Sulfur , Sulfides , Bacteria
15.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2871-2880, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384625

ABSTRACT

Due to the impacts of refractory organic pollutants and environment on the water treatment system, the sewage quality can not reach the standard. It is an effective measure to improve the efficiency of wastewater treatment by introducing exogenous engineering strains with relevant functional genes and the ability of horizontal gene transfer. In sewage treatment system, there are bacteria secreting signal molecules with quorum sensing. When population density reaches induction threshold, the bacteria would activate the related genes expression (such as biofilm formation, bioluminescent, antibiotics synthesis and virulence factor expression, etc.) through releasing signaling molecules, and thus trigger the behavior of other groups. Previously, researches about quorum sensing mainly concentrated on signal transduction, microbial social behavior, and medical microbiology. In recent years, stu-dies found that quorum sensing plays an important role in wastewater biological treatment and affects the colonization of the microorganism strain and pollutants degradation. Therefore, the regulation of quorum-sensing behavior is the key factor in the bioaugmentation performance. Here, we review the signaling molecules mechanism, the release of signaling molecules and its influence factors, the colonization of microbial community and the removal of pollutants. We further discussed the research from the perspective of quorum sensing biological process. The aim was to provide new idea for the effective implementation of bioaugmentation technology and the improvement of wastewater treatment efficiency, and to provide a theoretical reference for the in-depth understanding of quorum sensing regulation behavior in the process of bioaugmentation.


Subject(s)
Environmental Pollutants , Water Purification , Quorum Sensing/physiology , Sewage , Bacteria/genetics , Environmental Pollutants/metabolism
16.
Microbiol Spectr ; 10(5): e0205422, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36121253

ABSTRACT

Solute-binding proteins (SBPs) are of central physiological relevance for bacteria. They are located in the extracytosolic space, where they present substrates to transporters but also stimulate different types of transmembrane receptors coordinating compound uptake with signal transduction. SBPs are a superfamily composed of proteins recognized by 45 Pfam profiles. The definition of SBP profiles for bacteria is hampered by the fact that these Pfam profiles recognize sensor domains for different types of signaling proteins or cytosolic proteins with alternative functions. We report here the retrieval of the SBPs from 49 bacterial model strains with different lifestyles and phylogenetic distributions. Proteins were manually curated, and the ligands recognized were predicted bioinformatically. There were very large differences in the number and type of SBPs between strains, ranging from 7 SBPs in Helicobacter pylori 26695 to 189 SBPs in Sinorhizobium meliloti 1021. SBPs were found to represent 0.22 to 5.13% of the total protein-encoding genes. The abundance of SBPs was largely determined by strain phylogeny, and no obvious link with the bacterial lifestyle was noted. Most abundant (36%) were SBPs predicted to recognize amino acids or peptides, followed by those expected to bind different sugars (18%). To the best of our knowledge, this is the first comparative study of bacterial SBP repertoires. Given the importance of SBPs in nutrient uptake and signaling, this study enhances the knowledge of model bacteria and will permit the definition of SBP profiles of other strains. IMPORTANCE SBPs are essential components for many transporters, but multiple pieces of more recent evidence indicate that the SBP-mediated stimulation of different transmembrane receptors is a general and widespread signal transduction mechanism in bacteria. The double function of SBPs in coordinating transport with signal transduction remains to a large degree unexplored and represents a major research need. The definition of the SBP repertoire of the 49 bacterial model strains examined here, along with information on their cognate ligand profiles forms the basis to close this gap in knowledge. Furthermore, this study provides information on the forces that have driven the evolution of transporters with different ligand specificities in bacteria that differ in phylogenetics and lifestyle. This article is also a first step in setting up automatic algorithms that permit the large-scale identification of the SBP repertoire in proteomes.


Subject(s)
Bacterial Proteins , Carrier Proteins , Ligands , Bacterial Proteins/metabolism , Phylogeny , Proteome/genetics , Proteome/metabolism , Bacteria/genetics , Bacteria/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Amino Acids , Sugars
17.
Curr Issues Mol Biol ; 44(9): 4070-4086, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36135191

ABSTRACT

Phosphorus treatment can reduce Cd accumulation and Cd toxicity in rice, but alterations in the internal regulatory network of rice during this process have rarely been reported. We have removed the effect of cadmium phosphate precipitation from the hydroponic system, treated a pair of different Cd-response rice varieties with different levels of phosphorus and cadmium and examined the changes in physiological indicators and regulatory networks. The results demonstrated that phosphorus treatment significantly reduced Cd accumulation in both types of rice, although the antioxidant systems within the two types of rice produced opposite responses. Overall, 3 mM phosphorus treatment to Cd-N decreased the expression of OsIAA17 and OsACO1 by 32% and 37%, respectively, while increasing the expression of OsNR2 by 83%; these three genes regulate the synthesis of auxin, ethylene, and nitric oxide in rice. IAA and NO levels in rice shoots increased by 24% and 96%, respectively, and these changes contribute to Cd detoxification. The cadmium transporter genes OsHMA2, OsIRT1, and OsABCC1 were significantly down-regulated in Cd-N roots after triple phosphorus treatment. These data suggest that phosphorus treatment can reduce Cd accumulation and enhance Cd resistance in rice by affecting the expression of signaling molecules.

18.
Front Immunol ; 13: 724139, 2022.
Article in English | MEDLINE | ID: mdl-35935996

ABSTRACT

Plenty of factors affect the oncogenesis and progression of colorectal cancer in the tumor microenvironment, including various immune cells, stromal cells, cytokines, and other factors. Chemokine is a member of the cytokine superfamily. It is an indispensable component in the tumor microenvironment. Chemokines play an antitumor or pro-tumor role by recruitment or polarization of recruiting immune cells. Meanwhile, chemokines, as signal molecules, participate in the formation of a cross talk among signaling pathways and non-coding RNAs, which may be involved in promoting tumor progression. In addition, they also function in immune escape. Chemokines are related to drug resistance of tumor cells and may even provide reference for the diagnosis, therapy, and prognosis of patients with colorectal cancer.


Subject(s)
Colorectal Neoplasms , Drug Resistance, Neoplasm , Chemokines/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Cytokines/metabolism , Humans , Prognosis , Tumor Microenvironment
19.
Plant Biol (Stuttg) ; 24(6): 932-938, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35733285

ABSTRACT

Traditional Chinese medicine (TCM) has played a pivotal role in maintaining the health of people, and the intrinsic quality of TCM is directly related to the clinical efficacy. The medicinal ingredients of TCM are derived from the secondary metabolites of plant metabolism and are also the result of the coordination of various physiological activities in plants. Arbuscular mycorrhizal fungi (AMF) are among the most ubiquitous plant mutualists that enhance the growth and yield of plants by facilitating the uptake of nutrients and water. Symbiosis of AMF with higher plants promotes growth and helps in the accumulation of secondary metabolites. However, there is still no systematic analysis and summation of their roles in the application of TCM, biosynthesis and accumulation of active substances of herbs, as well as the mechanisms. AMF directly or indirectly affect the accumulation of secondary metabolites of TCM, which is the focus of this review. First, in this review, the effects of AMF symbiosis on the content of different secondary metabolites in TCM, such as phenolic acids, flavonoids, alkaloids and terpenoids, are summarized. Moreover, the mechanism of AMF regulating the synthesis of secondary metabolites was also considered, in combination with the establishment of mycorrhizal symbionts, response mechanisms of plant hormones, nutritional elements and expression of key enzyme their activities. Finally, combined with the current application prospects for AMF in TCM, future in-depth research is planned, thus providing a reference for improving the quality of TCM. In this manuscript, we review the research status of AMF in promoting the accumulation of secondary metabolites in TCM to provide new ideas and methods for improving the quality of TCM.


Subject(s)
Mycorrhizae , China , Flavonoids/metabolism , Fungi , Humans , Medicine, Chinese Traditional , Mycorrhizae/physiology , Plant Growth Regulators/metabolism , Plants/microbiology , Symbiosis , Terpenes/metabolism , Water/metabolism
20.
World J Clin Cases ; 10(11): 3321-3333, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35611205

ABSTRACT

The prevention, early discovery and effective treatment of patients with hepatocellular carcinoma (HCC) remain a global medical challenge. At present, HCC is still mainly treated by surgery, supplemented by vascular embolization, radio frequency, radiotherapy, chemotherapy and biotherapy. The application of multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 inhibitors can prolong the median survival of HCC patients. However, the treatment efficacy is still unsatisfactory due to HCC metastasis and postoperative recurrence. During the process of hepatocyte malignant transformation, HCC tissues can express and secrete many types of specific biomarkers, or oncogenic antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a (one of the key signaling molecules in the Wnt/ß-catenin pathway), insulin-like growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, secretory clusterin and so on. In addition, combining immunotherapy with non-coding RNAs might improve anti-cancer efficacy. These biomarkers not only contribute to HCC diagnosis or prognosis, but may also become molecular targets for HCC therapy under developing or clinical trials. This article reviews the progress in emerging biomarkers in basic research or clinical trials for HCC immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...