Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
J Thorac Dis ; 16(4): 2580-2590, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738247

ABSTRACT

Background: Esophageal squamous cell carcinoma (ESCC) patients carries a poor prognosis, with limited effective therapeutic targets. This study aimed to clarify the clinical significance of guanine nucleotide-binding protein like 3-like (GNL3L) protein expression in ESCC and its role in malignant progression. Methods: GNL3L expression and associated cancer-promoting pathways in ESCC were interrogated via bioinformatics analysis through use of The Cancer Genome Atlas (TCGA) database. Subsequent verification of GNL3L protein expression in ESCC, coupled with clinical data, was conducted through immunohistochemistry and followed by a comprehensive prognostic analysis. We further investigated potential signaling pathways facilitating ESCC progression, employing a combination of bioinformatics analysis and immunohistochemical (IHC) experiments. Results: Bioinformatics analysis unveiled a significant elevation in GNL3L expression, particularly in gastrointestinal tumors and ESCC. Immunohistochemistry confirmed elevated GNL3L expression in ESCC tissues. Regression analysis established a correlation between elevated GNL3L expression and advanced tumor node metastasis (TNM) stage, with high expression associated with poor prognosis in patients with ESCC. Our integrated approach of bioinformatics and IHC analysis indicated a potential role of the signal transducers and activators of transcription 3 (STAT3) signaling pathway in ESCC progression. Conclusions: High GNL3L expression significantly contributes to the malignant progression of ESCC. This study further elucidates the mechanisms driving ESCC progression and offers possible insights for more effective diagnosis and treatment strategies.

2.
Ann Gastroenterol ; 37(3): 333-340, 2024.
Article in English | MEDLINE | ID: mdl-38779644

ABSTRACT

Background: Recent advances in the treatment of inflammatory bowel disease include antitumor necrosis factor antibodies and the Janus kinase inhibitor tofacitinib, approved for ulcerative colitis. Janus kinase recruits signal transducers and activators of transcriptions (STAT), which are promising targets in inflammatory bowel diseases. However few inhibitors have been evaluated, and their selectivity with respect to STAT1 and STAT3 remains controversial. Here, we investigated the therapeutic potential of a selective inhibitor vs. a non-selective, closely related compound, in a dextran sulfate sodium (DSS) murine colitis model. Methods: Thirty Swiss/CD-1 male mice were used in this study. They were divided into a healthy control group, a colitis-DSS control group, a compound (cpd) 23-treated group, a cpd 46-treated group and an icariin-treated group. For the coadministration experiment with rutin, the cpd 46-treated group and the icariin-treated group were replaced by the oral rutin-treated group and the coadministration rutin/cpd 23-treated group. The effect of the tested inhibitors was also assessed by quantification of proinflammatory markers. Results: The selective inhibitor had a significantly greater effect than the dual inhibitor on the disease activity index. We also noticed in curative treatment a significant decrease in the most abundant proinflammatory biomarker present in neutrophilic granulocytes, myeloperoxidase and on proinflammatory cytokines, including tumor necrosis factor-α, interferon-γ, interleukins -6 and -23, with a mild synergy with rutin, the glycoside of quercetin. Conclusion: The current study shows how STAT3 selective inhibitors can exert a significant therapeutic effect in the treatment of experimental DSS-colitis.

3.
Int J Biochem Cell Biol ; 157: 106390, 2023 04.
Article in English | MEDLINE | ID: mdl-36796505

ABSTRACT

Secretoglobin (SCGB) 3A2 is a bioactive molecule exhibiting various functions such as improving allergic airway inflammation and pulmonary fibrosis and promoting bronchial branching and proliferation during lung development. To determine if and how SCGB3A2 is involved in chronic obstructive pulmonary disease (COPD), a multifactorial disease with both airway and emphysematous lesions, a COPD mouse model was created by exposing Scgb3a2-deficient (KO), Scgb3a2-lung-specific overexpressing (TG), and wild type (WT) mice to cigarette smoke (CS) for 6 months. The KO mice showed loss of lung structure under control condition, and CS exposure resulted in more expansion of airspace and destruction of alveolar wall than WT mouse lungs. In contrast, TG mouse lungs showed no significant changes after CS exposure. SCGB3A2 increased the expression and phosphorylation of signal transducers and activators of transcription (STAT)1 and STAT3, and the expression of α1-antitrypsin (A1AT) in mouse lung fibroblast-derived MLg cells and mouse lung epithelial-derived MLE-15 cells. In MLg cells, A1AT expression was decreased in Stat3-knockdown cells, and increased upon Stat3 overexpression. STAT3 formed a homodimer when cells were stimulated with SCGB3A2. Chromatin immunoprecipitation and reporter assays demonstrated that STAT3 binds to specific binding sites on the Serpina1a gene encoding A1AT and upregulates its transcription in lung tissues of mice. Furthermore, nuclear localization of phosphorylated STAT3 upon SCGB3A2 stimulation was detected by immunocytochemistry. These findings demonstrate that SCGB3A2 protects the lungs from the development of CS-induced emphysema by regulating A1AT expression through STAT3 signaling.


Subject(s)
Cigarette Smoking , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Pulmonary Fibrosis , Mice , Animals , Secretoglobins/genetics , Secretoglobins/metabolism , Pulmonary Emphysema/genetics , Pulmonary Emphysema/prevention & control , Cigarette Smoking/adverse effects , Lung/pathology , Pulmonary Fibrosis/metabolism , Inflammation/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
4.
Front Immunol ; 14: 1066222, 2023.
Article in English | MEDLINE | ID: mdl-36761734

ABSTRACT

Ischemia-reperfusion injury (IRI) is a common complication of surgery, which can cause rapid deterioration of the liver function, increase the risk of graft rejection, and seriously affect the prognosis of patients. The signal transducer and activator of transcription 3 (STAT3) protein has been implicated in pathogenesis of IRI. STAT3 influences the mitochondria through multiple pathways and is also involved in apoptosis and other forms of programmed cell death. STAT3 is associated with Janus kinase (JAK), phosphoinositide-3 kinase (PI3K), and heme oxygenase-1 (HO-1) in liver IRI. The STAT3 pathway plays a dual role in IRI as it can also regulate lipid metabolism which may have potential for treating IRI fatty liver. In this review, we summarize research on the function of STAT3 in liver IRI to provide references for its application in the clinic.


Subject(s)
Reperfusion Injury , STAT3 Transcription Factor , Humans , STAT3 Transcription Factor/metabolism , Signal Transduction/physiology , Liver/pathology , Reperfusion Injury/metabolism , Janus Kinases/metabolism
5.
Adv Mater ; 35(11): e2209379, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36545949

ABSTRACT

Immune checkpoint blockade (ICB) therapy shows excellent efficacy against malignancies; however, insufficient tumor immunogenicity and the immunosuppressive tumor microenvironment (TME) are considered as the two major stumbling blocks to a broad ICB response. Here, a combinational therapeutic strategy is reported, wherein TME-reactive oxygen species/pH dual-responsive signal transducers and activators of transcription 3 inhibitor nanoprodrugs MPNPs are combined with oncolytic herpes simplex virus 1 virotherapy to synergistically ignite pyroptosis for enhancing immunotherapy. MPNPs exhibit a certain level of tumor accumulation, reduce tumor cell stemness, and enhance antitumor immune responses. Furthermore, the simultaneous application of oncolytic viruses (OVs) confers MPNPs with higher tumor penetration capacity and remarkable gasdermin-E-mediated pyroptosis, thereby reshaping the TME and transforming "cold" tumors into "hot" ones. This "fire of immunity" strategy successfully activates robust T-cell-dependent antitumor responses, potentiating ICB effects against local recurrence and pulmonary metastasis in preclinical "cold" murine triple-negative breast cancer and syngeneic oral cancer models. Collectively, this work may pave a new way and offer an unprecedented opportunity for the combination of OVs with nanomedicine for cancer immunotherapy.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Mice , Animals , Oncolytic Viruses/physiology , Pyroptosis , Neoplasms/therapy , Immunotherapy , Immunity , Tumor Microenvironment , STAT3 Transcription Factor
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-974697

ABSTRACT

Objective @# To investigate the effect of pathogenic bacterium-Porphyromonas gingivalis (P.g) on the proliferation and inflammatory factor expression of human colorectal cancer Caco-2 cells, to determine whether the Janus kinase 2-signal transducers and activators of transcription 3 (JAK2-STAT3) pathway is involved in the regulation of Caco-2 cell proliferation by P.g and to provide an experimental basis for further exploring the relationship between P.g and colorectal cancer. @*Methods @# Caco-2 cells were cultured in vitro, and P.g at different multiplicities of infection (MOIs) (0, 1, 10, 25) was selected to stimulate for 12, 24 and 48 h. The effect of P.g on the proliferation of Caco-2 cells was detected by CCK8. The stimulation time was set as 12, 24 and 48 h. MOI=0 was the control group, and MOI=1, 10 and 25 comprised the experimental group. qRT-PCR and Western blot were used to detect the changes in interleukin-6 (IL-6), interleukin-10(IL-10), JAK2 and STAT3 gene and protein (phosphorylated protein) levels in each group. @*Results @# After P.g infection of Caco-2 cells, P.g had a sustained stimulatory effect on the cells for 12, 24 and 48 h at MOI=1 and MOI=10 compared with the control group. Compared with that in the control group, the expression of pro-inflammatory factor IL-6 and related proliferative pathway protein JAK2 and STAT3 in Caco-2 cells with P.g infection increased in a concentration- and time-dependent manner (P<0.05). Additionally, the expression of IL-10, an anti-inflammatory factor, in Caco-2 cells infected with P.g decreased (P<0.05). After the addition of the JAK2 inhibitor AZ960, the proliferation of Caco-2 cells infected with P.g decreased, and the mRNA expression of STAT3 and JAK2 and the protein expression of p-STAT3 and p-JAK2 decreased (P<0.05). @*Conclusion @#P.g can promote the proliferation of the colorectal cancer cell line Caco-2, and the effect of P.g on Caco-2 cells may promote cell proliferation through the JAK2-STAT3 pathway while promoting the expression of the proinflammatory factor IL-6 and inhibiting the expression of the anti-inflammatory factor IL-10, creating an inflammatory environment conducive to cell proliferation, which may be the mechanism by which P.g affects the proliferation of Caco-2 cells.

7.
Acta Anatomica Sinica ; (6): 538-545, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015179

ABSTRACT

Objective To explore the effect of exogenous and endogenous erythrocyte membrane-associated protein (ERMAP) on helper T cell 17 (Th17) cell differentiation through interleukin 6 / signal transducers and activators of transcription 3 / retionoid-related orphan nuclear receptor-γt(IL-6 / STAT3 / ROR-γt) signal pathway in the mouse model of experimental autoimmune encephalomyelitis (EAE) . Methods Using flow cytometry to verify the function of ERMAP-Ig fusion protein at different concentrations; Agarose gel electrophoresis was performed to identify ERMAP knockout mice. Flow cytometry was performed to detect the effect of ERMAP-Ig fusion protein on Th17 cell differentiation in vitro. Forty 6-week-old normal C57BL / 6 mice were randomly divided into 2 groups to establish EAE models, control-Ig and ERMAP-Ig groups, with 20 mice in each group; Clinical scores were recorded; Flow cytometry was performed to detect Th17 cell differentiation in EAE mice in vivo. Forty 6-week-old identified wild-type and ERMAP knockout mice were divided into 2 groups to establish EAE models. Identified wild-type and ERMAP knockout mice were divided into 2 groups to establish EAE models, ERMAP

8.
J Clin Transl Hepatol ; 10(5): 879-890, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36304491

ABSTRACT

Background and Aims: Acute liver failure (ALF) is a potentially fatal clinical syndrome with no effective treatment. This study aimed to explore the role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway in modulating the phenotype and immune function of endotoxin-tolerant dendritic cells (ETDCs). In addition, we explored the use of EDTCs in an experimental model of ALF and investigated the associated mechanisms. Methods: In the in vitro experiment, ETDCs were transfected with adenovirus to induce SOCS1+/+ETDCs and SOCS1-/-ETDCs. Thereafter, costimulatory molecules and mixed lymphocyte reaction were assessed. Experimental mice were randomly divided into normal control, ALF, ALF+mock-ETDCs, ALF+SOCS1+/+ETDCs, ALF+AG490, and ALF+AG490+SOCS1+/+ETDCs groups. We examined the therapeutic effect of adoptive cellular immunotherapy by tail-vein injection of target ETDCs 12 h before ALF modeling. AG490, a JAK2/STAT3 inhibitor, was used in the in vivo experiment to further explore the protective mechanism of SOCS1+/+ETDCs. Results: Compared with control ETDCs, SOCS1+/+ETDCs had lower expression of costimulatory molecules, weaker allostimulatory ability, lower levels of IL-6 and TNF-α expression and higher IL-10 secretion. SOCS1-/-ETDCs showed the opposite results. In the in vivo experiments, the ALF+SOCS1+/+ETDCs and ALF+AG490+SOCS1+/+ETDCs groups showed less pathological damage and suppressed activation of JAK2/STAT3 pathway. The changes were more pronounced in the ALF+AG490+SOCS1+/+ETDCs group. Infusion of SOCS1+/+ETDCs had a protective effect against ALF possibly via inhibition of JAK2 and STAT3 phosphorylation. Conclusions: The SOCS1 gene had an important role in induction of endotoxin tolerance. SOCS1+/+ETDCs alleviated lipopolysaccharide/D-galactosamine-induced ALF by downregulating the JAK2/STAT3 signaling pathway.

9.
Clin Transl Med ; 12(5): e876, 2022 05.
Article in English | MEDLINE | ID: mdl-35605028

ABSTRACT

OBJECTIVE: Apurinic endonuclease 1 (APE1) has been suggested as an oncogene of lung tumours and our bioinformatics analysis identified the association between Erlotinib resistance and interleukin-6 (IL-6). Thus, we performed this work to delineate the mechanistic actions of APE1/IL-6 signalling in Erlotinib resistance of non-small cell lung cancer (NSCLC). METHODS: We selected human NSCLC cell lines HCC827 and PC9 to establish Erlotinib-resistant HCC827R and PC9R cells. Cancer stem cells (CSCs) were isolated from Erlotinib-sensitive HCC827P and PC9P cells (PCSCs) and from HCC827R and PC9R cells (RCSCs). Further, extracellular vesicles (EVs) were separated from PCSCs (PCSC-EVs) and RCSCs (RCSC-EVs) and co-cultured with RCSCs with or without short hairpin RNA (shRNA)-targeting APE1 (APE1 shRNA) transduction. In addition, functional assays were conducted to determine the effect of APE1 shRNA on malignant phenotypes of cancer cells in vitro and in vivo and the activation of IL-6/STAT3 signalling. RESULTS: It was found that NSCLC cells could internalize both RCSC-EVs and PCSC-EVs. RCSC-EVs augmented the resistance of NSCLC cells to Erlotinib. The overexpression of APE1 occurred in NSCLC tissues, and IL-6 was enriched in serum samples of patients with NSCLC. APE1 shRNA was demonstrated to restrict the Erlotinib resistance of NSCLC cells by inactivating the IL-6/STAT3 signalling. Additionally, shAPE1-loaded RCSC-EVs suppressed the Erlotinib resistance of NSCLC via the IL-6/STAT3 axis both in vitro and in vivo, as reflected by impeded malignant phenotypes and xenograft tumour formation. CONCLUSIONS: Collectively, these data indicate that APE1 confers Erlotinib resistance by activating the IL-6/STAT3 signalling, suggesting targeting APE1 as a possible therapeutic target in Erlotinib-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Extracellular Vesicles , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/therapeutic use , Erlotinib Hydrochloride/metabolism , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/therapeutic use , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Interleukin-6/metabolism , Interleukin-6/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , RNA, Small Interfering/metabolism , RNA, Small Interfering/therapeutic use , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/therapeutic use
10.
Oncol Rep ; 47(2)2022 Feb.
Article in English | MEDLINE | ID: mdl-34958113

ABSTRACT

CXC chemokine receptor 7 (CXCR7) is frequently overexpressed in cancer and plays a significant role in tumor growth and metastasis. Consequently, inhibition of CXCR7 is important for treatment strategies. However, little is known concerning the biological role of CXCR7 and its underlying mechanisms in head and neck squamous cell carcinoma (HNSCC). The present study investigated the role of CXCR7 in HNSCC, as well as the effects of decursin, a pyranocoumarin compound isolated from Angelica gigas Nakai, on CXCR7 and its downstream signaling. Expression levels of CXCR7 in HNSCC cells were examined using flow cytometry, reverse transcriptase PCR, western blot analysis, and immunofluorescence. The effects of CXCR7 on cell proliferation, migration, and invasion were studied using CCK­8, gap closure, and transwell assays. The results revealed that decursin significantly reduced CXCR7 expression and inhibited cell proliferation, migration, and invasion of human HNSCC cell lines. In addition, decursin induced G0/G1 cell cycle arrest in CXCR7­overexpressing cells and decreased the levels of cyclin A, cyclin E, and CDK2. Furthermore, CXCR7 promoted cancer progression via the STAT3/c­Myc pathway in HNSCC; suppression of CXCR7 with decursin prevented this effect. These results suggest that CXCR7 promotes cancer progression through the STAT3/c­Myc pathway and that the natural compound decursin targets CXCR7 and may be valuable in the treatment of HNSCC.


Subject(s)
Benzopyrans/pharmacology , Butyrates/pharmacology , Head and Neck Neoplasms/drug therapy , Receptors, CXCR/metabolism , Squamous Cell Carcinoma of Head and Neck/drug therapy , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Disease Progression , Down-Regulation , Enzyme Activators/pharmacology , Humans
11.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 47(12): 1646-1654, 2022 Dec 28.
Article in English, Chinese | MEDLINE | ID: mdl-36748374

ABSTRACT

OBJECTIVES: Glioma is the most common primary intracranial tumor and there is still no ideal treatment at present. Gene therapy, as one of the new methods for treating glioma, has attracted attention in recent years. But its application in treating glioma is very limited due to lack of effective delivery vectors. This study aims to investigate the feasibility of biomimetic nanomaterials made from glioma cells-derived extracellular vesicles (EV) for targeted delivery of signal transducers and activators of transcription 3 (STAT3)-small interfering RNA (siRNA) in treating glioma. METHODS: First, U251 glioma cells-derived extracellular vessel (EVU251) was extracted by ultra-centrifugal method. Nanoparticle tracking analysis was used to characterize the particle size distribution, the transmission electron microscope was used to analyze the morphology, and Western blotting was used to verify the expression of srface characteristic protein. The homing ability was verified by cell uptake assay after labeling EVU251 with membrane dye kit PKH67; the EVU251 contents were removed by a low permeability method and then EVMU251 was prepared through a microporous membrane. Finally, the biomimetic nanomaterials EVMU251@STAT3-siRNA were prepared by loading STAT3-SiRNA with electro-dyeing method. The real-time quantitative PCR was used to quantify the successful encapsulation of siRNA, and the encapsulation and drug loading rate was calculated; then Cy5-labeled siRNA was used to evaluate the ability of biomimetic nanomaterials (EVMU251@CY5-siRNA) to target U251 cells. Lysosomal escape ability of the biomimetic nanomaterial was evaluated by lysosomal dye lyso-tracker green. At last, the ability of EVMU251@STAT3-siRNA to knock down STAT3 gene and selective killing of U251 cells was detected by cell experiments in vitro. RESULTS: The size of EVU251 ranged from 50 nm to 200 nm with a natural disc shape. The expression of extracellular vesicle marker proteins could be detected on the membrane of EVU251. The cell uptake assay demonstrated that it had homing ability to target U251 cells. After EVU251 was prepared as EVMU251@STAT3-siRNA, the particle size was (177.9±5.0) nm, the siRNA loading rate was (33.5±2.2)% and the drug loading rate was (3.24±0.21)%. The biomimetic nanomaterial EVMU251@STAT3-siRNA still had the ability to target U251 cells and successfully deliver siRNA to the cytoplasm without lysosomal degradation. The EVMU251@STAT3-siRNA can effectively knock down the expression of STAT3 gene and produce selective killing ability in U251 cells. CONCLUSIONS: The biomimetic nanomaterials EVMU251@STAT3-siRNA made from glioma U251 cells-derived extracellular vesicles can knock down STAT3 gene of U251 cells and produce selective killing effect, which can provide a new idea for the treatment of glioma.


Subject(s)
Glioma , Nanostructures , Humans , RNA, Small Interfering/genetics , Biomimetics , Cell Line, Tumor , Glioma/genetics , Glioma/therapy , Cell Proliferation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
12.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-940756

ABSTRACT

ObjectiveThis study aims to investigate the efficacy and underlying mechanism of Da Chaihutang (DCHT) in treating hepatocellular carcinoma (HCC) in vitro and in vivo. MethodWe employed methyl thiazolyl tetrazolium (MTT) assay and crystal violet staining to observe the proliferation of Hepa1-6 liver cancer cells treated with DCHT at different doses (0, 125, 250, 500, 1 000 mg·L-1) for different time periods (1, 2, 4, 8 days). The orthotopic liver cancer model was established by injection of 1×106 Hepa1-6 cells into mouse, and then the model mice were randomly assigned into six groups: blank, model, DCHT (0.21, 0.625, 1.875 g·kg-1, ig, qd), and positive control (5-fluorouracil, 25 mg·kg-1, ip, qod). After 14 days of administration, the mice were sacrificed, and the liver samples were collected and fixed in 4% paraformaldehyde for hematoxylin-eosin (HE) staining. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Cytoscape 3.7.2, STRING, and DAVID were used for the searching of the key targets of DCHT in treating HCC, the construction of protein-protein interaction (PPI) network, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Quantitative real-time PCR was performed to determine the mRNA level of interleukin-6 (IL-6) in Hepa1-6 cells and liver tissue. Western blotting was employed to measure the protein levels of the proteins involved in the mitogen-activated protein kinase (MAPK) and signal transducers and activators of transcription 3 (STAT3) signaling pathways. ResultDCHT (500, 1 000 mg·L-1) treatment for 4 and 8 days inhibited the proliferation of Hepa1-6 cells in a dose- and time-dependent manner (P<0.05). The in vivo assay showed that DCHT (high dose, 1.875 g·kg-1) treatment for 14 days led to high differentiation and unobvious heterogeneity of HCC cells and small necrotic area compared with the model group. Network pharmacology analysis predicted that the potential targets of DCHT in the treatment of HCC were mainly the inflammation cytokines such as IL-6, interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) in HCC microenvironment. The potential signaling pathways involved in the treatment were mainly associated with HCC growth and differentiation, including MAPK and STAT3 signaling pathways. Compared with the blank group, DCHT (1 000 mg·L-1) treatment for 1, 2, 4, and 8 days down-regulated the mRNA level of IL-6 in Hepa1-6 cells (P<0.05). Similar results were observed in the livers of mice treated with DCHT (0.625, 1.875 g·kg-1). The in vitro assay demonstrated that DCHT (1 000 mg·L-1) treatment for 4 and 8 days and DCHT (500, 1 000 mg·L-1) treatment inhibited the phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK), p38 MAPK, and STAT3 in a dose- and time-dependent manner (P<0.05). The in vivo assay showed that DCHT (0.625 and 1.875 g·kg-1) treatment only inhibited the phosphorylation of p38 MAPK and STAT3 (P<0.05). ConclusionThe present study indicates that DCHT can inhibit liver cancer cell proliferation by regulating p38 MAPK/IL-6/STAT3 signaling pathway.

13.
Article in English | WPRIM (Western Pacific) | ID: wpr-971347

ABSTRACT

OBJECTIVES@#Glioma is the most common primary intracranial tumor and there is still no ideal treatment at present. Gene therapy, as one of the new methods for treating glioma, has attracted attention in recent years. But its application in treating glioma is very limited due to lack of effective delivery vectors. This study aims to investigate the feasibility of biomimetic nanomaterials made from glioma cells-derived extracellular vesicles (EV) for targeted delivery of signal transducers and activators of transcription 3 (STAT3)-small interfering RNA (siRNA) in treating glioma.@*METHODS@#First, U251 glioma cells-derived extracellular vessel (EVU251) was extracted by ultra-centrifugal method. Nanoparticle tracking analysis was used to characterize the particle size distribution, the transmission electron microscope was used to analyze the morphology, and Western blotting was used to verify the expression of srface characteristic protein. The homing ability was verified by cell uptake assay after labeling EVU251 with membrane dye kit PKH67; the EVU251 contents were removed by a low permeability method and then EVMU251 was prepared through a microporous membrane. Finally, the biomimetic nanomaterials EVMU251@STAT3-siRNA were prepared by loading STAT3-SiRNA with electro-dyeing method. The real-time quantitative PCR was used to quantify the successful encapsulation of siRNA, and the encapsulation and drug loading rate was calculated; then Cy5-labeled siRNA was used to evaluate the ability of biomimetic nanomaterials (EVMU251@CY5-siRNA) to target U251 cells. Lysosomal escape ability of the biomimetic nanomaterial was evaluated by lysosomal dye lyso-tracker green. At last, the ability of EVMU251@STAT3-siRNA to knock down STAT3 gene and selective killing of U251 cells was detected by cell experiments in vitro.@*RESULTS@#The size of EVU251 ranged from 50 nm to 200 nm with a natural disc shape. The expression of extracellular vesicle marker proteins could be detected on the membrane of EVU251. The cell uptake assay demonstrated that it had homing ability to target U251 cells. After EVU251 was prepared as EVMU251@STAT3-siRNA, the particle size was (177.9±5.0) nm, the siRNA loading rate was (33.5±2.2)% and the drug loading rate was (3.24±0.21)%. The biomimetic nanomaterial EVMU251@STAT3-siRNA still had the ability to target U251 cells and successfully deliver siRNA to the cytoplasm without lysosomal degradation. The EVMU251@STAT3-siRNA can effectively knock down the expression of STAT3 gene and produce selective killing ability in U251 cells.@*CONCLUSIONS@#The biomimetic nanomaterials EVMU251@STAT3-siRNA made from glioma U251 cells-derived extracellular vesicles can knock down STAT3 gene of U251 cells and produce selective killing effect, which can provide a new idea for the treatment of glioma.


Subject(s)
Humans , RNA, Small Interfering/genetics , Biomimetics , Cell Line, Tumor , Glioma/therapy , Nanostructures , Cell Proliferation , STAT3 Transcription Factor/metabolism
14.
J Adv Res ; 33: 253-264, 2021 11.
Article in English | MEDLINE | ID: mdl-34603794

ABSTRACT

Introduction: Transmembrane protein 16A (TMEM16A) is a Ca2+-activated chloride channel that plays a role in cancer cell proliferation, migration, invasion, and metastasis. However, whether TMEM16A contributes to breast cancer metastasis remains unknown. Objective: In this study, we investigated whether TMEM16A channel activation by ROCK1/moesin promotes breast cancer metastasis. Methods: Wound healing assays and transwell migration and invasion assays were performed to study the migration and invasion of MCF-7 and T47D breast cancer cells. Western blotting was performed to evaluate the protein expression, and whole-cell patch clamp recordings were used to record TMEM16A Cl- currents. A mouse model of breast cancer lung metastasis was generated by injecting MCF-7 cells via the tail vein. Metastatic nodules in the lung were assessed by hematoxylin and eosin staining. Lymph node metastasis, overall survival, and metastasis-free survival of breast cancer patients were assessed using immunohistochemistry and The Cancer Genome Atlas dataset. Results: TMEM16A activation promoted breast cancer cell migration and invasion in vitro as well as breast cancer metastasis in mice. Patients with breast cancer who had higher TMEM16A levels showed greater lymph node metastasis and shorter survival. Mechanistically, TMEM16A promoted migration and invasion by activating EGFR/STAT3/ROCK1 signaling, and the role of the TMEM16A channel activity was important in this respect. ROCK1 activation by RhoA enhanced the TMEM16A channel activity via the phosphorylation of moesin at T558. The cooperative action of TMEM16A and ROCK1 was supported through clinical findings indicating that breast cancer patients with high levels of TMEM16A/ROCK1 expression showed greater lymph node metastasis and poor survival. Conclusion: Our findings revealed a novel mechanism underlying TMEM16A-mediated breast cancer metastasis, in which ROCK1 increased TMEM16A channel activity via moesin phosphorylation and the increase in TMEM16A channel activities promoted cell migration and invasion. TMEM16A inhibition may be a novel strategy for treating breast cancer metastasis.


Subject(s)
Breast Neoplasms , Animals , Cell Movement , Cell Proliferation , Female , Humans , Mice , Microfilament Proteins , rho-Associated Kinases/genetics
15.
J Transl Med ; 19(1): 386, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34503521

ABSTRACT

OBJECTIVE: Little is known regarding the functional role of microRNA-193-3p (miR-193-3p) in sepsis. Hence, the aim of the present study was to investigate the effect of miR-193-3p on myocardial injury in mice with sepsis and its mechanism through the regulation of signal transducers and activators of transcription 3 (STAT3). METHODS: The mice model of sepsis was established by cecal ligation and puncture (CLP), septic mice were injected with miR-193-3p agomir, miR-193-3p antagomir or siRNA-STAT3. The expression of miR-193-3p, STAT3 and HMGB1 in the myocardial tissue of septic mice were detected. Cardiac ultrasound, hemodynamics, myocardial injury markers, inflammatory factors and cardiomyocyte apoptosis in septic mice were measured. RESULTS: MiR-193-3p expression was reduced while STAT3 expression was increased in septic mice. Down-regulated STAT3 or up-regulated miR-193-3p improved cardiac function, attenuated myocardial injury, inflammation and cardiomyocyte apoptosis in septic mice. Knockdown STAT3 reversed the role of inhibited miR-193-3p for mice with sepsis. miR-193-3p targeted STAT3, thereby inhibiting HMGB1 expression. CONCLUSION: This study provides evidence that miR-193-3p targets STAT3 expression to reduce HMGB1 expression, thereby reducing septic myocardial damage. MiR-193-3p might be a potential candidate marker and therapeutic target for sepsis.


Subject(s)
HMGB1 Protein/metabolism , MicroRNAs , STAT3 Transcription Factor/metabolism , Sepsis , Animals , Apoptosis , Cecum , HMGB1 Protein/genetics , Mice , MicroRNAs/genetics , STAT3 Transcription Factor/genetics , Sepsis/complications
16.
Curr Eye Res ; 46(9): 1325-1332, 2021 09.
Article in English | MEDLINE | ID: mdl-33615922

ABSTRACT

Background: This in vitro study was designed to reveal the role of miR-29a in high glucose-induced cellular injury through the modulation of IL-6/STAT3 in diabetic cataracts.Methods: The expression of miR-29a and STAT3 in the lens capsules of patients with or without diabetes was determined by RT-PCR. The levels of the IL-6 proinflammatory cytokine in the aqueous humor were detected by ELISA. HLE B-3 cells were cultured in normal glucose (NG; 5 mM) or high glucose (HG; 40 mM). After transfection with miR-29a, si-STAT3, or a negative control vector, the levels of IL-6 and STAT3 were detected. A CCK-8 assay was used to determine cell viability. We used flow cytometry to assess changes in reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis induced by oxidative stress. Western blotting was used to determine the expression of the oxidative injury markers superoxide dismutase (SOD) and malondialdehyde (MDA) and the apoptosis markers Bcl-2 and Bax.Results: Reduced miR-29a, increased STAT3 expression, and IL-6 release were demonstrated in the lens capsules and aqueous humor of patients with diabetes. The stimulation of apoptosis and the loss of MMP induced by HG were attenuated by transfection with a miR-29a mimic and si-STAT3. ROS production, increased MDA content, decreased SOD activity, and upregulation of the apoptotic proteins Bcl-2/Bax were also partially alleviated by miR-29a overexpression, which shows their roles in oxidative injury. Furthermore, transfection with a STAT3 overexpression vector reversed the effects of miR-29a.Conclusions: In conclusion, miR-29a mitigated HG-induced oxidative injury and exerted protective effects via IL-6/STAT3 signaling. Thus, miR-29a may be a potential therapeutic agent for diabetic cataracts.


Subject(s)
Cataract/genetics , Inflammation/genetics , Interleukin-6/genetics , MicroRNAs/genetics , Mitochondrial Diseases/etiology , STAT3 Transcription Factor/genetics , Up-Regulation , Aged , Apoptosis , Cataract/etiology , Cataract/metabolism , Cell Survival , Diabetes Complications , Female , Follow-Up Studies , Humans , Inflammation/etiology , Inflammation/metabolism , Interleukin-6/metabolism , Male , MicroRNAs/metabolism , Middle Aged , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Oxidative Stress , Phacoemulsification , Reactive Oxygen Species/metabolism , Refraction, Ocular/physiology , Retrospective Studies , STAT3 Transcription Factor/metabolism , Signal Transduction
17.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1015903

ABSTRACT

Multiple myeloma (MM) is a kind of plasma cell tumor, characterized by clonal expansion of malignant plasma cells in the micro-environment of bone marrow, production of monoclonal immunoglobulins and dysfunction of related organs. In recent years, with the introduction of autologous stem cell transplantation and the application of Lenalidomide and Bortezomib, the traditional treatment of myeloma had been changed and the overall survival of the patients was prolonged. Although significant progresses have been made in treatment, multiple myeloma is still incurable, mainly due to primary drug resistance and disease recurrence. Signal transducers and activators of transcription 3 (STAT3) is a kind of signal transcription factor, which is involved in diverse cellular processes including the differentiation, proliferation and angiogenesis in normal cells. Recently, it had been found that the high expression of STAT3 in tumors was closely related to the occurrence, development, invasion and metastasis of malignant tumors. STAT3 also played a key role in the occurrence and progression of multiple myeloma. In this paper, we reviewed the molecular structure, signal pathway, activation, regulation and basic biological functions of STAT3, and found that non coding RNA, heat shock protein 90 (Hsp90), heme oxygenase-1 (HO-1) and other factors play important roles in the occurrence, survival and immune escape of multiple myeloma through STAT3 pathway whose activation is related to the resistance of multiple myeloma cells to Bortezomib, Lenalidomide and other conventional drugs. Therefore, STAT3 can be used as a potential target for multiple myeloma. This review provides a basis for accurate diagnosis and treatment of MM and a reference for STAT3 as a potential prognostic marker.

18.
Zhonghua Yi Xue Za Zhi ; 100(25): 1988-1994, 2020 Jul 07.
Article in Chinese | MEDLINE | ID: mdl-32629602

ABSTRACT

Objective: To explore the possible mechanisms of simvastatin-induced apoptosis in lung adenocarcinoma cells. Methods: The experiment was divided into control group (vehicle treated A549 cells), different concentrations (10, 20, 40, 80 mg/L) simvastatin group (simvastatin treated with different concentrations of A549 cells), aspartate specific proteinase (caspase) inhibitor (Z-VAD-FMK) group (50 µmol/L Z-VAD-FMK treated A549 cells), 40 mg/L simvastatin combined with Z-VAD-FMK group (40 mg/L simvastatin combined with 50 µmol/L Z-VAD-FMK co-treated A549 cells), interleukin-6 (IL-6) group (IL-6 acts on A549 cells) and different concentrations (10, 20, 40 mg/L) simvastatin combined with IL-6 group (simvastatin combined with IL-6 act on A549 cells). Cell counting kit-8 (CCK8) method was used to detect the effect on survival rate of lung adenocarcinoma A549 cells; Flow cytometry was used to detect the effect of simvastatin on A549 cell cycle; Mitochondrial membrane potential-1 (JC-1) fluorescent probe was wsed to detect the effect of simvastatin on mitochondrial membrane potential (MMP); Flow-type phosphatidl serine protein antibody Annexin V/propidium iodide (Annexin V-FITC/PI) double staining method was used to detect the effect of simvastatin on A549 cell apoptosis; CCK8 method was used to detect the effect of Z-VAD-FMK on the survival rate of A549 cells; TdT-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick end labeling (TUNEL) method was used to detect the effect of Z-VAD-FMK on simvastatin-induced apoptosis in A549 cells; Western blot method was used to detect the effect of simvastatin on the expression levels of Janus kinase 2 and activation of signal transducers and activators of transcription 3 (JAK2/STAT3) pathway-related proteins phosphorylated JAK2 (p-JAK2), JAK2, phosphorylated STAT3 (p-STAT3), and STAT3 before and after the activator IL-6 of JAK2/STAT3 pathway acted on A549 cells. Results: The survival rates of A549 cells in the 20-80 mg/L simvastatin-treated groups were significantly lower than that in the control group (all P<0.05), and gradually decreased with the increase of the concentration of the simvastatin and the extension of the action time. The cells in the G(0)/G(1) phase of the simvastatin group were significantly higher than those in the control group, and the cells in the G(2)/M phase were significantly lower than those in the control group (all P<0.01). The MMP of the treatment group with different concentrations of simvastatin was significantly lower than that of the control group (all P<0.05). The apoptosis rate of the 20 mg/L and 40 mg/L simvastatin-treated group was significantly higher than that of the control group (both P<0.01). The cell survival rate of the 40 mg/L simvastatin group and the 40 mg/L simvastatin combined with Z-VAD-FMK group were (52.2±2.7)% and (57.5±3.8)%, respectively, were lower than that of the control group (100.0±2.7)% (both P<0.01). But the difference between 40 mg/L simvastatin group and the simvastatin combined with Z-VAD-FMK group was not statistically significant (P>0.05). The cell numbers with positive fluorescent staining in the 40 mg/L simvastatin group were significantly more than those in the control group, but the cell numbers with positive fluorescent staining in the 40 mg/L simvastatin combined with Z-VAD-FMK group had no statistical significance compared with the simvastatin group (P>0.05). The specific value of p-JAK2/JAK2 and p-STAT3/STAT3 protein relative expressions in the simvastatin-treated group (20, 40 mg/L) were significantly lower than that in the control group, respectively (both P<0.05). The specific value of p-JAK2/JAK2 and p-STAT3/STAT3 protein relative expressions in IL-6 group were significantly higher than those in control group (both P<0.05), the specific value of p-JAK2/JAK2 and p-STAT3/STAT3 protein relative expressions in simvastatin (20, 40 mg/L) combined with IL-6 groups were lower than those in IL-6 group (all P<0.05), respectively. Conclusion: Simvastatin can induce the apoptosis of A549 cells through a non-caspase-dependent mitochondrial apoptosis pathway, which may be achieved by inhibiting the JAK2/STAT3 pathway.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Apoptosis , Caspases , Humans , Simvastatin
19.
Cancer Sci ; 111(9): 3222-3235, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32589311

ABSTRACT

Receptor tyrosine kinases (RTKs) and Yes-associated protein (YAP) are critical driving factors in tumors. Currently, the regulation of RTKs in the Hippo-YAP pathway has been recognized as an important issue. However, the relationship between AXL, one of the RTKs, and YAP in head and neck squamous cell carcinoma (HNSCC) remains unknown. In this study, the crosstalk between AXL and YAP was thoroughly investigated in vitro and in vivo. We determined that there was a positive correlation between AXL and YAP in the HNSCC tissue samples and the Cancer Genome Atlas (TCGA) dataset, and high co-expression was associated with poor prognosis. Inhibiting YAP decreased AXL expression in HNSCC cells, while YAP overexpression increased AXL. Moreover, ectopic expression of AXL reversed tumor suppressor phenotypes mediated by YAP silencing. This reversal effect was also confirmed in vivo. In addition, AXL overexpression and Gas6, a ligand of AXL, stimulated YAP dephosphorylation, nuclear translocation, and target gene transcription. AXL inhibition decreased YAP dephosphorylation and nuclear translocation. Mechanistically, Gas6 induced a competitive binding to phosphorylated signal transducers and activators of transcription 3 (STAT3) with large tumor suppressor kinase 1 (LATS1) and inhibited the Hippo pathway. This study revealed a novel non-transcriptional effect of STAT3 in Gas6/AXL-induced YAP activity, suggesting that STAT3 acted as a critical "molecular switch" during the mutual promotion between AXL and YAP, which might be a promising therapeutic target in HNSCC.


Subject(s)
Cell Cycle Proteins/metabolism , Proto-Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Transcription Factors/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Gene Silencing , Heterografts , Hippo Signaling Pathway , Humans , Immunohistochemistry , Mice , Phenotype , Phosphorylation , Prognosis , Proportional Hazards Models , Protein Binding , Protein Serine-Threonine Kinases/metabolism , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/mortality , Axl Receptor Tyrosine Kinase
20.
J Adv Res ; 23: 25-35, 2020 May.
Article in English | MEDLINE | ID: mdl-32071789

ABSTRACT

TMEM16A Ca2+-activated Cl- channels are expressed in pancreatic acinar cells and participate in inflammation-associated diseases. Whether TMEM16A contributes to the pathogenesis of acute pancreatitis (AP) remains unknown. Here, we found that increased TMEM16A expression in the pancreatic tissue was correlated with the interleukin-6 (IL-6) level in the pancreatic tissue and in the serum of a cerulein-induced AP mouse model. IL-6 treatment promoted TMEM16A expression in AR42J pancreatic acinar cells via the IL-6 receptor (IL-6R)/signal transducers and activators of transcription 3 (STAT3) signaling pathway. In addition, TMEM16A was co-immunoprecipitated with the inositol 1,4,5-trisphosphate receptor (IP3R) and was activated by IP3R-mediated Ca2+ release. TMEM16A inhibition reduced the IP3R-mediated Ca2+ release induced by cerulein. Furthermore, TMEM16A overexpression activated nuclear factor-κB (NFκB) and increased IL-6 release by increasing intracellular Ca2+. TMEM16A knockdown by shRNAs reduced the cerulein-induced NFκB activation by Ca2+. TMEM16A inhibitors inhibited NFκB activation by decreasing channel activity and reducing TMEM16A protein levels in AR42J cells, and it ameliorated pancreatic damage in cerulein-induced AP mice. This study identifies a novel mechanism underlying the pathogenesis of AP by which IL-6 promotes TMEM16A expression via IL-6R/STAT3 signaling activation, and TMEM16A overexpression increases IL-6 secretion via IP3R/Ca2+/NFκB signaling activation in pancreatic acinar cells. TMEM16A inhibition may be a new potential strategy for treating AP.

SELECTION OF CITATIONS
SEARCH DETAIL
...