Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 292
Filter
1.
Bioelectrochemistry ; 160: 108775, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39003949

ABSTRACT

The pattern of the activity of proteases is related to distinct physiological states of living organisms. Often activity changes of a certain protease can be assigned to a specific disease. Hence, they are useful biomarkers and a simple and fast determination method of their activity could be a valuable tool for the efficient monitoring of numerous diseases. Here, two different methods for the qualitative and quantitative determination of protease activity are demonstrated using the model system of proteinase K. The first test system is based on a protein-modified and colored 3D silica structure that changes color when exposed to the enzyme. This method has also been used for the detection of matrix metallo-protease 2 (MMP2) with gelatine as protease substrate on the plates. The second detection system uses the decrease in the voltammetric signal of a cytochrome c/DNA multilayer electrode after incubation with a protease to quantitatively determine its proteolytic activity. While activities down to 0.15 U/ml can be detected with the first method, the second one provides detection limits of about 0.03U/ml (for proteinase K.) The functionality of both systems can be demonstrated and ways for further enhancement of sensitivity have been elucidated.

2.
Gels ; 10(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38920907

ABSTRACT

This work studied the low-temperature sorption of carbon dioxide on impregnated silica gel. An impregnating agent was used polyethyleneimine. The content of the impregnating agent in the silica gel matrix was 33.4 wt.%. Material properties such as the Brunauer-Emmett-Teller (BET) surface area, pore distribution, total pore volume, and thermal stability of the impregnated material were determined for the sample. During the measurement of the adsorption-desorption cycles, the loss of the impregnating agent in the material matrix was also determined. Due to the decrease in the content of polyethyleneimine, the sorption capacity of the adsorbent for CO2 also decreased. It was found that after the 20th adsorption-desorption cycle, the content of the impregnating agent in the adsorbent dropped by 3.15 wt.%, and, as a result, the adsorption capacity for CO2 dropped to almost half.

3.
Chemistry ; : e202401094, 2024 May 26.
Article in English | MEDLINE | ID: mdl-38797717

ABSTRACT

A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa=2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R=-C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40 % (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.

4.
Chem Pharm Bull (Tokyo) ; 72(5): 487-497, 2024.
Article in English | MEDLINE | ID: mdl-38777760

ABSTRACT

Herein, we report the functionalization of polyhedral oligosilsesquioxanes (POSS) and related siloxanes with arynes. Using o-triazenylarylboronic acids as aryne precursors and silica gel as the activator, the transformation of siloxane bearing various arynophilic moieties on the side chains was achieved with high yields without touching the siloxane core. This method was applied to the conjugation of POSS and pharmaceutical cores using an aryne derived from the synthetic intermediate of cabozantinib. Furthermore, orthogonal dual functionalization of POSS was realized by combining the aryne reaction with Huisgen cyclization.


Subject(s)
Alkynes , Boronic Acids , Siloxanes , Alkynes/chemistry , Boronic Acids/chemistry , Cyclization , Molecular Structure , Organosilicon Compounds/chemistry , Organosilicon Compounds/chemical synthesis , Siloxanes/chemistry , Triazines/chemistry
5.
Mikrochim Acta ; 191(6): 345, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802617

ABSTRACT

Carbon dots (CDs) derived crosslinked covalent organic nanomaterials (CONs) possessing high specific surface area and abundant surface functional groups are considered to be potential candidates for multimodal chromatographic separations. Typically, the synthesis of CDs and CONs requires harsh reaction conditions and toxic organic solvents, hence, the pursuit of facile and mild preparation strategies is the goal of researchers. In this work, 3-aminopropyltriethoxysilane and D-glucose were used as nitrogen and carbon sources, respectively, to prepare amino-CDs (AmCDs) by rapid low-temperature polymerization rather than the common high-temperature and high-pressure reaction. Then, surface functionalization of the aminated silica gel was carried out in a deep eutectic solvent by using hydrophilic AmCDs and 1,3,5-triformylbenzene (TFB) as the functional monomers. Consequently, a novel N-rich CDs derived CON surface-functionalized silica gel (AmCDs-CON@SiO2) was obtained under mild reaction conditions. The combination of AmCDs and TFB created an ideal CON based chromatographic stationary phase. The incorporation of TFB not only contributed to the successful construction of a crosslinked CON, but also enhanced the interaction forces. The developed AmCDs-CON@SiO2 has a great potential for versatile applications in liquid chromatography. This study proposes a simple stationary phase preparation strategy by the surface modification of silica gel with CDs-based CON. Moreover, this study verified the application potential of CDs derived CON in chromatographic separation. This not only promotes the development of CDs in the field of liquid chromatographic stationary phase, but also provides some reference value for the wide application of cross-linked CON.

6.
J Funct Biomater ; 15(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38667565

ABSTRACT

Bone defects resulting from trauma, diseases, or surgical procedures pose significant challenges in the field of oral and maxillofacial surgery. The development of effective bone substitute materials that promote bone healing and regeneration is crucial for successful clinical outcomes. Calcium phosphate cements (CPCs) have emerged as promising candidates for bone replacement due to their biocompatibility, bioactivity, and ability to integrate with host tissues. However, there is a continuous demand for further improvements in the mechanical properties, biodegradability, and bioactivity of these materials. Dual setting of cements is one way to improve the performance of CPCs. Therefore, silicate matrices can be incorporated in these cements. Silicate-based materials have shown great potential in various biomedical applications, including tissue engineering and drug delivery systems. In the context of bone regeneration, silicate matrices offer unique advantages such as improved mechanical stability, controlled release of bioactive ions, and enhanced cellular responses. Comprehensive assessments of both the material properties and biological responses of our samples were conducted. Cytocompatibility was assessed through in vitro testing using osteoblastic (MG-63) and osteoclastic (RAW 264.7) cell lines. Cell activity on the surfaces was quantified, and scanning electron microscopy (SEM) was employed to capture images of the RAW cells. In our study, incorporation of tetraethyl orthosilicate (TEOS) in dual-curing cements significantly enhanced physical properties, attributed to increased crosslinking density and reduced pore size. Higher alkoxysilyl group concentration improved biocompatibility by facilitating greater crosslinking. Additionally, our findings suggest citrate's potential as an alternative retarder due to its positive interaction with the silicate matrix, offering insights for future dental material research. This paper aims to provide an overview of the importance of silicate matrices as modifiers for calcium phosphate cements, focusing on their impact on the mechanical properties, setting behaviour, and biocompatibility of the resulting composites.

7.
J Chromatogr A ; 1722: 464867, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38598895

ABSTRACT

Hydrogels with a unique three-dimensional network structure have been widely used in a variety of fields. However, hydrogels are prone to swelling under water-rich conditions, which severely limits their application in liquid chromatography. Therefore, producing a hydrogel with reliable performance and good mechanical property is essential. Smart temperature-sensitive chromatographic packings have attracted extensive attentions in recent years. In this work, sodium 4-styrenesulfonate and 1-octadecene were introduced into the poly(N-isopropylacrylamide) hydrogel to improve mechanical property and separation performance. As a consequence, a smart temperature-sensitive terpolymeric hydrogel modified silica stationary phase (ION-hydrogel@SiO2) was synthesized for multimode liquid chromatographic separation. It was found that this new ION-hydrogel@SiO2 column exhibited excellent chromatographic separation ability for a wide range of analytes. To a certain extent, this new column has a higher chromatographic separation efficiency compared to the commercial C18 column and XAmide column. Moreover, the use of low proportion of organic phase in chromatographic separation is conducive to the realization of green chromatography. By investigating the chromatographic separation mechanism, it has been demonstrated that the hydrogen bonding interaction is primarily responsible for the temperature-sensitive behavior of the hydrogel. Finally, the ION-hydrogel@SiO2 column was used for the determination of pyridoxine in the commercially available tablet samples. In conclusion, this study presents a feasible idea for the development of novel copolymer hydrogels as liquid chromatographic stationary phases.


Subject(s)
Acrylic Resins , Hydrogels , Silicon Dioxide , Temperature , Hydrogels/chemistry , Chromatography, Liquid/methods , Silicon Dioxide/chemistry , Acrylic Resins/chemistry , Polymers/chemistry , Hydrogen Bonding
8.
Sci Total Environ ; 926: 171753, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38522552

ABSTRACT

Removing perfluoro(2-methyl-3-oxahexanoic) acid (HFPO-DA) in water treatment is hindered by its hydrophobicity and negative charge. Two adsorbents, quaternary-ammonium-functionalized silica gel (Qgel), specifically designed for anionic hydrophobic compounds, and conventional granular activated carbon (GAC) were investigated for HFPO-DA removal. ANOVA results (p â‰ª 0.001) revealed significant effects on initial concentration, contact time, and adsorbent type. Langmuir model-derived capacities were 285.019 and 144.461 mg/g for Qgel and GAC, respectively, with Qgel exhibiting higher capacity irrespective of pH. In column experiments, selective removal of HFPO-DA removal with Qgel was observed; specifically, in the presence of NaCl, the breakthrough time was extended by 10 h from 26 to 36 h. Meanwhile, the addition of NaCl decreased the breakthrough time from 32 to 14 h for GAC. However, in the presence of carbamazepine, neither of the adsorbents significantly changed the breakthrough time for HFPO-DA. Molecular simulations were also used to compare the adsorption energies and determine the preferential interactions of HFPO-DA and salts or other chemicals with Qgel and GAC. Molecular simulations compared adsorption energies, revealing preferential interactions with Qgel and GAC. Notably, HFPO-DA adsorption energy on GAC surpassed other ions during coexistence. Specifically, with Cl- concentrations from 1 to 10 times, Qgel showed lower adsorption energy for HFPO-DA (-62.50 ± 5.44 eV) than Cl- (-52.89 ± 2.59 eV), a significant difference (p = 0.036). Conversely, GAC exhibited comparable or higher adsorption energy for HFPO-DA (-18.33 ± 40.38 eV) than Cl- (-32.36 ± 29.89 eV), with no significant difference (p = 0.175). This suggests heightened selectivity of Qgel for HFPO-DA removal compared to GAC. Consequently, our study positions Qgel as a promising alternative for effective HFPO-DA removal, contributing uniquely to the field. Additionally, our exploration of molecular simulations in predicting micropollutant removal adds novelty to our study.

9.
Gels ; 10(2)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38391462

ABSTRACT

The study explores the application of natural biocides (oregano essential oil and eugenol, directly applied in solutions or encapsulated within silica nanocapsules) for safeguarding stone cultural heritage from biodeterioration, using green algae (Chlorococcum sp.) and cyanobacteria (Leptolyngbya sp.) as common pioneer biodeteriogens. Core-shell nanocontainers were built for a controlled release of microbicidal agents, a safe application of chemicals and a prolonged efficacy. The qualitative and quantitative evaluations of biocide efficiency at different doses were periodically performed in vitro, after six scheduled intervals of time (until 100 days). The release kinetics of composite biocide-embedding silica nanocapsules were characterized by the UV-Vis spectroscopy technique. Data showed both promising potential and some limitations. The comparative tests of different biocidal systems shed light on their variable efficacy against microorganisms, highlighting how encapsulation influences the release dynamics and the overall effectiveness. Both the essential oils showed a potential efficacy in protective antifouling coatings for stone artifacts. Ensuring compatibility with materials, understanding their differences in biocidal activity and their release rates becomes essential in tailoring gel, microemulsion or coating products for direct on-site application.

10.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256226

ABSTRACT

Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field.


Subject(s)
Gout , Indoles , Plantago , Polymers , Humans , Silica Gel , Silicon Dioxide , Cell Membrane , Membrane Proteins , Kidney , Chromatography , Excipients
11.
Int J Mol Sci ; 25(2)2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38279301

ABSTRACT

Hypericum perforatum (St. John's wort) has been described to be beneficial for the treatment of Alzheimer's disease (AD). Different extractions have demonstrated efficiency in mice and humans, esp. extracts with a low hypericin and hyperforin content to reduce side effects such as phototoxicity. In order to systematically elucidate the therapeutic effects of H. perforatum extracts with different polarities, APP-transgenic mice were treated with a total ethanol extract (TE), a polar extract obtained from TE, and an apolar supercritical CO2 (scCO2) extract. The scCO2 extract was formulated with silicon dioxide (SiO2) for better oral application. APP-transgenic mice were treated with several extracts (total, polar, apolar) at different concentrations. We established an early treatment paradigm from the age of 40 days until the age of 80 days, starting before the onset of cerebral ß-amyloid (Aß) deposition at 45 days of age. Their effects on intracerebral soluble and insoluble Aß were analyzed using biochemical analyses. Our study confirms that the scCO2H. perforatum formulation shows better biological activity against Aß-related pathological effects than the TE or polar extracts. Clinically, the treatment resulted in a dose-dependent improvement in food intake with augmentation of the body weight, and, biochemically, it resulted in a significant reduction in both soluble and insoluble Aß (-27% and -25%, respectively). We therefore recommend apolar H. perforatum extracts for the early oral treatment of patients with mild cognitive impairment or early AD.


Subject(s)
Alzheimer Disease , Hypericum , Humans , Mice , Animals , Infant , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Phytotherapy , Hypericum/chemistry , Alzheimer Disease/drug therapy , Alzheimer Disease/chemically induced , Silicon Dioxide/therapeutic use , Amyloid beta-Peptides/toxicity , Mice, Transgenic
12.
J Chromatogr A ; 1713: 464536, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38029659

ABSTRACT

The concentration of carbazoles in highly mature crude oil is quite low, making it challenging to separate carbazole compounds for the gas chromatography-mass spectrometry (GC-MS) detection. This study presents a small-scale column chromatography method for separating carbazoles from highly mature crude oil using silica gel as a solid phase adsorbent and a Pasteur pipette as a separation device. The carbazole-rich crude oil from the Pearl River Mouth Basin was selected to explore the impact of reagent polarity and injection mode on the separation of carbazoles. The oil sample was eluted with solvents mixed with different volume proportions of n-hexane and dichloromethane and each eluted fraction was collected for GC-MS testing. The results indicated that increasing the reagent polarity caused the aromatic hydrocarbons and carbazole compounds in crude oil to be eluted sequentially. Most aromatic compounds in the crude oil could be selectively eluted using a reagent polarity ratio of 9:1 (Vn-hexane: Vdichloromethane), with no carbazole compounds. A significant amount of carbazole compounds were eluted in the polar segments of 8:2-6:4, with the eluted carbazoles concentration accounting for more than 98 % of the total concentration. Moreover, the concentration and recovery of carbazoles eluted by direct injection mode were about 10 % higher than those after adsorption by silica gel. The standard deviation of the parameter ratio for the separated carbazole compounds in the three groups of repeatable parallel experiments was less than 0.2 %. Our method is superior to traditional two-step method and C18 column method in separation efficiency and damage to human body. This method can be applied to both highly mature crude oil and other kinds of oils including biodegradable oil. It could be a versatile method for the carbazoles separation and provide technical support in unveiling the geochemical implications of these compounds in complex areas.


Subject(s)
Petroleum , Humans , Petroleum/analysis , Silica Gel , Methylene Chloride , Gas Chromatography-Mass Spectrometry , Oils , Carbazoles
13.
Chemosphere ; 349: 140969, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38114024

ABSTRACT

Employing an affordable and sustainable visible-light-driven system is crucial for organic pollutant abatement, in the field of photocatalysis. In the present investigation, a pioneering photocatalyst zinc indium sulphide, ZnIn2S4 (ZIS) supported on a silica gel matrix, SiO2 (SG) which is the leftover material after multiple rounds of dehumidification processes, was synthesized. The fabrication of the heterojunction facilitated enhancement in light absorption and charge separation efficiency. The photocatalytic performance was evaluated through the degradation of tetracycline (TC) under light irradiation. The nano-photocatalyst experienced detailed analysis using spectroscopic and microscopic methods. The ZIS/SG catalyst exhibited remarkable efficiency in degrading TC under visible light conditions, achieving a nearly 98-99% degradation. This performance surpassed the degradation rates of the original ZIS and SG catalysts by 3.6 and 4.45 times, respectively. Additionally, the catalyst was effectively used to control TC levels in real-time within pharmaceutical plant effluent, resulting in a degradation efficiency of 78.2%. With affordability, enhanced TC mineralization, and recyclability for up to six runs (efficiency ∼ 85%), the ZIS/SG photocatalyst exhibits desirable qualities of an ideal one. This innovative nano-photocatalyst introduces new possibilities for improving the process of photocatalytic decontamination of tenacious emerging pollutants by providing satisfactory reusability and stability.


Subject(s)
Environmental Pollutants , Heterocyclic Compounds , Hygroscopic Agents , Indium , Silicon Dioxide , Tetracycline , Anti-Bacterial Agents , Light , Zinc , Catalysis
14.
Front Mol Biosci ; 10: 1248444, 2023.
Article in English | MEDLINE | ID: mdl-38131013

ABSTRACT

Background: Candida species are the main etiological agents for candidiasis, and Candida albicans are the most common infectious species. Candida species' growing resistance to conventional therapies necessitates more research into novel antifungal agents. Antifungal peptides isolated from microorganisms have potential applications as novel therapeutics. AF4 a Bacillus-derived lipopeptide demonstrating broad-spectrum antifungal activity has been investigated for its ability to cause cell death in Candida species via membrane damage and oxidative stress. Methods: Using biophysical techniques, the secondary structure of the AF4 lipopeptide was identified. Scanning electron microscopy and confocal microscopy with fluorescent dyes were performed to visualise the effect of the lipopeptide. The membrane disruption and permeabilization were assessed using the 1,6-diphenyl hexatriene (DPH) fluorescence assay and flow cytometric (FC) assessment of propidium iodide (PI) uptake, respectively. The reactive oxygen species levels were estimated using the FC assessment. The induction of apoptosis and DNA damage were studied using Annexin V-FITC/PI and DAPI. Results: Bacillus-derived antifungal variant AF4 was found to have structural features typical of lipopeptides. Microscopy imaging revealed that AF4 damages the surface of treated cells and results in membrane permeabilization, facilitating the uptake of the fluorescent dyes. A loss of membrane integrity was observed in cells treated with AF4 due to a decrease in DPH fluorescence and a dose-dependent increase in PI uptake. Cell damage was also determined from the log reduction of viable cells treated with AF4. AF4 treatment also caused elevated ROS levels, induced phosphatidylserine externalisation, late-stage apoptosis, and alterations to nuclear morphology revealed by DAPI fluorescence. Conclusion: Collectively, the mode of action studies revealed that AF4 acts primarily on the cell membrane of C. albicans and has the potential to act as an antifungal drug candidate.

15.
Adv Colloid Interface Sci ; 322: 103036, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37952363

ABSTRACT

Sodium silicate solutions, also known as waterglass, have been found to have remarkable utility in a variety of applications. The cumulative weight of evidence from 70 years of varied analysis indicates that silicate solutions consist of a wide range of species, from monomers through oligomers, up to colloids. Moreover, the structure and distribution of these species are greatly dependent upon many parameters, such as solute concentrations, silica to alkali ratio, pH, and temperature. The most interesting and characteristic property of silicate solutions is their ability to form silica gels. Overall, despite extensive research using different spectroscopic and scattering techniques, many questions related to sodium silicate's dynamic structure, stability, polymerization, and gelation remain difficult to answer. The multitude of simultaneous reactions which restructure the silicate species at the atomic scale in response to variation in solution and environmental parameters, makes it difficult to investigate the individual events using only experimental data. Molecular modelling provides an alternative way to study the unknown areas in the aqueous silicate and silica gel systems, generating key insights into the chemical reactions at microscopic length scales. However, sufficient sampling remains a challenge for the practical use of molecular simulation for these systems. Based on both experimental and modelling studies, this review provides a detailed discussion over the structure and speciation of sodium silicate solutions, their gelation mechanism and kinetics, and the syneresis phenomenon. The goal is not only to review the current level of understanding of sodium silicate solutions, silica gels and characterization techniques suitable for studying them, but also to identify the gaps in the literature and open up opportunities for advancing knowledge about these complex systems. We believe that the future direction of research should be toward correlating atomistic, molecular, and meso-scale level details of interactions and reactions in silicate solution and establishing a fundamental understanding of its gelation mechanism and kinetics. We believe that this knowledge could eliminate the "trial and error" approach in manufacturing, and improve structural control in the synthesis of important materials derived from these solutions, such as silica gels and zeolites.

16.
Gels ; 9(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37998955

ABSTRACT

The L-cysteine-functionalized silica (SG-Cys-Na+) matrix was effectively loaded with silver (I) ions using the batch sorption technique. Optimal Ag(I) loading into SG-Cys-Na+ reached 98% at pHi = 6, 80 rpm, 1 mg L-1, and a temperature of 55 °C. The Langmuir isotherm was found to be suitable for Ag(I) binding onto SG-Cys-Na+ active sites, forming a homogeneous monolayer (R2 = 0.999), as confirmed by FTIR spectroscopy. XRD analysis indicated matrix stability and the absence of Ag2O and Ag(0) phases, observed from diffraction peaks. The pseudo-second-order model (R2 > 0.999) suggested chemisorption-controlled adsorption, involving chemical bonding between silver ions and SG-Cys-Na+ surface. Thermodynamic parameters were calculated, indicating higher initial concentrations leading to increased equilibrium constants, negative ΔG values, positive ΔS values, and negative ΔH. This study aimed to explore silver ion saturation on silica surfaces and the underlying association mechanisms. The capability to capture and load silver (I) ions onto functionalized silica gel materials holds promise for environmental and water purification applications.

17.
bioRxiv ; 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37873293

ABSTRACT

1. As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. 2. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a cooccurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity (RH), temperature, and vapor pressure deficit (VPD) every 10 minutes for five months in a bare-ground experiment featuring mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica packets suspended 12 cm above soil). 3. We found that silica packets dehumidified these microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate VPD most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within three days of deployment. 4. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.

18.
Anal Bioanal Chem ; 415(27): 6873-6883, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37792070

ABSTRACT

Over the past two decades, microfluidic-based separations have been used for the purification, isolation, and separation of biomolecules to overcome difficulties encountered by conventional chromatography-based methods including high cost, long processing times, sample volumes, and low separation efficiency. Cyclotides, or cyclic peptides used by some plant families as defense agents, have attracted the interest of scientists because of their biological activities varying from antimicrobial to anticancer properties. The separation process has a critical impact in terms of obtaining pure cyclotides for drug development strategies. Here, for the first time, a mimic of the high-performance liquid chromatography (HPLC) on microfluidic chip strategy was used to separate the cyclotides. In this regard, silica gel-C18 was synthesized and characterized by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR) and then filled inside the microchannel to prepare an HPLC C18 column-like structure inside the microchannel. Cyclotide extract was obtained from Viola ignobilis by a low voltage electric field extraction method and characterized by HPLC and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). The extract that contained vigno 1, 2, 3, 4, 5, and varv A cyclotides was added to the microchannel where distilled water was used as a mobile phase with 1 µL/min flow rate and then samples were collected in 2-min intervals until 10 min. Results show that cyclotides can be successfully separated from each other and collected from the microchannel at different periods of time. These findings demonstrate that the use of microfluidic channels has a high impact on the separation of cyclotides as a rapid, cost-effective, and simple method and the device can find widespread applications in drug discovery research.


Subject(s)
Cyclotides , Viola , Amino Acid Sequence , Cyclotides/analysis , Cyclotides/chemistry , Silica Gel , Microfluidics , Viola/chemistry , Plant Extracts
19.
Molecules ; 28(20)2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37894668

ABSTRACT

The C-3 modification of 1H-indazole has produced active pharmaceuticals for the treatment of cancer and HIV. But, so far, this transformation has seemed less available, due to the lack of efficient C-C bond formation at the less reactive C-3 position. In this work, a series of silica gel-supported PdO2 nanoparticles of 25-66 nm size were prepared by ball milling silica gel with divalent palladium precursors, and then employed as catalysts for the Suzuki-Miyaura cross-coupling of 1H-indazole derivative with phenylboronic acid. All the synthesized catalysts showed much higher cross-coupling yields than their palladium precursors, and could also be reused three times without losing high activity and selectivity in a toluene/water/ethanol mixed solvent. Although the palladium precursors showed an order of activity of PdCl2(dppf, 1,1'-bis(diphenylphosphino)ferrocene) > PdCl2(dtbpf, 1,1'-bis(di-tert-butylphosphino)ferrocene) > Pd(OAc, acetate)2, the synthesized catalysts showed an order of C1 (from Pd(OAc)2) > C3 (from PdCl2(dtbpf)) > C2 (from PdCl2(dppf)), which conformed to the orders of BET (Brunauer-Emmett-Teller) surface areas and acidities of these catalysts. Notably, the most inexpensive Pd(OAc)2 can be used as a palladium precursor for the synthesis of the best catalyst through simple ball milling. This work provides a highly active and inexpensive series of catalysts for C-3 modification of 1H-indazole, which are significant for the large-scale production of 1H-indazole-based pharmaceuticals.

20.
Se Pu ; 41(9): 814-820, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37712546

ABSTRACT

Oil is a primary source of energy worldwide. However, the use of oil produces large amounts of pollutants, which are detrimental to the environment. The presence of petroleum hydrocarbons in soil is a critical marker of environmental pollution and safety. Rapid on-site detection technology has been broadly used in emergency tracking, offering critical information support for effective reactions to environmental emergencies. Thus, it is expected to play an increasingly critical role in environmental remediation efforts. The current approach for petroleum hydrocarbon detection in soil mainly involves Soxhlet extraction with a combination of solvents, including acetone and n-hexane. The samples are then analyzed after rotary evaporation, dehydration with anhydrous sodium sulfate, and purification using a magnesium silica-type adsorbent. Unfortunately, this approach requires sample analysis to be performed in the laboratory, which is tedious and time consuming, and consumes large amounts of solvents. Moreover, the rotary evaporator is not portable. Therefore, this method is not appropriate for the rapid on-site detection of petroleum hydrocarbons. In this study, a rapid on-site detection method based on silica-gel dehydration and cyclohexane extraction was developed for the extraction and pretreatment of petroleum hydrocarbons (C10-C40) in soil. First, an appropriate amount of silica gel was added to the soil, and the mixture was completely ground to eliminate moisture. Next, petroleum hydrocarbons were extracted with 40 mL of cyclohexane, and the extract was cleaned by Florisil solid-phase extraction (SPE) column elution. Finally, the samples were analyzed by gas chromatography (GC) to evaluate the above method. The silica gel exhibited optimal adsorption properties compared with anhydrous sodium sulfate, calcium oxide, and molecular sieves, with recovery of 87.5%. The effects of different soil water content (5%, 10%, and 20%) and silica gel (1, 3, 5, and 10 times the moisture content) dosage on the extraction of petroleum hydrocarbons were investigated. The recoveries of petroleum hydrocarbons increased from 74.0% to 103.8% after 15 min of invasive extraction (relative standard deviation, RSD, <10.1%) when silica gel amounting to 10 times the moisture content was used. Five types of silica gels with different properties were purchased from four manufacturers, and the effects of these silica gels on the dehydration and extraction efficiency of petroleum hydrocarbons in soil were assessed. The results showed that amorphous silica gel led to low recoveries (<60%), spherical silica gel achieved extraction efficiencies of approximately 70%-90%, and alkaline silica gel produced recoveries with poor precision. Therefore, neutral spherical silica gel was used for further experiments. The fingerprints of petroleum hydrocarbons with different carbon numbers are an important reference for identifying pollution sources. Thus, ensuring good recoveries throughout the entire carbon range is necessary to ensure the accuracy of the fingerprint analysis results. The proposed method showed good recoveries for petroleum hydrocarbons of all carbon numbers (75%-101%). The findings above indicate that the developed method could be an efficient means to extract petroleum hydrocarbons from soil for both total quantity and fingerprint analyses. Compared with standard methods, the proposed method requires lower solvent dosages and features simpler processing steps. Another advantage of this method is that it does not require the use of highly toxic halogenated solvents; thus, it does not contribute to environmental pollution. It can be applied to the laboratory analysis of soil petroleum hydrocarbons and coupled with other rapid on-site detection techniques for soil petroleum hydrocarbons, such as infrared spectroscopy and portable GC. However, because it does not include a concentration process, the developed method exhibits relatively low sensitivity. In the future, we plan to develop a simple and flexible on-site sample-concentration system to further improve various indicators of this method.

SELECTION OF CITATIONS
SEARCH DETAIL
...