Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 272
Filter
1.
ChemSusChem ; : e202400434, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884447

ABSTRACT

Utilizing photocatalytic CO2 reduction presents a promising avenue for combating climate change and curbing greenhouse gas emissions. However, maximizing its potential hinges on the development of materials that not only enhance efficiency but also ensure process stability. Here, we introduce Hiroshima University Silicate-7 (HUS-7) with immobilized Ti species as a standout contender. Our study demonstrates the remarkable photocatalytic activity of HUS-7 in CO2 reduction, yielding substantially higher carbonaceous product yields compared to conventional titanium-based catalysts TS-1 and P25. Through thorough characterization, we elucidate that their boosted photocatalytic performance is attributed to the incorporation of isolated Ti species within the silica-based precursor, serving as potent photoinduced active sites. Moreover, our findings underscore the crucial role of the Ligand-to-Metal Charge Transfer (LMCT) process in facilitating the photoactivation of CO2 molecules, shedding new light on key mechanisms underlying photocatalytic CO2 reduction.

2.
Dent Mater ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908960

ABSTRACT

OBJECTIVES: Silicon-releasing biomaterials are widely used in the field of dentistry. However, unlike bone, very little is known about the role of silicon on dental tissue formation and repair. This study investigates the influence of silicic acid on the survival, differentiation and mineralizing ability of human dental pulp stem cells (hDPSCs) in 3D pulp-like environments METHODS: Dense type I collagen hydrogels seeded with hDPSCs were cultured over 4 weeks in the presence of silicic acid at physiological (10 µM) and supraphysiological (100 µM) concentrations. Cell viability and proliferation were studied by Alamar Blue and live/dead staining. The collagen network was investigated using second harmonic generation imaging. Mineral deposition was monitored by histology and scanning electron microscopy. Gene expression of mineralization- and matrix remodeling-associated proteins was studied by qPCR. RESULTS: Presence of silicic acid did not show any significant influence on cell survival, metabolic activity and gene expression of key mineralization-related proteins (ALP, OCN, BSP). However, it induced enhanced cell clustering and delayed expression of matrix remodeling-associated proteins (MMP13, Col I). OPN expression and mineral deposition were inhibited at 100 µM. It could be inferred that silicic acid has no direct cellular effect but rather interacts with the collagen network, leading to a modification of the cell-matrix interface. SIGNIFICANCE: Our results offer advanced insights on the possible role of silicic acid, as released by pulp capping calcium silicates biomaterials, in reparative dentine formation. More globally, these results interrogate the possible role of Si in pulp pathophysiology.

3.
ChemSusChem ; : e202400050, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898597

ABSTRACT

Alkaline iron (Fe) batteries are attractive due to the high abundance, low cost, and multiple valent states of Fe but show limited columbic efficiency and storage capacity when forming electrochemically inert Fe3O4 on discharging and parasitic H2 on charging. Herein, sodium silicate is found to promote Fe(OH)2/FeOOH against Fe(OH)2/Fe3O4 conversions. Electrochemical experiments, operando X-ray characterization, and atomistic simulations reveal that improved Fe(OH)2/FeOOH conversion originates from (i) strong interaction between sodium silicate and iron oxide and (ii) silicate-induced strengthening of hydrogen-bond networks in electrolytes that inhibits water transport. Furthermore, the silicate additive suppresses hydrogen evolution by impairing energetics of water dissociation and hydroxyl de-sorption on iron surfaces. This new silicate-assisted redox chemistry mitigates H2 and Fe3O4formation, improving storage capacity (199 mAh g-1 in half-cells) and coulombic efficiency (94% after 400 full-cell cycles), paving a path to realizing green battery systems built from earth-abundant materials.

4.
J Conserv Dent Endod ; 27(3): 326-330, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38634022

ABSTRACT

Context: Cytotoxicity and adaptability are among the highly imperative tests that should be performed on a novel endodontic material to ensure its successful implementation in endodontic treatment. Aims: Assess a recently introduced bioceramic root canal sealer CeramoSeal with TotalFill BC and AH plus sealers regarding the cytotoxicity and adaptability. Materials and Methods: Five sealer discs were prepared for each sealer and their extracts were cultured in 96-well plates containing human fibroblasts for 24 h. After their incubation, MTT solution was added to each well plate using an enzyme-linked immunosorbent assay plate reader was implemented to calculate the percentage of viable cells. Thirty mandibular single-rooted premolars were prepared using the Edge Endo rotary system, teeth were divided into three groups (n = 10) based on the sealer type: Group 1 CeramoSeal, Group 2 Totalfill, and Group 3 AH plus sealer. Teeth were sectioned longitudinally and viewed under a scanning electron microscope where the region with the gaps was identified and quantified as a percentage of the root canal's overall area. Statistical Analysis: One-way ANOVA test was used for cytotoxicity, while Kruskal-Wallis and Friedman's tests were used for adaptability. Results: Ceramoseal statistically significantly showed the lowest viability, at high concentrations AH plus showed the highest cell viability, while at lower concentration Totalfill BC sealer showed the highest cell viability percentage. The gap percentages were statistically significantly higher in Ceramoseal group, there was no statistically significant difference between AH Plus and Totalfill groups. Conclusions: Ceramoseal sealer exhibited the lowest viability and highest gap percentage compared to the other sealers.

5.
Materials (Basel) ; 17(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612200

ABSTRACT

We investigate the nanometrology of sub-nanometre particle sizes in industrially manufactured sodium silicate liquors at high pH using time-resolved fluorescence anisotropy. Rather than the previous approach of using a single dye label, we investigate and quantify the advantages and limitations of multiplexing two fluorescent dye labels. Rotational times of the non-binding rhodamine B and adsorbing rhodamine 6G dyes are used to independently determine the medium microviscosity and the silicate particle radius, respectively. The anisotropy measurements were performed on the range of samples prepared by diluting the stock solution of silicate to concentrations ranging between 0.2 M and 2 M of NaOH and on the stock solution at different temperatures. Additionally, it was shown that the particle size can also be measured using a single excitation wavelength when both dyes are present in the sample. The recovered average particle size has an upper limit of 7.0 ± 1.2 Å. The obtained results were further verified using small-angle X-ray scattering, with the recovered particle size equal to 6.50 ± 0.08 Å. To disclose the impact of the dye label on the measured complex size, we further investigated the adsorption state of rhodamine 6G on silica nanoparticles using molecular dynamics simulations, which showed that the size contribution is strongly impacted by the size of the nanoparticle of interest. In the case of the higher radius of curvature (less curved) of larger particles, the size contribution of the dye label is below 10%, while in the case of smaller and more curved particles, the contribution increases significantly, which also suggests that the particles of interest might not be perfectly spherical.

6.
Materials (Basel) ; 17(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673195

ABSTRACT

In the present work, the development of geopolymeric materials with Na or K based on industrial kaolin samples, with variable kaolinite content and alkaline silicates, is studied. XRF, XRD, FTIR and SEM-EDS have been used as characterization techniques. Three ceramic kaolin samples, two from Algeria and one from Charente (France), have been considered. In particular, chemical and mineralogical characterization revealed elements distinct of Si and Al, and the content of pure kaolinite and secondary minerals. Metakaolinite was obtained by grinding and sieving raw kaolin at 80 µm and then by thermal activation at 750 °C for 1 h. This metakaolinite has been used as a base raw material to obtain geopolymers, using for this purpose different formulations of alkaline silicates with NaOH or KOH and variable Si/K molar ratios. The formation of geopolymeric materials by hydroxylation and polycondensation characterized with different Si/Al molar ratios, depending on the original metakaolinite content, has been demonstrated. Sodium carbonates have been detected by XRD and FTIR, and confirmed by SEM-EDS, in two of these geopolymer materials being products of NaOH carbonation.

7.
Eur Arch Paediatr Dent ; 25(2): 277-284, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38427158

ABSTRACT

PURPOSE: The study aimed to evaluate temporary fillings using Biodentine™ in asymptomatic deep carious lesions after 12, 24, and 36 months in school children from the remote village of Kerung, Nepal. METHODS: From November 2018 to November 2019, 91 temporary fillings were placed using Biodentine™ (a hydraulic calcium silicate cement) in permanent molars with deep carious lesions of schoolchildren in the remote district of Kerung, Nepal. These restorations were performed after selective caries removal in a non-dental setting with hand instruments and cotton roll isolation, as electric motors and saliva ejection systems were unavailable. In total, 78 single-surface and 13 multi-surface fillings were placed. Clinical and radiographic follow-up periods encompassed 12, 21, and 33 months, respectively. RESULTS: After 12 months, all single-surface fillings (100%) survived, whilst all multi-surface fillings were partially or entirely lost. The survival rate of single-surface restorations after 21 and 33 months was 67.6% and 50%, respectively. Radiographically, no pathology was observed. CONCLUSION: This study showed that Biodentine could be used in deep carious lesions as a temporary filling in single-surface lesions for at least up to 1 year and in a substantial number of cases for up to 21 and 33 months.


Subject(s)
Calcium Compounds , Dental Caries , Silicates , Humans , Calcium Compounds/therapeutic use , Dental Caries/therapy , Prospective Studies , Child , Follow-Up Studies , Silicates/therapeutic use , Female , Male , Nepal , Dental Restoration, Temporary , Molar , Dentition, Permanent , Pulp Capping and Pulpectomy Agents/therapeutic use
8.
Environ Sci Pollut Res Int ; 31(18): 26567-26579, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38446300

ABSTRACT

Amid mounting pressure on the long-term recyclability of chromium in tanned leather and the associated environmental hazards, the quest for an alternative, cleaner tanning system has gained tremendous momentum. In this context, our study explores the remarkable potential of silicates as a versatile platform for skin/hide tanning, circumventing the inherent risks and ecological threats posed by chromium exposure and leaching. We present an alternative approach of using a silica-based tanning system, employing a Taguchi model, to optimize a masked silica (MaSil) tanning product/process for achieving effective collagen stabilization. Our results demonstrate the significant advancements made in hydrothermal denaturation temperature, reaching an impressive 79 °C through precise Taguchi parameters-5% SiO2, masked with 0.3 mole of citrate salt, and a tanning process fixation pH of 4.5. Notably, the mechanical strength analysis reveals compliance with the stringent upper leather recommendation standards, validating the practicality and quality of MaSil crust leather. Moreover, our research highlights the unprecedented environmental benefits of the first reported application of Taguchi's approach to the MaSil tanning system. The developed tanning system remarkably reduces total dissolved solids (TDS), biological oxygen demand (BOD), chemical oxygen demand (COD), and overall water load by 68.4%, 25.4%, 59.5%, and 33.7%, respectively, heralding a promising era of water and environmental sustainability in the leather sector. This study holds the potential to transform leather production, wherein the envisioned future on the use of the Taguchi model and optimized MaSil tanning system could find a place in shaping a cleaner, greener, and more sustainable leather industry.


Subject(s)
Silicon Dioxide , Tanning , Silicon Dioxide/chemistry
9.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38509617

ABSTRACT

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Subject(s)
Cathepsin B , Lipopolysaccharides , Male , Humans , Mice , Animals , Cathepsin B/metabolism , Cathepsin B/pharmacology , Lipopolysaccharides/pharmacology , High-Throughput Screening Assays , Inflammation/chemically induced , Inflammation/metabolism , Macrophages , Cytokines/metabolism , Interleukin-1beta/metabolism
10.
J Prosthodont ; 33(3): 281-287, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37014263

ABSTRACT

PURPOSE: This study aimed to assess the fracture resistance of monolithic zirconia-reinforced lithium silicate laminate veneers (LVs) fabricated on various incisal preparation designs. MATERIALS AND METHODS: Sixty maxillary central incisors with various preparation designs were 3D-printed, 15 each, including preparation for: (1) LV with feathered-edge design; (2) LV with butt-joint design; (3) LV with palatal chamfer; and (4) full-coverage crown. Restorations were then designed and manufactured from zirconia-reinforced lithium silicate (ZLS) following the contour of a pre-operation scan. Restorations were bonded to the assigned preparation using resin cement and following the manufacturer's instructions. Specimens were then subjected to 10,000 thermocycles at 5 to 55°C with a dwell time of 30 s. The fracture strength of specimens was then assessed using a universal testing machine at a crosshead speed of 1.0 mm/min. One-way ANOVA and Bonferroni correction multiple comparisons were used to assess the fracture strength differences between the test groups (α = 0.001). Descriptive fractographic analysis of specimens was carried out with scanning electron microscopy images. RESULTS: Complete coverage crown and LV with palatal chamfer design had the highest fracture resistance values (781.4 ± 151.4 and 618.2 ± 112.6 N, respectively). Single crown and LV with palatal chamfer had no significant difference in fracture strength (p > 05). LV with feathered-edge and butt-joint designs provided significantly (p < 05) lower fracture resistance than complete coverage crown and LV with palatal chamfer design. CONCLUSION: The fracture resistance of chairside milled ZLS veneers was significantly influenced by the incisal preparation designs tested. Within the limitation of this study, when excessive occlusal forces are expected, LV with palatal chamfer display is the most conservative method of fabricating an indirect restoration.


Subject(s)
Ceramics , Dental Porcelain , Dental Porcelain/therapeutic use , Flexural Strength , Lithium , Materials Testing , Dental Stress Analysis , Crowns , Zirconium/therapeutic use , Silicates , Computer-Aided Design , Dental Prosthesis Design
11.
Int J Pharm ; 651: 123743, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38151103

ABSTRACT

HYPOTHESIS: The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS: In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS: The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.


Subject(s)
Drug Carriers , Nanoparticles , Drug Carriers/chemistry , Clay , Solubility , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Surface Properties , Particle Size
12.
Mater Today Bio ; 23: 100815, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37779917

ABSTRACT

Conventional dentistry faces limitations in preserving tooth health due to the finite lifespan of restorative materials. Regenerative dentistry, utilizing stem cells and bioactive materials, offers a promising approach for regenerating dental tissues. Human dental pulp stem cells (hDPSCs) and bioactive materials like calcium phosphate (CaP) and silicate-based materials have shown potential for dental tissue regeneration. This systematic review aims to investigate the effects of CaP and silicate-based materials on hDPSCs through in vitro studies published since 2015. Following the PRISMA guidelines, a comprehensive search strategy was implemented in PubMed MedLine, Cochrane, and ScienceDirect databases. Eligibility criteria were established using the PICOS scheme. Data extraction and risk of bias (RoB) assessment were conducted, with the included studies assessed for bias using the Office of Health and Translation (OHAT) RoB tool. The research has been registered at OSF Registries. Ten in vitro studies met the eligibility criteria out of 1088 initial studies. Methodological heterogeneity and the use of self-synthesized biomaterials with limited generalizability were observed in the included study. The findings highlight the positive effect of CaP and silicate-based materials on hDPSCs viability, adhesion, migration, proliferation, and differentiation. While the overall RoB assessment indicated satisfactory credibility of the reviewed studies, the limited number of studies and methodological heterogeneity pose challenges for quantitative research. In conclusion, this systematic review provides valuable insights into the effects of CaP and silicate-based materials on hDPSCs. Further research is awaited to enhance our understanding and optimize regenerative dental treatments using bioactive materials and hDPSCs, which promise to improve patient outcomes.

13.
Molecules ; 28(19)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37836810

ABSTRACT

The aim of this work is to review the application of bioceramic materials in the context of current regenerative dentistry therapies, focusing on the latest advances in the synthesis of advanced materials using the sol-gel methodology. Chemical synthesis, processing and therapeutic possibilities are discussed in a structured way, according to the three main types of ceramic materials used in regenerative dentistry: bioactive glasses and glass ceramics, calcium phosphates and calcium silicates. The morphology and chemical composition of these bioceramics play a crucial role in their biological properties and effectiveness in dental therapeutics. The goal is to understand their chemical, surface, mechanical and biological properties better and develop strategies to control their pore structure, shape, size and compositions. Over the past decades, bioceramic materials have provided excellent results in a wide variety of clinical applications related to hard tissue repair and regeneration. Characteristics, such as their similarity to the chemical composition of the mineral phase of bones and teeth, as well as the possibilities offered by the advances in nanotechnology, are driving the development of new biomimetic materials that are required in regenerative dentistry. The sol-gel technique is a method for producing synthetic bioceramics with high purity and homogeneity at the molecular scale and to control the surfaces, interfaces and porosity at the nanometric scale. The intrinsic nanoporosity of materials produced by the sol-gel technique correlates with the high specific surface area, reactivity and bioactivity of advanced bioceramics.


Subject(s)
Biomimetic Materials , Bone and Bones , Porosity , Ceramics/chemistry , Biocompatible Materials/chemistry
14.
Environ Sci Technol ; 57(37): 13808-13817, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37672711

ABSTRACT

Carbon dioxide (CO2) mineralization based on aqueous carbonation of alkaline earth silicate minerals is a promising route toward large-scale carbon removal. Traditional aqueous carbonation methods largely adopt acidification-based approaches, e.g., using concentrated/pressurized CO2 or acidic media, to accelerate mineral dissolution and carbonation. In this study, we designed and tested three distinctive routes to evaluate the effect of pretreatments under different pH conditions on aqueous carbonation, using amorphous calcium silicate (CS) as an example system. Pretreating CS with high concentrations (100 mM) of HCl (Route I) or NaOH (Route II and III) enhanced their carbonation degrees. However, NaOH pretreatment overall yielded higher carbonation degrees than the HCl pretreatment, with the highest carbonation degree achieved through Route III, where an extra step is taken after the NaOH pretreatment to remove the solution containing dissolved silica prior to carbonation. The HCl and NaOH pretreatments formed different intermediate silica products on the CS surface. Silica precipitated from the HCl pretreatment had a minimal effect on the carbonation degree. The high Ca/Si ratio intermediate phases formed from the NaOH, on the other hand, can be readily carbonated. In contrast to commonly utilized acidification-based approaches, basification offers a more promising route to accelerate aqueous carbonation as it can mitigate the need for costly pH swing and high-concentration/pressurized CO2. The key to aqueous carbonation under basic conditions, as suggested by this study, is the control of aqueous silica species that have a suppressing effect on carbonation. Overall, this study highlights the critical needs for investigations of aqueous mineral carbonation in a broader pH region.


Subject(s)
Carbon Dioxide , Silicates , Sodium Hydroxide , Silicon Dioxide , Carbonates
15.
ACS Appl Mater Interfaces ; 15(38): 44887-44898, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37721481

ABSTRACT

Supported palladium (Pd) catalysts are widely utilized to reduce the emission of exhaust CH4 from lean-burn engines by catalytic combustion. A large amount of water vapor in the exhaust makes hydroxyls accumulate on the catalyst surface at temperatures below 450 °C, leading to severe catalyst deactivation. Tuning palladium chemistry and inhibiting water adsorption are critical to developing active catalysts. Modifying the support surface with inert silicates would both change the palladium-support interaction and decrease water adsorption sites. This study reports an improved Pd/Y2O3-ZrO2 catalyst by constructing silicate patches on yttria-stabilized zirconia (Y2O3-ZrO2) support. The silicates hindered electron transfer from Y2O3-ZrO2 oxygen vacancies to palladium, which optimized palladium chemistry, especially the reducibility of active PdO species, and thereby boosted CH4 conversion under dry conditions. The temperature of 90% methane conversion (T90) over the catalyst decreased from 386 to 309 °C. Moreover, the inert silicates decreased surface oxygen vacancies of Y2O3-ZrO2 to improve support hydrophobicity, thereby inhibiting hydroxyl accumulation. The poisoning effect of water on the active sites located on the palladium-silicate interface was alleviated. When reaction gases contained 10 vol % water, the silicate-modified catalyst still showed higher activity with T90 of 404 °C, which is lower than T90 of 452 °C for unmodified catalyst. This work represents a step forward in preparing high-performance palladium catalysts for low-temperature wet methane combustion.

16.
Chemistry ; 29(61): e202301942, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37486717

ABSTRACT

A silica zeolite (RWZ-1) with a very high framework density (FD) was synthesized from highly crystalline natural layered silicate magadiite, bridging the gap between the two research areas of zeolites and dense silica polymorphs. Magadiite was topotactically converted into a 3D framework through two-step heat treatment. The resulting structure had a 1D micropore system of channel-like cavities with an FD of 22.1 Si atoms/1000 Å3 . This value is higher than those of all other silica zeolites reported so far, approaching those of silica polymorphs (tridymite (22.6) and α-quartz (26.5)). RWZ-1 is a slight negative thermal expansion material with thermal properties approaching those of dense silica polymorphs. It contributes to the creation of a new field on microporous high-density silica/silicates. Synergistic interactions are expected between the micropores with molecular sieving properties and the dense layer-like building units with different topologies which provide thermal and mechanical stabilities.

17.
Materials (Basel) ; 16(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37297289

ABSTRACT

To date, uranyl silicates are mostly represented by minerals in nature. However, their synthetic counterparts can be used as ion exchange materials. A new approach for the synthesis of framework uranyl silicates is reported. The new compounds Rb2[(UO2)2(Si8O19)](H2O)2.5 (1), (K,Rb)2[(UO2)(Si10O22)] (2), [Rb3Cl][(UO2)(Si4O10)] (3) and [Cs3Cl][(UO2)(Si4O10)] (4) were prepared at harsh conditions in "activated" silica tubes at 900 °C. The activation of silica was performed using 40% hydrofluoric acid and lead oxide. Crystal structures of new uranyl silicates were solved by direct methods and refined: 1 is orthorhombic, Cmce, a = 14.5795(2) Å, b = 14.2083(2) Å, c = 23.1412(4) Å, V = 4793.70(13) Å3, R1 = 0.023; 2 is monoclinic, C2/m, a = 23.0027(8) Å, b = 8.0983(3) Å, c = 11.9736(4) Å, ß = 90.372(3) °, V = 2230.43(14) Å3, R1 = 0.034; 3 is orthorhombic, Imma, a = 15.2712(12) Å, b = 7.9647(8) Å, c = 12.4607(9) Å, V = 1515.6(2) Å3, R1 = 0.035, 4 is orthorhombic, Imma, a = 15.4148(8) Å, b = 7.9229(4) Å, c = 13.0214(7) Å, V = 1590.30(14) Å3, R1 = 0.020. Their framework crystal structures contain channels up to 11.62 × 10.54 Å filled by various alkali metals.

18.
Materials (Basel) ; 16(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37374460

ABSTRACT

This paper presents the results of a study on the evaluation of resistance of pastes from carbonated, low-lime calcium silica cements to external sulfate attack. The extent of chemical interaction between sulfate solutions and paste powders was assessed by quantifying the amount of species that leached out from carbonated pastes using ICP-OES and IC techniques. In addition, the loss of carbonates from the carbonated pastes exposed to sulfate solutions and the corresponding amounts of gypsum formed were also monitored by using the TGA and QXRD techniques. The changes in the structure of silica gels were evaluated using FTIR analysis. The results of this study revealed that the level of resistance of carbonated, low-lime calcium silicates to external sulfate attack was affected by the degree of crystallinity of calcium carbonate, the type of calcium silicate, and the type of cation present in the sulfate solution.

19.
Beilstein J Nanotechnol ; 14: 522-534, 2023.
Article in English | MEDLINE | ID: mdl-37152474

ABSTRACT

In the present work, the bottom-up fabrication of biohybrid materials using a nanoarchitectonics approach has been applied to entrap living cells. Unicellular microorganisms, that is, cyanobacteria and yeast cells, have been immobilized in silica and silicate-based substrates organized as nanostructured materials. In a first attempt, matrices based on bionanocomposites of chitosan and alginate incorporating sepiolite clay mineral and shaped as films, beads, or foams have been explored for the immobilization of cyanobacteria. It has been observed that this type of biohybrid substrates leads to serious problems regarding the long-time survival of the encapsulated microorganisms. Alternative procedures using silica-based matrices with low sodium content, generated by sol-gel methods, as well as pre-synthesised yolk-shell bionanohybrids have been studied subsequently. Optical microscopy and SEM confirm that the silica shell microstructures provide a reduced contact between cells. The inorganic matrix increases the survival of the cells and maintains their bioactivity. Thus, the encapsulation efficiency is improved compared to the approach using a direct contact of cells in a silica matrix. Encapsulated yeast produced ethanol over a period of several days, pointing out the useful biocatalytic potential of the approach and suggesting further optimization of the present protocols.

20.
J Funct Biomater ; 14(3)2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36976088

ABSTRACT

BACKGROUND: Recently several calcium silicate flowable sealers have been introduced as endodontic materials for the root canal. This clinical study tested the use of a new premixed calcium silicate bioceramic sealer in association with the Thermafil warm carrier-based technique (TF). Epoxy-resin-based sealer with the warm carrier-based technique was the control group. METHODOLOGY: Healthy consecutive patients (n = 85) requiring 94 root canal treatments were enrolled in this study and assigned to one filling group (Ceraseal-TF n = 47, AH Plus-TF n = 47) in accordance with operator training and best clinical practice. Periapical X-rays were taken preoperatively, after root canal filling and after 6, 12 and 24 months. Two evaluators blindly assessed the periapical index (PAI) and sealer extrusion in the groups (k = 0.90). Healing rate and survival rate were also evaluated. Chi-square tests was used to analyze significant differences between the groups. Multilevel analysis was performed to evaluate the factors associated with healing status. RESULTS: A total of 89 root canal treatments in 82 patients were analyzed at the end-line (24 months). The total drop-out was 3.6% (3 patients; 5 teeth). A total of 91.1% of healed teeth (PAI 1-2) was observed in Ceraseal-TF, with 88.6% in AH Plus-TF. No significant difference was observed on healing outcome and survival among the two filling groups (p > 0.05). Apical extrusion of the sealers occurred in 17 cases (19.0%). Of these, 6 occurred in Ceraseal-TF (13.3%) and 11 in AH Plus-TF (25.0%). Three Ceraseal extrusions were radiographically undetectable after 24 months. All the AH Plus extrusions did not change during the evaluation time. CONCLUSIONS: The combined use of the carrier-based technique and premixed CaSi-based bioceramic sealer showed clinical results comparable with carrier-based technique and epoxy-resin-based sealer. The radiographical disappearance of apically extruded Ceraseal is a possible event in the first 24 months.

SELECTION OF CITATIONS
SEARCH DETAIL
...