Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38930929

ABSTRACT

Constructing a synergistic effect with different structural fillers is an important strategy for improving the comprehensive properties of polymeric composites. To improve the comprehensive properties of two-component additive liquid silicon rubber (SR) materials used in electronics packaging, the synergistic effect of granular aluminum nitride (AlN) and tubular carbon nanotube (CNT)-reinforced SR nanocomposites was investigated. AlN/CNT/SR composites with different AlN/CNT ratios were fabricated with two-component additive liquid SR via the thermal curing technique, and the influence of AlN/CNT hybrid fillers on the hardness, strength, elongation at break, surface resistivity, thermal conductivity, and thermal decomposition was investigated in detail. With the incorporation of AlN/CNT hybrid fillers, the comprehensive properties of the obtained AlN/CNT/SR composites are better than those of the AlN/SR and CNT/SR composites. The synergistic thermal conductive mechanism of AlN/CNT hybrid fillers was proposed and demonstrated with the fractural surface morphology of the obtained composites. The obtained AlN/CNT/SR composites show promising applications in electronic packaging, where necessary mechanical strength, electrical insulating, thermal conductivity, and thermal stable materials are needed.

2.
ACS Appl Mater Interfaces ; 16(6): 7883-7893, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38299449

ABSTRACT

Effective heat dissipation and real-time temperature monitoring are crucial for ensuring the long-term stable operation of modern, high-performance electronic products. This study proposes a silicon rubber polydimethylsiloxane (PDMS)-based nanocomposite with a rapid thermal response and high thermal conductivity. This nanocomposite enables both rapid heat dissipation and real-time temperature monitoring for high-performance electronic products. The reported material primarily consists of a thermally conductive layer (Al2O3/PDMS composites) and a reversible thermochromic layer (organic thermochromic material, graphene oxide, and PDMS nanocoating; OTM-GO/PDMS). The thermal conductivity of OTM-GO/Al2O3/PDMS nanocomposites reached 4.14 W m-1 K-1, reflecting an increase of 2200% relative to that of pure PDMS. When the operating temperature reached 35, 45, and 65 °C, the surface of OTM-GO/Al2O3/PDMS nanocomposites turned green, yellow, and red, respectively, and the thermal response time was only 30 s. The OTM-GO/Al2O3/PDMS nanocomposites also exhibited outstanding repeatability and maintained excellent color stability over 20 repeated applications.

3.
Environ Sci Technol ; 57(9): 3602-3611, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36826516

ABSTRACT

Pharmaceutical deltamethrin (Alpha Max), used as delousing treatments in aquaculture, has raised concerns due to possible negative impacts on the marine environment. A novel approach combining different scientific disciplines has addressed this topic. Acute (mortality) and sublethal effects (i.e., fitness, neurological, immunological, and oxidative responses) of exposure of northern shrimp (Pandalus borealis) were studied in laboratory experiments. Passive water sampling combined with sediment analyses revealed environmental concentrations. Finally, dispersal modeling was performed to predict environmental concentrations. Ecotoxicological analyses showed mortality in shrimp after 1 h of exposure to 2 ng L-1 (1000-fold dilution of treatment dose), revealing a high sensitivity to deltamethrin. Sublethal effects included induction of acetylcholinesterase and acyl CoA oxidase activities and oxidative impairment, which may be linked to neurotoxic responses. Field concentrations of 10-200 ng L-1 in water (100 m from the pens) and

Subject(s)
Pandalidae , Water Pollutants, Chemical , Animals , Acetylcholinesterase/pharmacology , Aquaculture , Water , Water Pollutants, Chemical/toxicity
4.
Polymers (Basel) ; 14(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36365694

ABSTRACT

Silicone rubber (SR)/vinyl-graphene oxide (vinyl-GO) nanocomposites were prepared through the hydrosilylation reaction of silicon hydrogen polydimethylsiloxane (H-PDMS) with vinyl polydimethylsiloxane (vinyl-PDMS), in which vinyl-GO was used as a nano filler. The thermally conductive and antistatic properties of the nanocomposites, and their tensile strength and thermal stability were evaluated. The thermally conductive and antistatic properties increased naturally when the nanocomposites had eight to nine parts of vinyl-GO. The addition of 9 parts of vinyl-GO increased the thermal conductivity to 0.44 from 0.17 W/m-1·K-1 of neat SR and the surface resistance value to 108 from 1014 Ω of neat SR. Vinyl-GO is effective in improving the tensile strength and toughness of the nanocomposites. The tensile strength and elongation at break of the nanocomposites were much higher than that of neat SR, especially for 10 parts of vinyl-GO in the nanocomposite, and the tensile strength was 1.84 MPa and the elongation at break was 314.1%. Additionally, compared with neat SR, the nanocomposites had a much higher thermal stability. For eight parts of vinyl-GO in the nanocomposites, H-PDMS with the selected silicon hydrogen content and vinyl-PDMS with the selected vinyl content could offer an appropriate cross-linking degree that suits the character of GO. When the nanocomposite had eight parts of vinyl-GO, its scanning electron microscope exhibited a monolayer GO with folded, twisted, and local surface folds. However, there was a certain amount of multilayer aggregation of GO for 10 parts of vinyl-GO in the nanocomposite.

5.
Biomed Phys Eng Express ; 8(4)2022 05 24.
Article in English | MEDLINE | ID: mdl-35550574

ABSTRACT

A bolus is a material equivalent to soft tissue and is directly placed on the skin surface during radiotherapy. It is commonly used to increase the dose on the skin surface in electron beam radiation. A typical material for a bolus is silicone rubber (SR). We made a bolus with dimensions of 17 × 17 × 1 cm3by varying silicone rubber (SR) RTV 52 and hardening material (bluesil catalyst 60 R) using a simple molded method. We characterized it using a CT scan to find the relative electron density (RED) and examined it using the electron beam of a linear accelerator (LINAC) at energies of 5 and 7 MeV to investigate the percentage of surface dose (PSD). The PSD value is relative to the dose at maximum doses (dmax). The RED value of the bolus was from 1.168 ± 0.021 to 1.176 ± 0.019, higher than the soft tissue (muscle) value of 1.043. The percentage of surface dose (PSD) test at 5 and 7 MeV LINAC energy showed that the highest PSD without using a bolus were 84.79±0.06% and 86.03±0.07%, respectively. With a bolus, the PSD values were 112.52±0.16% and 111.14±0.03%, respectively. The results indicate that bolus fabrication using SR RTV 52 and bluesil 60R is very effective for radiotherapy in the treatment of skin cancer due to an increase in surface dose.


Subject(s)
Electrons , Silicone Elastomers , Particle Accelerators , Phantoms, Imaging , Radiotherapy Dosage
6.
Polymers (Basel) ; 14(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35267871

ABSTRACT

In this study, synthetic silicone rubber (SR) and Bi2O3 micro- and nanoparticles were purchased. The percentages for both sizes of Bi2O3 were 10, 20 and 30 wt% as fillers. The morphological, mechanical and shielding properties were determined for all the prepared samples. The Linear Attenuation Coefficient (LAC) values of the silicon rubber (SR) without Bi2O3 and with 5, 10, 30 and 30% Bi2O3 (in micro and nano sizes) were experimentally measured using different radioactive point sources in the energy range varying from 0.06 to 1.333 MeV. Additionally, we theoretically calculated the LAC for SR with micro-Bi2O3 using XCOM software. A good agreement was noticed between the two methods. The NaI (Tl) scintillation detector and four radioactive point sources (Am-241, Ba-133, Cs-137 and Co-60) were used in the measurements. Other shielding parameters were calculated for the prepared samples, such as the Half Value Layer (HVL), Mean Free Path (MFP) and Radiation Protection Efficiency (RPE), all of which proved that adding nano-Bi2O3 ratios of SR produces higher shielding efficiency than its micro counterpart.

7.
Materials (Basel) ; 15(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35329761

ABSTRACT

Understanding the electrical conduction and dielectric polarization properties of elastomer-based composites is important for the design of flexible and elastic electronic devices and circuits. Five samples were manufactured by mixing silicone rubber (RTV-530) with Al particles in different volume fractions, x equal to 0%, 0.5%, 1%, 2.5% and 5.1%. Using the complex impedance measurements, the electric modulus, M, the electrical conductivity, σ, and the dielectric permittivity, ε, over the frequency range 100 Hz-200 kHz were analyzed. The electrical conductivity spectrum, σ(f), follows the Jonscher universal law and the DC conductivity of the samples, σDC, increases from 2.637·10-8 S/m to 5.725·10-8 S/m, with increasing x from, 0 to 5.1%. The conduction process was analyzed in terms of Mott's variable-range-hopping (VRH) model. The hopping distance of the charge carriers, Rh decreases with increasing x, from 7.30 nm (for x = 0) to 5.92 nm (for x = 5.1%). The frequency dependence of permittivity, ε(f) = ε'(f) - iε″(f), reveals a relaxation process with the maximum of ε″(f) shifting from 301 Hz to 385 Hz and values of ε'(f) increasing with the increase of x.

8.
Turk J Chem ; 46(3): 704-720, 2022.
Article in English | MEDLINE | ID: mdl-37720600

ABSTRACT

A new nanocomposite superhydrophobic of the RTV (room temperature vulcanized) silicon rubber reinforced with a different percentage of nanosilica was prepared by a two-stage sol-gel route to obtain a superhydrophobic surface coating on high voltage glass insulator, preventing the dust-water droplet from adhering to its surface. The cold spraying technique was utilized to build up a thin nanocomposite superhydrophobic layer on the glass insulator containing different percentages of the nanosilica particles, such as 23 wt %, 33 wt %, and 44 wt % with RTV silicon substrate. The synthesized nanocomposite was analyzed using the contact angle, roughness, adhesion, hardness, and dielectric strength tests. Moreover, the prepared RTV silicon rubber/nanosilica superhydrophobic nanocomposite layer was characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and the particle size analysis test. Based on the results, the nanosilica particles were well-incorporated into the RTV silicon rubber, obtaining an excellent homogenous distribution thin layer on its surface, supporting its capability to be a superior superhydrophobic surface. The results reveal that the RTV silicon rubber/33wt % nanosilica was the best as a superhydrophobic behavior with a contact angle reaching higher than 158° ± 3; also, a significant change in the dielectric strength was obtained to be 25.5 kV (using a speed voltage of 5.0 kV/s). Importantly, the flashover test was also conducted, and it was found that there was a significant change in the leak current between the coated and uncoated samples. The leak current of the coated sample with a superhydrophobic nanocomposite was reduced to 2.5 mA, while the uncoated sample became 3.2 mA using a voltage load value of 60 kV. The results presented here may improve the nanocomposite material as an antiweathering superhydrophobic thin layer supported by the prepared nano-SiO2 particles against the dust-water droplets which may be adhesive to the high voltage glass insulator.

9.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835814

ABSTRACT

Nanocomposite made by blending nano-montmorillonite (MMT) and Silicon Rubber (SR) for mechanical and tribological performance is explored in this work. Different configurations of MMT/SR nanocomposite, with 0, 0.5, 2 and 5 wt % of MMT are manufactured by two roll mixing methods. Noticeable improvement in the mechanical and tribological performance is observed, which is also justified by a morphological study of fractured and wear surfaces through SEM. Two percent of MMT loading is found to be the optimum content that shows excellent performance compared to other compositions. The performance improvement can be linked to the good interfacial interaction between the MMT and SR. Statistical modeling through ANOVA is carried out for tribological performance, which reveals the influence of load on the coefficient of friction (COF) and the influence of sliding distance on the wear rate.

10.
ACS Appl Mater Interfaces ; 13(33): 39394-39403, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34392674

ABSTRACT

A kind of silicone rubber (SR)/paraffin (Pa)@silicon dioxide (SiO2)@polydopamine (PDA) phase-change composite was prepared in this work. The double-shelled Pa@SiO2@PDA phase-change microcapsules were constructed by oxidative self-polymerization of dopamine (DA) in Tris-HCl buffer solution. The effect of the DA content on the properties of Pa@SiO2@PDA microcapsules and SR/Pa@SiO2@PDA composites was researched. Due to the protective effect of SiO2, PDA layer, and SR matrix, the SR/Pa@SiO2@PDA composites have good leak-proofing performance, and the leakage rate of SR/Pa@SiO2@PDA-2 is as low as 0.45%. Phase-change enthalpies of the Pa@SiO2@PDA microcapsules and SR/Pa@SiO2@PDA composites are reduced slightly with increasing DA content. Meanwhile, the composites displayed improved mechanical strength. The tensile strength of SR/Pa@SiO2@PDA-2 can be up to 0.560 MPa, which is 1.85 times higher than the tensile strength of pure SR/Pa@SiO2 because the interface compatibility between Pa@SiO2 microcapsules and SR is improved through hydrogen bonding between the abundant groups on the PDA surface and the matrix. Moreover, the rough surface of the PDA-modified microcapsules also enhances the interface interaction through physical "interlocking". The new kind of SR/Pa@SiO2@PDA composite can be used for thermal management.

11.
Materials (Basel) ; 14(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067486

ABSTRACT

The stringer-stiffened structure is widely used due to its excellent mechanical properties. Improving the manufacturing quality of stringer-stiffened structure which have complex geometry is important to ensure the bearing capacity of aviation components. Herein, composite hat-stiffened composite structures were manufactured by different filling forms and bladders with various properties, the deformation of silicone rubber bladder in co-curing process was studied by using the finite element method. The thickness measurement at different positions of the hat-stiffened structure was performed to determine the best filling form and bladder property. Moreover, in view of the detection difficulties in R-zone of stringer, numerical simulation was performed to get the sound pressure and impulse response of at the R-zone of stringer by Rayleigh integration method, and an effective equipment which could stably detect the manufacturing quality of R-zone was designed to verify the correctness of sound field simulation and realize the detection of stringer. With the optimum filling form and bladder properties, hat-stiffened composites can be manufactured integrally with improved surface quality and geometric accuracy, based on co-curing process.

12.
Luminescence ; 36(4): 964-976, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33590669

ABSTRACT

A simple method for the preparation of multifunctional nanocomposite was developed towards the production of water-repellent, electrically conductive, and photoluminescent film onto cotton fibres. The nanocomposite was composed of lanthanide-doped strontium aluminium oxide and silicon rubber dispersed in petroleum ether. The electrically conductive fabric was woven from nickel strips twisted with cotton filaments as core yarns, which were wrapped with pure cotton yarns. The nanoparticles (NPs) of lanthanide-doped strontium aluminium oxide were mixed with environmentally friendly room-temperature vulcanizing silicon rubber (RTV-SR) dissolved in petroleum ether to give the silicon rubber/strontium aluminate nanocomposites. The produced nanocomposites were applied onto electrically conductive cotton/nickel fibres using spray-coating technology. The surface of the cotton/nickel fibres showed different hierarchical morphologies depending on the total content of the silicon rubber. Additionally, the superhydrophobic effect was found to be improved upon increasing the total content of the luminescence pigment NPs. The morphologies of the prepared phosphor NPs were determined using transmission electron microscopy (TEM). The generated transparent luminescence film demonstrated an absorbance peak at 358 nm and an emission peak at 515 nm. Photoluminescence of cotton fibres was monitored with the generation of different colours, including grey, green-yellow, bright white, and turquoise shades as recognized using CIE Laboratory colorimetric parameters. The emission, excitation, lifetime, and decay time spectra of the phosphorescent spray-coated cotton samples were studied. The surface morphologies and chemical compositions of the spray-coated cotton/nickel were investigated using wavelength-dispersive X-ray fluorescence (WD-XRF), scanning electron microscope (SEM), Fourier-transform infrared spectra (FTIR), and energy-dispersive X-ray analyzer (EDAX). The superhydrophobic effects were characterized by measuring static water contact angle. The comfort characteristics of the treated cotton/nickel substrates were assessed by investigating their air permeability and stiffness. The treated cotton/nickel fabrics also displayed an antimicrobial activity. The results displayed water repellence with high electrical conductivity and photoluminescence properties.


Subject(s)
Cotton Fiber , Nanocomposites , Electric Conductivity , Hydrophobic and Hydrophilic Interactions , Luminescence
13.
Polymers (Basel) ; 12(11)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105721

ABSTRACT

Damage and fiber misalignment of woven fabrics during discontinuous polymer processing remain challenging. To overcome these obstacles, a promising switchable elastomeric adherence gripper is introduced here. The inherent surface tackiness is utilized for picking and placing large sheets. Due to the elastomer's viscoelastic material behavior, the surface properties depend on loading speed and temperature. Different peeling speeds result in different adherence strength of an interface between the gripper and the substrate. This feature was studied in a carefully designed experimental test set-up including dynamic thermomechanical, as well as dynamic mechanical compression analyses, and adherence tests. Special emphases were given to the analyses of the applicability as well as the limitation of the viscoelastic gripper and the empirically modeling of the gripper's pulling speed-dependent adherence characteristic. Two formulations of poly(dimethylsiloxane) (PDMS) with different hardnesses were prepared and analyzed in terms of their applicability as gripper. The main insights of the analyses are that the frequency dependency of the loss factor tanδ is of particular importance for the application along with the inherent surface tackiness and the low sensitivity of the storage modulus to pulling speed variations. The PDMS-soft material formulation exhibits the ideal material behavior for an adhesive gripper. Its tanδ varies within the application relevant loading speeds between 0.1 and 0.55; while the PDMS-hard formulation reveals a narrower tanδ range between 0.09 and 0.19. Furthermore, an empirical model of the pulling speed-dependent strain energy release rate G(v) was derived based on the experimental data of the viscoelastic characterizations and the probe tack tests. The proposed model can be utilized to predict the maximum mass (weight-force) of an object that can be lifted by the gripper.

14.
Materials (Basel) ; 13(4)2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32079266

ABSTRACT

In this work, expanded graphite/paraffin/silicone rubber composite phase-change materials (PCMs) were prepared by blending the expanded graphite (EG), paraffin wax (PW) and silicone rubber (SR) matrix. It has been shown that PW fully penetrates into the three dimensional (3D) pores of EG to form the EG/PW particles, which are sealed by SR and evenly embedded in the SR matrix. As a result of the excellent thermal stability of SR and the capillary force from the 3D pores of EG, the EG/PW/SR PCMs are found to have good shape stability and high reliability. After being baked in an oven at 150 °C for 24 h, the shape of the EG/PW/SR PCMs is virtually unchanged, and their weight loss and latent heat drop are only 7.91 wt % and 11.3 J/g, respectively. The latent heat of the EG/PW/SR composites can reach up to 43.6 and 41.8 J/g for the melting and crystallizing processes, respectively. The super cooling of PW decreased from 4.2 to 2.4 due to the heterogeneous nucleation on the large surface of EG and the sealing effect of the SR. Meanwhile, the thermal conductivity of the EG/PW/SR PCMs reaches 0.56 W·m-1·K-1, which is about 2.8 times and 3.73 times of pure PW and pristine SR, respectively. The novel EG/PW/SR PCMs with superior shape and thermal stabilities will have a potential application in heat energy storage and thermal interface materials (TIM) for electronic devices.

15.
ACS Appl Mater Interfaces ; 11(49): 46337-46343, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31718138

ABSTRACT

Bio-inspired reversible adhesives have attracted great attention because of their promising applications in the electronic, biomedical, and robotic fields. Here, to achieve in situ reversible adhesion, a new concept is demonstrated by modulating the conformations of polydimethylsiloxane (PDMS) chains. The new adhesive, termed BGPP, is composed of the graphene/PDMS composite (GP) as the backing layer and PDMS as the micropillar array. The photothermal effect of graphene under UV irradiation heats up the micropillars, resulting in an increase in the chain conformations of PDMS and thus the contact points with the counterpart surface. The more contact points together with the alignment of PDMS chains during the shearing result in an adhesion much higher than that without UV irradiation. The adhesion switching thus does not rely on the changing of the contact area, and so the macroscopic deformation of structures is avoided. The results suggest a new design principle for light-controllable structured adhesive, which could be conceptualized into other rubbery materials.

16.
Materials (Basel) ; 12(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671629

ABSTRACT

AlN nanoparticles were added into commercial high-temperature-vulcanized silicon rubber composites, which were designed for high-voltage outdoor insulator applications. The composites were systematically studied with respect to their mechanical, electrical, and thermal properties. The thermal conductivity was found to increase greatly (>100%) even at low fractions of the AlN fillers. The electrical breakdown strength of the composites was not considerably affected by the AlN filler, while the dielectric constants and dielectric loss were found to be increased with AlN filler ratios. At higher doping levels above 5 wt% (~2.5 vol%), electrical tracking performance was improved. The AlN filler increased the tensile strength as well as the hardness of the composites, and decreased their flexibility. The hydrophobic properties of the composites were also studied through the measurements of temperature-dependent contact angle. It was shown that at a doping level of 1 wt%, a maximum contact angle was observed around 108°. Theoretical models were used to explain and understand the measurement results. Our results show that the AlN nanofillers are helpful in improving the overall performances of silicon rubber composite insulators.

17.
Materials (Basel) ; 12(7)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974779

ABSTRACT

To investigate the superhydrophobic properties of different surface textures, nine designs of textures with micro-nanostructures were produced successfully using the laser engraving technique on the surfaces of composite insulator umbrella skirt samples made of silicon rubber. The optimal parameters of the texture designs to give rise to the best hydrophobicity were determined. The surface morphology, abrasion resistance, corrosion resistance, self-cleaning and antifouling property of the different textured surfaces as well as water droplets rolling on the textured surfaces were studied experimentally using a contact angle meter, scanning electron microscope, three-dimensional topography meter and high-speed camera system. It was found that the diamond column design with optimal parameters has the best superhydrophobicity and overall performance. The most remarkable advantage of the optimal diamond column design is its robustness and long-term superhydrophobicity after repeated de-icing in harsh conditions. The reported work is an important step towards achieving superhydrophobic surface without coating for outdoor composite insulator in practical applications.

18.
Sensors (Basel) ; 20(1)2019 Dec 27.
Article in English | MEDLINE | ID: mdl-31892147

ABSTRACT

The use of medium voltage cable joints is mandatory when dealing with power cable faults and the installation of new lines. However, such an accessory is among the top causes of faults among the grid. To this purpose, one of the quantities monitored to understand the causes of such faults is the interfacial pressure between the insulating layers of the cable joint. In this work, the interfacial pressure between Cross-linked polyethylene (XLPE) and silicon rubber has been evaluated when the cable joint experiences thermal cycles. From the results, the pressure variation caused by the thermal cycles is demonstrated. Such a phenomenon may be connected to the generation of voids and weak spots that accelerate cable joint ageing. Therefore, proper comments and conclusions are drawn.

19.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-777880

ABSTRACT

Objective@#The present study investigated the clinical effects of a single complete denture using two-step fine impression during the restoration of mandibular alveolar ridge atrophy. @*Methods @#A back-end window tray that was personalized and adjusted was used to obtain the original impression for a mandibular alveolar ridge case. The individual trays were made with the conception of mandibular occlusal denture, and the final impression was obtained after active edge shaping using different viscous silicones. @*Results @#A case of single complete denture with mandibular alveolar ridge atrophy restoration was accomplished using a single complete denture and two-step fine impression. The denture was well fixed and functioned well, and the patient was satisfied.@*Conclusion @#The application of fine impression into a single complete denture is helpful for the restoration of mandibular alveolar ridge atrophy.

20.
Polymers (Basel) ; 9(4)2017 Apr 21.
Article in English | MEDLINE | ID: mdl-30970826

ABSTRACT

This work combines experiments and finite element simulations to study the effect of pre-imposed cyclic loading on surface instability of silicon rubber under compression. We first fabricate cuboid blocks of silicon rubber and pinch them cyclicly a few times. Then, an in-house apparatus is set to apply uniaxial compression on the silicon rubber under exact plane strain conditions. Surprisingly, we find multiple creases on the surface of silicone rubber, significantly different from what have been observed on the samples without the cyclic pinching. To reveal the underlying physics for these experimentally observed multiple creases, we perform detailed nanoindentation experiments to measure the material properties at different locations of the silicon rubber. The modulus is found to be nonuniform and varies along the thickness direction after the cyclic pinching. According to these experimental results, three-layer and multilayer finite element models are built with different materials properties informed by experiments. The three-layer finite element model can excellently explain the nucleation and pattern of multiple surface creases on the surface of compressed silicone rubber, in good agreement with experiments. Counterintuitively, the multilayer model with gradient modulus cannot be used to explain the multiple creases observed in our experiments. According to these simulations, the experimentally observed multiple creases should be attributed to a thin and stiff layer formed on the surface of silicon rubber after the pre-imposed cyclic loading.

SELECTION OF CITATIONS
SEARCH DETAIL
...