ABSTRACT
The transportation of live fish is a routine procedure in aquaculture, and includes a series of stressful stimuli such as an increase in the stocking density of specimens per volume of water, and abrupt changes in water quality. This study evaluated the water quality and the stress levels on Pimelodus maculatus (Lacépède, 1803) fingerlings transported in plastic bags by a mechanical transportation simulator. Fish were stocked at densities 4 (22.88 g/L), 8 fish/L (45.76 g/L) and 12 fish/L (68.64 g/L) and the transportation simulation was performed for 4, 8 or 12 hours. A completely randomized experimental design applied to a 3 x 3 factorial model with three replicates was used. Water quality was evaluated by the analysis of the temperature, pH, conductivity, dissolved oxygen, total ammonia, unionized ammonia and nitrite at the beginning and at the end of the experiment. Stress was assessed by determining tissue cortisol levels by radioimmunoassay, in the beginning and at the end of the study. The densities and the transportation times did not cause mortality, but higher density and times of transport influenced water quality indicators. The simulated transportation of P. maculatus showed that all P. maculatus fingerlings survived at the maximum density tested, 12 fish/L for 12 hours.(AU)
Subject(s)
Animals , Catfishes , Transportation , Aquaculture/methods , Water Quality , Simulation TrainingABSTRACT
The transportation of live fish is a routine procedure in aquaculture, and includes a series of stressful stimuli such as an increase in the stocking density of specimens per volume of water, and abrupt changes in water quality. This study evaluated the water quality and the stress levels on Pimelodus maculatus (Lacépède, 1803) fingerlings transported in plastic bags by a mechanical transportation simulator. Fish were stocked at densities 4 (22.88 g/L), 8 fish/L (45.76 g/L) and 12 fish/L (68.64 g/L) and the transportation simulation was performed for 4, 8 or 12 hours. A completely randomized experimental design applied to a 3 x 3 factorial model with three replicates was used. Water quality was evaluated by the analysis of the temperature, pH, conductivity, dissolved oxygen, total ammonia, unionized ammonia and nitrite at the beginning and at the end of the experiment. Stress was assessed by determining tissue cortisol levels by radioimmunoassay, in the beginning and at the end of the study. The densities and the transportation times did not cause mortality, but higher density and times of transport influenced water quality indicators. The simulated transportation of P. maculatus showed that all P. maculatus fingerlings survived at the maximum density tested, 12 fish/L for 12 hours.