Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
BMC Immunol ; 25(1): 32, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755528

ABSTRACT

OBJECTIVES: The purpose of this study was to identify and analyze the mitochondrial genes associated with sepsis patients in order to elucidate the underlying mechanism of sepsis immunity and provide new ideas for the clinical treatment of sepsis. METHODS: The hospitalized cases of sepsis (n = 20) and systemic inflammatory response syndrome (SIRS) (n = 12) admitted to the Emergency Intensive Care Unit (EICU) of the Affiliated Hospital of Southwest Medical University from January 2019 to December 2019 were collected consecutively. RNA-seq was used to sequence the RNA (mRNA) of peripheral blood cells. Bioinformatics techniques were used to screen and identify differentially expressed RNAs, with an absolute value of fold change (FC) greater than or equal to 1.2 and a false discovery rate (FDR) less than 0.05. At the same time, mitochondrial genes were obtained from the MitoCarta 3.0 database. Differential genes were then intersected with mitochondrial genes. The resulting crossover genes were subjected to GO, KEGG, and PPI analysis. Subsequently, the GSE65682 dataset was downloaded from the GEO database for survival analysis to assess the prognostic value of core genes, and GSE67652 was downloaded for ROC curve analysis to validate the diagnostic value of core genes. Finally, the localization of core genes was clarified through 10X single-cell sequencing. RESULTS: The crossing of 314 sepsis differential genes and 1136 mitochondrial genes yielded 28 genes. GO and KEGG analysis showed that the crossover genes were mainly involved in the mitochondrion, mitochondrial matrix, and mitochondrial inner membrane. Survival analysis screened four genes that were significantly negatively associated with the prognosis of sepsis, namely FIS1, FKBP8, GLRX5, and GUK1. A comparison of peripheral blood RNA-seq results between the sepsis group and the SIRS group showed that the expression levels of these four genes were significantly decreased in the sepsis group compared to the SIRS group. ROC curve analysis based on GSE67652 indicates these four genes' high sensitivity and specificity for sepsis detection. Additionally, single-cell RNA sequencing found that the core genes were mainly expressed in macrophages, T cells, and B cells. CONCLUSIONS: Mitochondria-related genes (FIS1, FKBP8, GLRX5, GUK1) were underexpressed in the sepsis group, negatively correlated with survival, and mainly distributed in immune cells. This finding may guide studying the immune-related mechanisms of sepsis. This study protocol was reviewed by the Ethics Committee of the Affiliated Hospital of Southwest Medical University (ethics number: KY2018029), the clinical trial registration number is ChiCTR1900021261, and the registration date is February 4, 2019.


Subject(s)
Computational Biology , Sepsis , Sequence Analysis, RNA , Aged , Female , Humans , Male , Middle Aged , Computational Biology/methods , Gene Expression Profiling , Genes, Mitochondrial , Mitochondria/genetics , Prognosis , Sepsis/genetics , Sepsis/diagnosis , Sequence Analysis, RNA/methods
2.
Genes Dis ; 11(4): 101129, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38545125

ABSTRACT

With the rapid development of histological techniques and the widespread application of single-cell sequencing in eukaryotes, researchers desire to explore individual microbial genotypes and functional expression, which deepens our understanding of microorganisms. In this review, the history of the development of microbial detection technologies was revealed and the difficulties in the application of single-cell sequencing in microorganisms were dissected as well. Moreover, the characteristics of the currently emerging microbial single-cell sequencing (Microbe-seq) technology were summarized, and the prospects of the application of Microbe-seq in microorganisms were distilled based on the current development status. Despite its mature development, the Microbe-seq technology was still in the optimization stage. A retrospective study was conducted, aiming to promote the widespread application of single-cell sequencing in microorganisms and facilitate further improvement in the technology.

3.
J Alzheimers Dis ; 97(3): 1033-1050, 2024.
Article in English | MEDLINE | ID: mdl-38217599

ABSTRACT

Alzheimer's disease (AD) involves degeneration of cells in the brain. Due to insidious onset and slow progression, AD is often not diagnosed until it gets progressed to a more severe stage. The diagnosis and treatment of AD has been a challenge. In recent years, high-throughput sequencing technologies have exhibited advantages in exploring the pathogenesis of diseases. However, the types of cells of the central nervous system are complex and traditional bulk sequencing cannot reflect their heterogeneity. Single-cell sequencing technology enables study at the individual cell level and has an irreplaceable advantage in the study of complex diseases. In recent years, this field has expanded rapidly and several types of single-cell sequencing technologies have emerged, including transcriptomics, epigenomics, genomics and proteomics. This review article provides an overview of these single-cell sequencing technologies and their application in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Genomics , Proteomics , Epigenomics , Gene Expression Profiling
4.
Front Oncol ; 13: 1099385, 2023.
Article in English | MEDLINE | ID: mdl-37593098

ABSTRACT

Background: Various immune cell types in the tumor microenvironment (TME) of hepatocellular carcinoma (HCC) have been identified as important parameters associated with prognosis and responsiveness to immunotherapy. However, how various factors influence immune cell infiltration remains incompletely understood. Hence, we investigated the single cell multi-omics landscape of immune infiltration in HCC, particularly key gene and cell subsets that influence immune infiltration, thus potentially linking the immunotherapy response and immune cell infiltration. Methods: We grouped patients with HCC according to immune cell infiltration scores calculated by single sample gene set enrichment analysis (ssGSEA). Differential expression analysis, functional enrichment, clinical trait association, gene mutation analysis, tumor immune dysfunction and exclusion (TIDE) and prognostic model construction were used to investigate the immune infiltration landscape through multi-omics. Stepwise regression was further used to identify key genes regulating immune infiltration. Single cell analysis was performed to explore expression patterns of candidate genes and investigate associated cellular populations. Correlation analysis, ROC analysis, Immunotherapy cohorts were used to explore and confirm the role of key gene and cellular population in predicting immune infiltration state and immunotherapy response. Immunohistochemistry and multiplexed fluorescence staining were used to further validated our results. Results: Patients with HCC were clustered into high and low immune infiltration groups. Mutations of CTNNB1 and TTN were significantly associated with immune infiltration and altered enrichment of cell populations in the TME. TIDE analysis demonstrated that T cell dysfunction and the T cell exclusion score were elevated in the high and low infiltration groups, respectively. Six risk genes and five risk immune cell types were identified and used to construct risk scores and a nomogram model. CXCR6 and LTA, identified by stepwise regression, were highly associated with immune infiltration. Single cell analysis revealed that LTA was expressed primarily in tumor infiltrating T lymphocytes and partial B lymphocytes, whereas CXCR6 was enriched predominantly in T and NK cells. Notably, CXCR6+ CD8 T cells were characterized as tumor enriched cells that may be potential predictors of high immune infiltration and the immune-checkpoint blockade response, and may serve as therapeutic targets. Conclusion: We constructed a comprehensive single cell and multi-omics landscape of immune infiltration in HCC, and delineated key genes and cellular populations regulating immune infiltration and immunotherapy response, thus providing insights into the mechanisms of immune infiltration and future therapeutic control.

5.
Front Immunol ; 14: 911368, 2023.
Article in English | MEDLINE | ID: mdl-36814925

ABSTRACT

Background: Osteosarcoma is the most frequent primary bone tumor with a poor prognosis. Immune infiltration proved to have a strong impact on prognosis. We analyzed single-cell datasets and bulk datasets to confirm the main immune cell populations and their properties in osteosarcoma. Methods: The examples in bulk datasets GSE21257 and GSE32981 from the Gene Expression Omnibus database were divided into two immune infiltration level groups, and 34 differentially expressed genes were spotted. Then, we located these genes among nine major cell clusters and their subclusters identified from 99,668 individual cells in single-cell dataset GSE152048 including 11 osteosarcoma patients. Especially, the markers of all kinds of myeloid cells identified in single-cell dataset GSE152048 were set to gene ontology enrichment. We clustered the osteosarcoma samples in the TARGET-OS from the Therapeutically Applicable Research to Generate Effective Treatments dataset into two groups by complete component 1q positive macrophage markers and compared their survival. Results: Compared with the low-immune infiltrated group, the high-immune infiltrated group showed a better prognosis. Almost all the 34 differentially expressed genes expressed higher or exclusively among myeloid cells. A group of complete component 1q-positive macrophages was identified from the myeloid cells. In the bulk dataset TARGET-OS, these markers and the infiltration of complete component 1q-positive macrophages related to longer survival. Conclusions: Complete component 1q-positive tumor-associated macrophages were the major immune cell population in osteosarcoma, which contributed to a better prognosis.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Tumor-Associated Macrophages , Complement C1q , RNA
6.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-990688

ABSTRACT

The liver is a highly proliferative organ. As the liver injured, the hepatocytes can quickly enter the cell cycle to restore the volume and function of liver. Liver regeneration involves complex processes that depend on the interaction of many different cell types. As limited by the average cell change level in tissues, traditional sequencing methods can only acquire the average genetic information reflecting dominant cell subpopulations, but ignore the secondary cell subpopu-lations, which leads to the loss of cellular heterogeneity information. Single-cell sequencing tech-nology can analyze the biological behavior of single cell, which helps to better understand the distri-bution, interaction and cell heterogeneity of different cells during liver regeneration. The authors review the application of single cell sequencing technology in liver regeneration.

7.
Chinese Journal of Neurology ; (12): 1175-1179, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-958015

ABSTRACT

Atherosclerosis is one of the most common cardiovascular and cerebrovascular diseases, and it is also an important cause of stroke. However, the research on the pathogenesis of atherosclerosis is still incomplete. Single cell technology, as an emerging technology in the study of differences in cell biology, has become a new tool and provides a new way of exploring the etiology of atherosclerosis. This article reviewed the research progress of single cell sequencing technology in atherosclerosis in recent years.

8.
Front Immunol ; 12: 647209, 2021.
Article in English | MEDLINE | ID: mdl-33841428

ABSTRACT

Background: Cholangiocarcinoma was a highly malignant liver cancer with poor prognosis, and immune infiltration status was considered an important factor in response to immunotherapy. In this investigation, we tried to locate immune infiltration related genes of cholangiocarcinoma through combination of bulk-sequencing and single-cell sequencing technology. Methods: Single sample gene set enrichment analysis was used to annotate immune infiltration status in datasets of TCGA CHOL, GSE32225, and GSE26566. Differentially expressed genes between high- and low-infiltrated groups in TCGA dataset were yielded and further compressed in other two datasets through backward stepwise regression in R environment. Single-cell sequencing data of GSE138709 was loaded by Seurat software and was used to examined the expression of infiltration-related gene set. Pathway changes in malignant cell populations were analyzed through scTPA web tool. Results: There were 43 genes differentially expressed between high- and low-immune infiltrated patients, and after further compression, PNOC and LAIR2 were significantly correlated with high immune infiltration status in cholangiocarcinoma. Through analysis of single-cell sequencing data, PNOC was mainly expressed by infiltrated B cells in tumor microenvironment, while LAIR2 was expressed by Treg cells and partial GZMB+ CD8 T cells, which were survival related and increased in tumor tissues. High B cell infiltration levels were related to better overall survival. Also, malignant cell populations demonstrated functionally different roles in tumor progression. Conclusion: PNOC and LAIR2 were biomarkers for immune infiltration evaluation in cholangiocarcinoma. PNOC, expressed by B cells, could predict better survival of patients, while LAIR2 was a potential marker for exhaustive T cell populations, correlating with worse survival of patients.


Subject(s)
B-Lymphocytes/metabolism , Bile Duct Neoplasms/genetics , Biomarkers, Tumor/genetics , Cholangiocarcinoma/genetics , Protein Precursors/genetics , Receptors, Immunologic/genetics , Receptors, Opioid/genetics , T-Lymphocytes/metabolism , Tumor Microenvironment/genetics , B-Lymphocytes/immunology , Bile Duct Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Cholangiocarcinoma/metabolism , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Protein Precursors/metabolism , Receptors, Immunologic/metabolism , Receptors, Opioid/metabolism , Sequence Analysis, DNA/methods , Single-Cell Analysis/methods , Survival Analysis , T-Lymphocytes/immunology , Tumor Microenvironment/immunology
9.
Clin Chim Acta ; 518: 101-109, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33766554

ABSTRACT

Tumor heterogeneity is a key characteristic of malignant tumors and a significant obstacle in cancer treatment and research. Although bulk tissue sequencing has wide coverage and high accuracy, it can only represent the dominant cell signal information of each sample, while masking the unique gene expression of rare cells; therefore it cannot represent genes that are unstable within a subgroup, but unchanged in a majority of cells. With the progress of genomic technology, the emergence of single-cell sequencing (SCS) has effectively solved the above problem. Genetic, transcriptomic and epigenetic sequencing at the single-cell level provides an important basis for us to correctly classify the cell subsets of heterogeneous tumor populations and to reveal the process of complex changes in tumor cells at the molecular level. Single-cell sequencing technology has been applied to the field of cancer, revealing exciting discoveries in the potential mechanisms of tumor driver gene mutation, clonal evolution, invasion and metastasis. It also provides favorable conditions for developing new tumor biomarkers and providing more accurate and individualized targeted tumor therapy. Herein, we review the steps and methods of single-cell sequencing and highlight the application of SCS in tumor diagnosis and clinical treatment.


Subject(s)
Neoplasms , Single-Cell Analysis , Biomarkers, Tumor , Genomics , High-Throughput Nucleotide Sequencing , Humans , Neoplasms/genetics , Sequence Analysis , Technology
10.
Front Oncol ; 11: 716042, 2021.
Article in English | MEDLINE | ID: mdl-35047383

ABSTRACT

Lung cancer is the leading cause of cancer-related death worldwide. Cancer immunotherapy has shown great success in treating advanced-stage lung cancer but has yet been used to treat early-stage lung cancer, mostly due to lack of understanding of the tumor immune microenvironment in early-stage lung cancer. The immune system could both constrain and promote tumorigenesis in a process termed immune editing that can be divided into three phases, namely, elimination, equilibrium, and escape. Current understanding of the immune response toward tumor is mainly on the "escape" phase when the tumor is clinically detectable. The detailed mechanism by which tumor progenitor lesions was modulated by the immune system during early stage of lung cancer development remains elusive. The advent of single-cell sequencing technology enables tumor immunologists to address those fundamental questions. In this perspective, we will summarize our current understanding and big gaps about the immune response during early lung tumorigenesis. We will then present the state of the art of single-cell technology and then envision how single-cell technology could be used to address those questions. Advances in the understanding of the immune response and its dynamics during malignant transformation of pre-malignant lesion will shed light on how malignant cells interact with the immune system and evolve under immune selection. Such knowledge could then contribute to the development of precision and early intervention strategies toward lung malignancy.

11.
Organ Transplantation ; (6): 169-2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-873726

ABSTRACT

Renal transplantation is the optimal approach to improve the quality of life and restore normal life for patients with end-stage renal diseases.With the development of medical techniques and immunosuppressants, the shortterm survival of renal graft has been significantly prolonged, whereas the long-term survival remains to be urgently solved.Renal ischemia-reperfusion injury (IRI), acute rejection, chronic renal allograft dysfunction, renal fibrosis and other factors are still the major problems affecting the survival of renal graft.Relevant researches have always been hot spots in the field of renal transplantation.Meantime, 2020 is an extraordinary year.The novel coronavirus pneumonia (COVID-19) pandemic severely affects the development of all walks of life.Researches related to renal transplantation have also sprung up.In this article, the frontier hotspots of clinical and basic studies related to renal transplantation and the COVID-19 related researches in the field of renal transplantation in China were reviewed, aiming to provide novel therapeutic ideas and strategies.

12.
Trends Biotechnol ; 38(9): 1007-1022, 2020 09.
Article in English | MEDLINE | ID: mdl-32818441

ABSTRACT

Fast-developing single-cell multimodal omics (scMulti-omics) technologies enable the measurement of multiple modalities, such as DNA methylation, chromatin accessibility, RNA expression, protein abundance, gene perturbation, and spatial information, from the same cell. scMulti-omics can comprehensively explore and identify cell characteristics, while also presenting challenges to the development of computational methods and tools for integrative analyses. Here, we review these integrative methods and summarize the existing tools for studying a variety of scMulti-omics data. The various functionalities and practical challenges in using the available tools in the public domain are explored through several case studies. Finally, we identify remaining challenges and future trends in scMulti-omics modeling and analyses.


Subject(s)
Computational Biology , Genomics/trends , Proteomics/trends , Single-Cell Analysis/trends , Algorithms , DNA Methylation/genetics , Humans
13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-861578

ABSTRACT

Currently, malignant tumors are a major public health problem and pose a serious threat to human health. Because of the diversity and complexity and the high mortality rates, they have been a popular but complicated research topic for several years. Heterogeneity is one of the main characteristics of malignant tumors, and thus, this characteristic may affect many other aspects, such as tumorigenesis, development, metastasis, and therapeutic effects. With the completion of the Human Genome Project and the continuous advancement in sequencing technology, single-cell sequencing technology has been applied in many medical research fields; in particular, it is useful for analyzing tumor cell subpopulations, cell heterogeneity, tumor occurrence, evolution, and drug resistance. Therefore, this technology has provided us with a new tool for clinical diagnosis and treatment of malignant tumors and for estimating the prognosis at an early stage. In this article, we aimed to review the advances in single-cell sequencing technology and its application in malignant tumor research.

SELECTION OF CITATIONS
SEARCH DETAIL