Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.095
Filter
1.
J Anim Sci Technol ; 66(3): 567-576, 2024 May.
Article in English | MEDLINE | ID: mdl-38975580

ABSTRACT

Subclinical ketosis (SCK) is a prevalent metabolic disorder that occurs during the transition to lactation period. It is defined as a high blood concentration of ketone bodies (beta-hydroxybutyric acid f ≥ 1.2 mmol/L) within the first few weeks of lactation, and often presents without clinical signs. SCK is mainly caused by negative energy balance (NEB). The objective of this study is to identify single nucleotide polymorphisms (SNPs) associated with SCK using genome-wide association studies (GWAS), and to predict the biological functions of proximal genes using gene-set enrichment analysis (GSEA). Blood samples were collected from 112 Holstein cows between 5 and 18 days postpartum to determine the incidence of SCK. Genomic DNA extracted from both SCK and healthy cows was examined using the Illumina Bovine SNP50K BeadChip for genotyping. GWAS revealed 194 putative SNPs and 163 genes associated with those SNPs. Additionally, GSEA showed that the genes retrieved by Database for Annotation, Visualization, and Integrated Discovery (DAVID) belonged to calcium signaling, starch and sucrose, immune network, and metabolic pathways. Furthermore, the proximal genes were found to be related to germ cell and early embryo development. In summary, this study proposes several feasible SNPs and genes associated with SCK through GWAS and GSEA. These candidates can be utilized in selective breeding programs to reduce the genetic risk for SCK and subfertility in high-performance dairy cows.

2.
Interdiscip Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954231

ABSTRACT

To elucidate the genetic basis of complex diseases, it is crucial to discover the single-nucleotide polymorphisms (SNPs) contributing to disease susceptibility. This is particularly challenging for high-order SNP epistatic interactions (HEIs), which exhibit small individual effects but potentially large joint effects. These interactions are difficult to detect due to the vast search space, encompassing billions of possible combinations, and the computational complexity of evaluating them. This study proposes a novel explicit-encoding-based multitasking harmony search algorithm (MTHS-EE-DHEI) specifically designed to address this challenge. The algorithm operates in three stages. First, a harmony search algorithm is employed, utilizing four lightweight evaluation functions, such as Bayesian network and entropy, to efficiently explore potential SNP combinations related to disease status. Second, a G-test statistical method is applied to filter out insignificant SNP combinations. Finally, two machine learning-based methods, multifactor dimensionality reduction (MDR) as well as random forest (RF), are employed to validate the classification performance of the remaining significant SNP combinations. This research aims to demonstrate the effectiveness of MTHS-EE-DHEI in identifying HEIs compared to existing methods, potentially providing valuable insights into the genetic architecture of complex diseases. The performance of MTHS-EE-DHEI was evaluated on twenty simulated disease datasets and three real-world datasets encompassing age-related macular degeneration (AMD), rheumatoid arthritis (RA), and breast cancer (BC). The results demonstrably indicate that MTHS-EE-DHEI outperforms four state-of-the-art algorithms in terms of both detection power and computational efficiency. The source code is available at https://github.com/shouhengtuo/MTHS-EE-DHEI.git .

3.
Am J Bot ; : e16357, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898619

ABSTRACT

PREMISE: Wild species are strategic sources of valuable traits to be introduced into crops through hybridization. For peanut, the 33 currently described wild species in the section Arachis are particularly important because of their sexual compatibility with the domesticated species, Arachis hypogaea. Although numerous wild accessions are carefully preserved in seed banks, their morphological similarities pose challenges to routine classification. METHODS: Using a high-density array, we genotyped 272 accessions encompassing all diploid species in section Arachis. Detailed relationships between accessions and species were revealed through phylogenetic analyses and interpreted using the expertise of germplasm collectors and curators. RESULTS: Two main groups were identified: one with A genome species and the other with B, D, F, G, and K genomes. Species groupings generally showed clear boundaries. Structure within groups was informative, for instance, revealing the history of the proto-domesticate A. stenosperma. However, some groupings suggested multiple sibling species. Others were polyphyletic, indicating the need for taxonomic revision. Annual species were better defined than perennial ones, revealing limitations in applying classical and phylogenetic species concepts to the genus. We suggest new species assignments for several accessions. CONCLUSIONS: Curated by germplasm collectors and curators, this analysis of species relationships lays the foundation for future species descriptions, classification of unknown accessions, and germplasm use for peanut improvement. It supports the conservation and curation of current germplasm, both critical tasks considering the threats to the genus posed by habitat loss and the current restrictions on new collections and germplasm transfer.

4.
Plant Direct ; 8(6): e593, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38887667

ABSTRACT

Rice genetic diversity is regulated by multiple genes and is largely dependent on various environmental factors. Uncovering the genetic variations associated with the diversity in rice populations is the key to breed stable and high yielding rice varieties. We performed genome wide association studies (GWASs) on seven rice yielding traits (grain length, grain width, grain weight, panicle length, leaf length, leaf width, and leaf angle) based on a population of 183 rice landraces of Bangladesh. Our GWASs reveal various chromosomal regions and candidate genes that are associated with different traits in Bangladeshi rice varieties. Noteworthy was the recurrent implication of chromosome 10 in all three grain-shape-related traits (grain length, grain width, and grain weight), indicating its pivotal role in shaping rice grain morphology. Our study also underscores the involvement of transposon gene families across these three traits. For leaf related traits, chromosome 10 was found to harbor regions that are significantly associated with leaf length and leaf width. The results of these association studies support previous findings as well as provide additional insights into the genetic diversity of rice. This is the first known GWAS study on various yield-related traits in the varieties of Oryza sativa available in Bangladesh-the fourth largest rice-producing country. We believe this study will accelerate rice genetics research and breeding stable high-yielding rice in Bangladesh.

5.
Cancer Drug Resist ; 7: 21, 2024.
Article in English | MEDLINE | ID: mdl-38835350

ABSTRACT

Aim: Diffuse large B-cell lymphoma (DLBCL) is the most common B-cell non-Hodgkin lymphoma (NHL). Despite the availability of clinical and molecular algorithms applied for the prediction of prognosis, in up to 30%-40% of patients, intrinsic or acquired drug resistance occurs. Constitutional genetics may help to predict R-CHOP resistance. This study aimed to validate previously identified single nucleotide polymorphisms (SNPs) in the literature as potential predictors of R-CHOP resistance in DLBCL patients, SNPs. Methods: Twenty SNPs, involved in R-CHOP pharmacokinetics/pharmacodynamics or other pathobiological processes, were investigated in 185 stage I-IV DLBCL patients included in a multi-institution pharmacogenetic study to validate their previously identified correlations with resistance to R-CHOP. Results: Correlations between rs2010963 (VEGFA gene) and sex (P = 0.046), and rs1625895 (TP53 gene) and stage (P = 0.003) were shown. After multivariate analyses, a concordant effect (i.e., increased risk of disease progression and death) was observed for rs1883112 (NCF4 gene) and rs1800871 (IL10 gene). When patients were grouped according to the revised International Prognostic Index (R-IPI), both these SNPs further discriminated progression-free survival (PFS) and overall survival (OS) of the R-IPI-1-2 subgroup. Overall, patients harboring the rare allele showed shorter PFS and OS compared with wild-type patients. Conclusions: Two out of the 20 study SNPs were validated. Thus, these results support the role of previously identified rs1883112 and rs1800871 in predicting DLBCL resistance to R-CHOP and highlight their ability to further discriminate the prognosis of R-IPI-1-2 patients. These data point to the need to also focus on host genetics for a more comprehensive assessment of DLBCL patient outcomes in future prospective trials.

6.
Hum Genomics ; 18(1): 70, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909264

ABSTRACT

INTRODUCTION: We previously identified a genetic subtype (C4) of type 2 diabetes (T2D), benefitting from intensive glycemia treatment in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Here, we characterized the population of patients that met the C4 criteria in the UKBiobank cohort. RESEARCH DESIGN AND METHODS: Using our polygenic score (PS), we identified C4 individuals in the UKBiobank and tested C4 status with risk of developing T2D, cardiovascular disease (CVD) outcomes, and differences in T2D medications. RESULTS: C4 individuals were less likely to develop T2D, were slightly older at T2D diagnosis, had lower HbA1c values, and were less likely to be prescribed T2D medications (P < .05). Genetic variants in MAS1 and IGF2R, major components of the C4 PS, were associated with fewer overall T2D prescriptions. CONCLUSION: We have confirmed C4 individuals are a lower risk subpopulation of patients with T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Multifactorial Inheritance , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Diabetes Mellitus, Type 2/epidemiology , Male , Female , Middle Aged , United Kingdom/epidemiology , Multifactorial Inheritance/genetics , Aged , Phenotype , Cardiovascular Diseases/genetics , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/epidemiology , Genetic Predisposition to Disease , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/genetics , Biological Specimen Banks , Polymorphism, Single Nucleotide/genetics
7.
Dig Dis Sci ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940971

ABSTRACT

BACKGROUND: Single nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes could alter miRNA expression levels or processing and, thus, may contribute to colorectal cancer (CRC) development. Therefore, this study aimed to examine whether the MIR181A1 genomic sequence possesses SNPs that can affect the expression of hsa-miR-181a-5p and, subsequently, impact its targets and associate with CRC risk. METHODS: The NCBI dbSNP database was searched for possible SNPs associated with MIR181A1. One SNP with a minor allele frequency > 5%, rs12039395 G > T was identified. In silico analyses determined the effect of the SNP on the secondary structure of the miRNA and predicted the hsa-miR-181a-5p target genes. The SNP was genotyped using allelic discrimination assay, the relative hsa-miR-181a-5p expression level was determined using quantitative real-time PCR, and immunohistochemical staining was used to detect target genes in 192 paraffin-embedded specimens collected from 160 CRC patients and 32 healthy subjects. RESULTS: The rs6505162 SNP conferred protection against CRC, and the G-allele presence provides may provide accessibility for the transcriptional machinery. Hsa-miR-181a-5p was significantly over-expressed in the CRC group compared to controls and in samples carrying the G-allele compared to those with T-allele. PTEN, identified as the only hsa-miR-181a-5p target implicated in CRC, was significantly diminished in the CRC group compared to controls and showed an inverse relationship with hsa-miR-181a-5p expression level as well as negatively associated with the G-allele presence in CRC. CONCLUSION: This study highlights that rs12039395 G > T may protect against CRC by influencing the expression of hsa-mir-181a-5p and its target gene, PTEN.

8.
Environ Int ; 190: 108845, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38945087

ABSTRACT

INTRODUCTION: Phthalates, or dieters of phthalic acid, are a ubiquitous type of plasticizer used in a variety of common consumer and industrial products. They act as endocrine disruptors and are associated with increased risk for several diseases. Once in the body, phthalates are metabolized through partially known mechanisms, involving phase I and phase II enzymes. OBJECTIVE: In this study we aimed to identify common single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) associated with the metabolism of phthalate compounds in children through genome-wide association studies (GWAS). METHODS: The study used data from 1,044 children with European ancestry from the Human Early Life Exposome (HELIX) cohort. Ten phthalate metabolites were assessed in a two-void pooled urine collected at the mean age of 8 years. Six ratios between secondary and primary phthalate metabolites were calculated. Genome-wide genotyping was done with the Infinium Global Screening Array (GSA) and imputation with the Haplotype Reference Consortium (HRC) panel. PennCNV was used to estimate copy number variants (CNVs) and CNVRanger to identify consensus regions. GWAS of SNPs and CNVs were conducted using PLINK and SNPassoc, respectively. Subsequently, functional annotation of suggestive SNPs (p-value < 1E-05) was done with the FUMA web-tool. RESULTS: We identified four genome-wide significant (p-value < 5E-08) loci at chromosome (chr) 3 (FECHP1 for oxo-MiNP_oh-MiNP ratio), chr6 (SLC17A1 for MECPP_MEHHP ratio), chr9 (RAPGEF1 for MBzP), and chr10 (CYP2C9 for MECPP_MEHHP ratio). Moreover, 115 additional loci were found at suggestive significance (p-value < 1E-05). Two CNVs located at chr11 (MRGPRX1 for oh-MiNP and SLC35F2 for MEP) were also identified. Functional annotation pointed to genes involved in phase I and phase II detoxification, molecular transfer across membranes, and renal excretion. CONCLUSION: Through genome-wide screenings we identified known and novel loci implicated in phthalate metabolism in children. Genes annotated to these loci participate in detoxification, transmembrane transfer, and renal excretion.

9.
Methods Mol Biol ; 2825: 151-171, 2024.
Article in English | MEDLINE | ID: mdl-38913308

ABSTRACT

Chromosomal microarray, including single-nucleotide polymorphism (SNP) array and array comparative genomic hybridization (aCGH), enables the detection of DNA copy-number loss and/or gain associated with unbalanced chromosomal aberrations. In addition, SNP array and aCGH with SNP component also detect copy-neutral loss of heterozygosity (CN-LOH). Here we describe the chromosomal microarray procedure from the sample preparation using extracted DNA to the scanning of the array chip.


Subject(s)
Comparative Genomic Hybridization , Neoplasms , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Humans , Comparative Genomic Hybridization/methods , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis/methods , Loss of Heterozygosity , DNA Copy Number Variations , Chromosome Aberrations
10.
Plant Physiol Biochem ; 211: 108647, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703497

ABSTRACT

Sweetpotato, Ipomoea batatas (L.) Lam., is an important worldwide crop used as feed, food, and fuel. However, its polyploidy, high heterozygosity and self-incompatibility makes it difficult to study its genetics and genomics. Longest vine length (LVL), yield per plant (YPP), dry matter content (DMC), starch content (SC), soluble sugar content (SSC), and carotenoid content (CC) are some of the major agronomic traits being used to evaluate sweetpotato. However limited research has actually examined how these traits are inherited. Therefore, after selecting 212 F1 from a Xin24 × Yushu10 crossing as the mapping population, this study applied specific-locus amplified fragment sequencing (SLAF-seq), at an average sequencing depth of 26.73 × (parents) and 52.25 × (progeny), to detect single nucleotide polymorphisms (SNPs). This approach generated an integrated genetic map of length 2441.56 cM and a mean distance of 0.51 cM between adjacent markers, encompassing 15 linkage groups (LGs). Based on the linkage map, 26 quantitative trait loci (QTLs), comprising six QTLs for LVL, six QTLs for YPP, ten QTLs for DMC, one QTL for SC, one QTL for SSC, and two QTLs for CC, were identified. Each of these QTLs explained 6.3-10% of the phenotypic variation. It is expected that the findings will be of benefit for marker-assisted breeding and gene cloning of sweetpotato.


Subject(s)
Chromosome Mapping , Ipomoea batatas , Quantitative Trait Loci , Ipomoea batatas/genetics , Ipomoea batatas/metabolism , Quantitative Trait Loci/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Linkage , Phenotype
12.
J Gastrointest Oncol ; 15(2): 577-584, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38756645

ABSTRACT

Background: Imatinib mesylate (IM) is a first-line treatment option for the majority of patients diagnosed with gastrointestinal stromal tumors (GISTs). Although the clinical benefit is high, interindividual response is variable. This study thus aimed to assess how genetic polymorphisms can affect the blood levels of IM and treatment outcomes in patients with GIST. Methods: A total of 31 single-nucleotide polymorphisms (SNPs) in selected cytochrome P450 (P450), ATP-binding cassette transporter (ABC), solute carrier family (SLC), interleukin-4 receptor (IL4R), and vascular endothelial growth factor (VEGF) genes were genotyped using an SNP mass array platform. A total of 192 consecutive patients with GIST who received 400 mg of IM daily were enrolled into the study, with 1,485 blood samples being analyzed. According to genotypes, IM trough concentrations were tested and compared. Progression-free survival (PFS) and overall survival (OS) were also assessed. Results: With a mean follow-up of 75.99 months, trough concentrations of imatinib were examined at average time points of 7.73 for each patient. Polymorphism in ABCB1 rs1045642 was found to be associated with steady-state IM trough plasma levels (P=0.008). Patients with the C genotype (CT + CC) of rs1045642 exhibited higher IM trough concentrations (1,271.09±306.69 ng/mL) compared to those with the TT genotype (1,106.60±206.05 ng/mL). No statistically significant differences in IM plasma concentration were observed for the other SNPs tested. None of the tested SNPs displayed a significant association with patients' survival in this study. Conclusions: This is the largest cohort study evaluating the associations of SNP and imatinib blood trough levels. The ABCB1 rs1045642 genetic polymorphism may exert an effect on the pharmacokinetics of imatinib. The presence of the C allele in ABCB1 rs1045642 is predictive of a higher plasma concentration of IM.

13.
Article in English | MEDLINE | ID: mdl-38821503

ABSTRACT

Zrt/Irt-like protein 8 (ZIP8), which is a zinc transporter, plays a pivotal role as a manganese transporter. Recent studies have shown that a ZIP8 SNP (rs13107325 C→T, A391T) is associated with multiple diseases, likely by causing systemic Mn deficiency. However, the underlying molecular mechanisms remain unclear. We attempted to address this issue in cell-based experiments using Madin-Darby canine kidney cells stably expressing ZIP8 WT or the A391T SNP mutant under the control of the Tet-regulatable promoter. We showed that the A391T mutant lost the property of Mn-responsive accumulation on the cell surface, which was observed in WT ZIP8. We also showed that the loss of Mn-responsive accumulation of A391T mutant was associated with its reduced Mn uptake, compared to WT ZIP8, in the Mn uptake assay using the radioisotope 54Mn. Our results potentially explain how the ZIP8 A391T substitution is associated with disease pathogenesis caused by Mn deficiency.

15.
J Zhejiang Univ Sci B ; 25(4): 324-340, 2024 Apr 15.
Article in English, Chinese | MEDLINE | ID: mdl-38584094

ABSTRACT

The worldwide chicken gene pool encompasses a remarkable, but shrinking, number of divergently selected breeds of diverse origin. This study was a large-scale genome-wide analysis of the landscape of the complex molecular architecture, genetic variability, and detailed structure among 49 populations. These populations represent a significant sample of the world's chicken breeds from Europe (Russia, Czech Republic, France, Spain, UK, etc.), Asia (China), North America (USA), and Oceania (Australia). Based on the results of breed genotyping using the Illumina 60K single nucleotide polymorphism (SNP) chip, a bioinformatic analysis was carried out. This included the calculation of heterozygosity/homozygosity statistics, inbreeding coefficients, and effective population size. It also included assessment of linkage disequilibrium and construction of phylogenetic trees. Using multidimensional scaling, principal component analysis, and ADMIXTURE-assisted global ancestry analysis, we explored the genetic structure of populations and subpopulations in each breed. An overall 49-population phylogeny analysis was also performed, and a refined evolutionary model of chicken breed formation was proposed, which included egg, meat, dual-purpose types, and ambiguous breeds. Such a large-scale survey of genetic resources in poultry farming using modern genomic methods is of great interest both from the viewpoint of a general understanding of the genetics of the domestic chicken and for the further development of genomic technologies and approaches in poultry breeding. In general, whole genome SNP genotyping of promising chicken breeds from the worldwide gene pool will promote the further development of modern genomic science as applied to poultry.


Subject(s)
Chickens , Genome , Animals , Phylogeny , Chickens/genetics , Genomics/methods , Demography , Polymorphism, Single Nucleotide , Genetic Variation
16.
Biochem Biophys Rep ; 38: 101703, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38596408

ABSTRACT

The urea transporter UT-B1, encoded by the SLC14A1 gene, has been hypothesized to be a significant protein whose deficiency and dysfunction contribute to the pathogenesis of bladder cancer and many other diseases. Several studies reported the association of genetic alterations in the SLC14A1 (UT-B1) gene with bladder carcinogenesis, suggesting a need for thorough characterization of the UT-B1 protein's coding and non-coding variants. This study used various computational techniques to investigate the commonly occurring germ-line missense and non-coding SNPs (ncSNPs) of the SLC14A1 gene (UT-B1) for their structural, functional, and molecular implications for disease susceptibility and dysfunctionality. SLC14A1 missense variants, primarily identified from the ENSEMBL genome browser, were screened through twelve functionality prediction tools leading to two variants D280Y (predicted detrimental by maximum tools) and D280N (high global MAF) for rs1058396. Subsequently, the ConSurf and NetSurf tools revealed the D280 residue to be in a variable site and exposed on the protein surface. According to I-Mutant2.0 and MUpro, both variants are predicted to cause a significant effect on protein stability. Analysis of molecular docking anticipated these two variants to decrease the binding affinity of UT-B1 protein for the examined ligands to a significant extent. Molecular dynamics also disclosed the possible destabilization of the UT-B1 protein due to single nucleotide polymorphism compared to wild-type protein which may result in impaired protein function. Furthermore, several non-coding SNPs were estimated to affect transcription factor binding and regulation of SLC14A1 gene expression. Additionally, two ncSNPs were found to affect miRNA-based post-transcriptional regulation by creating new seed regions for miRNA binding. This comprehensive in-silico study of SLC14A1 gene variants may serve as a springboard for future large-scale investigations examining SLC14A1 polymorphisms.

17.
Biomed Environ Sci ; 37(2): 146-156, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38582977

ABSTRACT

Objective: This study aimed to explore the association of single nucleotide polymorphisms (SNP) in the matrix metalloproteinase 2 (MMP-2) signaling pathway and the risk of vascular senescence (VS). Methods: In this cross-sectional study, between May and November 2022, peripheral venous blood of 151 VS patients (case group) and 233 volunteers (control group) were collected. Fourteen SNPs were identified in five genes encoding the components of the MMP-2 signaling pathway, assessed through carotid-femoral pulse wave velocity (cfPWV), and analyzed using multivariate logistic regression. The multigene influence on the risk of VS was assessed using multifactor dimensionality reduction (MDR) and generalized multifactor dimensionality regression (GMDR) modeling. Results: Within the multivariate logistic regression models, four SNPs were screened to have significant associations with VS: chemokine (C-C motif) ligand 2 (CCL2) rs4586, MMP2 rs14070, MMP2 rs7201, and MMP2 rs1053605. Carriers of the T/C genotype of MMP2 rs14070 had a 2.17-fold increased risk of developing VS compared with those of the C/C genotype, and those of the T/T genotype had a 19.375-fold increased risk. CCL2 rs4586 and MMP-2 rs14070 exhibited the most significant interactions. Conclusion: CCL2 rs4586, MMP-2 rs14070, MMP-2 rs7201, and MMP-2 rs1053605 polymorphisms were significantly associated with the risk of VS.


Subject(s)
Matrix Metalloproteinase 2 , Polymorphism, Single Nucleotide , Humans , Case-Control Studies , Cross-Sectional Studies , Genetic Predisposition to Disease , Genotype , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pulse Wave Analysis , Signal Transduction
18.
Front Neurosci ; 18: 1293400, 2024.
Article in English | MEDLINE | ID: mdl-38650623

ABSTRACT

Background: Neural tube defects (NTDs) is the most common birth defect of the central nervous system (CNS) which causes the death of almost 88,000 people every year around the world. Much efforts have been made to investigate the reasons that contribute to NTD and explore new ways to for prevention. We trawl the past decade (2013-2022) published records in order to get a worldwide view about NTDs research field. Methods: 7,437 records about NTDs were retrieved from the Web of Science (WOS) database. Tools such as shell scripts, VOSviewer, SCImago Graphica, CiteSpace and PubTator were used for data analysis and visualization. Results: Over the past decade, the number of publications has maintained an upward trend, except for 2022. The United States is the country with the highest number of publications and also with the closest collaboration with other countries. Baylor College of Medicine has the closest collaboration with other institutions worldwide and also was the most prolific institution. In the field of NTDs, research focuses on molecular mechanisms such as genes and signaling pathways related to folate metabolism, neurogenic diseases caused by neural tube closure disorders such as myelomeningocele and spina bifida, and prevention and treatment such as folate supplementation and surgical procedures. Most NTDs related genes are related to development, cell projection parts, and molecular binding. These genes are mainly concentrated in cancer, Wnt, MAPK, PI3K-Akt and other signaling pathways. The distribution of NTDs related SNPs on chromosomes 1, 3, 5, 11, 14, and 17 are relatively concentrated, which may be associated with high-risk of NTDs. Conclusion: Bibliometric analysis of the literature on NTDs field provided the current status, hotspots and future directions to some extant. Further bioinformatics analysis expanded our understanding of NTDs-related genes function and revealed some important SNP clusters and loci. This study provided some guidance for further studies. More extensive cooperation and further research are needed to overcome the ongoing challenge in pathogenesis, prevention and treatment of NTDs.

19.
Plant Biol (Stuttg) ; 26(4): 508-520, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568928

ABSTRACT

The analysis of genetic variation underlying local adaptation in natural populations, together with the response to different external stimuli, is currently a hot topic in forest sciences, with the aim of identifying genetic markers controlling key phenotypic traits of interest for their inclusion in restoration and breeding programs. In Europe, one of the main tree species is Norway spruce (Picea abies (L.) H.Karst.). Using the MassARRAY® platform, 568 trees from North Rhine-Westphalia (Germany) were genotyped with 94 single nucleotide polymorphisms (SNPs) related to circadian and growth rhythms, and to stress response. The association analysis of the selected markers with health status and elevation was performed using three different methods, and those identified by at least two of these were considered as high confidence associated SNPs. While just five markers showed a weak association with health condition, 32 SNPs were correlated with elevation, six of which were considered as high confidence associated SNPs, as indicated by at least two different association methods. Among these genes, thioredoxin and pseudo response regulator 1 (PRR1) are involved in redox homeostasis and ROS detoxification, APETALA2-like 3 (AP2L3), a transcription factor, is involved in seasonal apical growth, and a RPS2-like is a disease resistance gene. The function of some of these genes in controlling light-dependent reactions and metabolic processes suggests signatures of adaptation to local photoperiod and the synchronization of the circadian rhythm. This work provides new insights into the genetic basis of local adaptation over a shallow elevation gradient in Norway spruce.


Subject(s)
Circadian Rhythm , Homeostasis , Oxidation-Reduction , Picea , Polymorphism, Single Nucleotide , Picea/genetics , Picea/physiology , Circadian Rhythm/genetics , Polymorphism, Single Nucleotide/genetics , Homeostasis/genetics , Genotype , Genes, Plant/genetics , Germany , Plant Proteins/genetics , Plant Proteins/metabolism , Genetic Markers
20.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38612837

ABSTRACT

Hashimoto's thyroiditis (HT) and Graves' disease (GD) are common autoimmune endocrine disorders in children. Studies indicate that apart from environmental factors, genetic background significantly contributes to the development of these diseases. This study aimed to assess the prevalence of selected single-nucleotide polymorphisms (SNPs) of Il7R, CD226, CAPSL, and CLEC16A genes in children with autoimmune thyroid diseases. We analyzed SNPs at the locus rs3194051, rs6897932 of IL7R, rs763361 of CD226, rs1010601 of CAPSL, and rs725613 of CLEC16A gene in 56 HT patients, 124 GD patients, and 156 healthy children. We observed significant differences in alleles IL7R (rs6897932) between HT males and the control group (C > T, p = 0.028) and between all GD patients and healthy children (C > T, p = 0.035) as well as GD females and controls (C > T, p = 0.018). Moreover, the C/T genotype was less frequent in GD patients at rs6897932 locus and in HT males at rs1010601 locus. The presence of the T allele in the IL7R (rs6897932) locus appears to have a protective effect against HT in males and GD in all children. Similarly, the presence of the T allele in the CAPSL locus (rs1010601) seems to reduce the risk of HT development in all patients.


Subject(s)
Autoimmune Diseases , Graves Disease , Hashimoto Disease , Child , Female , Male , Humans , Adolescent , Prevalence , Alleles , Hashimoto Disease/genetics , Polymorphism, Single Nucleotide , Graves Disease/genetics , Receptors, Interleukin-7/genetics , Monosaccharide Transport Proteins , Lectins, C-Type/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...