Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 15: 1369506, 2024.
Article in English | MEDLINE | ID: mdl-38659989

ABSTRACT

Single-cell isolation stands as a critical step in single-cell studies, and single-cell ejection technology based on laser induced forward transfer technology (LIFT) is considered one of the most promising methods in this regard for its ability of visible isolating single cell from complex samples. In this study, we improve the LIFT technology and introduce optical vortex laser-induced forward transfer (OV-LIFT) and flat-top laser-induced forward transfer (FT-LIFT) by utilizing spatial light modulator (SLM), aiming to enhance the precision of single-cell sorting and the cell's viability after ejection. Experimental results demonstrate that applying vortex and flat-top beams during the sorting and collection process enables precise retrieval of single cells within diameter ranges of 50 µm and 100 µm, respectively. The recovery rates of Saccharomyces cerevisiae and Escherichia coli DH5α single cell ejected by vortex beam are 89 and 78%, by flat-top beam are 85 and 57%. When employing Gaussian beam sorting, the receiving range extends to 400 µm, with cultivation success rates of S. cerevisiae and E. coli DH5α single cell are 48 and 19%, respectively. This marks the first application of different mode beams in the ejection and cultivation of single cells, providing a novel and effective approach for the precise isolation and improving the viability of single cells.

2.
Front Bioeng Biotechnol ; 11: 1121870, 2023.
Article in English | MEDLINE | ID: mdl-37152651

ABSTRACT

Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level.

3.
Biotechnol J ; 18(1): e2200135, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36412930

ABSTRACT

This study aimed to demonstrate the feasibility of generating tumor cell vaccine models by single-cell surgery in a microfluidic device that integrates one-to-one electrofusion, shear flow reseparation, and on-device culture. The device was microfabricated from polydimethylsiloxane (PDMS) and consisted of microorifices (aperture size: ∼3 µm) for one-to-one fusion, and microcages for on-device culture. Using the device, we could achieve one-to-one electrofusion of leukemic plasmacytoid dendritic cells (DC-like cells) and Jurkat cells with a fusion efficiency of ∼ 80%. Fusion via the narrow microorifices allowed DC-like cells to acquire cytoplasmic contents of the Jurkat cells while preventing nuclei mixing. After fusion, the DC-like cells were selectively reseparated from the Jurkat cells by shear flow application to generate tumor nuclei-free antigen-recipient DC-like (tarDC-like) cells. When cultured as single cells on the device, these cells could survive under gentle medium perfusion with a median survival time of 11.5 h, although a few cells could survive longer than 36 h. Overall, this study demonstrates single-cell surgery in a microfluidic device for potential generation of dendritic cell vaccines which are uncontaminated with tumor nucleic materials. We believe that this study will inspire the generation of safer tumor cell vaccines for cancer immunotherapy.


Subject(s)
Neoplasms , Humans , Hybrid Cells , Cell Fusion , Dendritic Cells/pathology , Antigens, Neoplasm , Cytoplasm , Lab-On-A-Chip Devices
4.
Microorganisms ; 10(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36363808

ABSTRACT

Biosurfactants are a group of surface-active compounds that can be produced by diverse microorganisms. They have been widely used in various industrial fields. Reducing production costs, improving efficiency, and collecting more diverse producing strains have become major challenges in the biosurfactant industry. These challenges could be overcome by screening for more diverse and efficient biosurfactant-producing strains. The conventional methods for the isolation and functional characterization of microorganisms are laborious and biased toward fast-growing or strongly competitive microorganisms. Here, we established a high-throughput approach of single-cell-based cultivation and functional characterization of biosurfactant-producing bacteria (SCCBB). This approach combines single-cell cultivation with the detection of optical distortions. Using this approach, we isolated 431 strains with biosurfactant production potential from petroleum-contaminated soil and oilfield-produced water. The surfactant production capabilities of the strains were subsequently validated using surface tension measurements, TLC, and CMC measurements. To investigate the industrial production potential, we optimized the production conditions of a representative glycolipids-producing strain, Pseudomonas sp. L01, using response surface methodology (RSM). Optimal conditions yielded a crude biosurfactant yield of 8.43 g/L in a flask. Our work provides a high-throughput approach to the isolation and screening of biosurfactant-producing bacteria, as well as other functional bacteria in a wide range of fields.

5.
Curr Protoc ; 2(7): e479, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35790092

ABSTRACT

Primary cells are an essential tool for in vitro studies and are obtained directly from living tissues or organs. They closely mimic the physiological state and maintain in vivo functions for short periods of time under optimal conditions. Isolation and culture of salivary gland (SG) cells are useful to decipher the various mechanisms involved in salivary gland dysfunction. However, unlike some other primary cell cultures, SG cell cultures from patient-derived tissues present several challenges. They are difficult to obtain, culture, expand, and characterize due to their sensitive heterogenous cell population and limited expansion potential. In addition, the majority of saliva-secreting acinar cells fail to maintain a differentiated state ex vivo for long periods, and eventually succumb to an acinar-to-ductal metaplasia, losing their secretory phenotype and functions. Herein, we describe two detailed protocols for primary SG cell isolation, culture, and expansion from human (or mouse) salivary tissues using serum-free culture media. We also describe the growth kinetics of these primary cells along with their immunocytochemical characterization. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of SG single-cell culture from freshly obtained human or mouse SG tissues. Basic Protocol 2: Preparation of SG explant culture from freshly obtained human or mouse SG tissues.


Subject(s)
Cell Culture Techniques , Salivary Glands , Acinar Cells , Animals , Cell Culture Techniques/methods , Cell Differentiation , Mice , Saliva
6.
Journal of Medical Biomechanics ; (6): E287-E291, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-961725

ABSTRACT

Objective To fabricate a foldable microplate for single cell culture and establish finite element model of the folding microplate, so as to calculate traction force of single cells during contraction in three-dimensional (3D) state.Methods The folding angle of the microplate casued by cell traction force was calculated. Then the relation between bending moment and folding angle as well as the relation between traction force and bending moment were derived by using finite element simulation, so as to realize the characterization of traction force for singel cell in 3D state.Results The folding angles of the microplate with HSF and MC3T3-E1 cells in 3D state were 73°-173° and 49°-138°, respectively. The single cell traction forces of HSF and MC3T3-E1 cells were 55-210 nN and 52-161 nN, respectively.Conclusions The proposed method for measuring traction force of single cells in 3D state by fabricating the foldable microplate for single cell culture will provide some references for further development of calculating traction forces in 3D cell adhesion, spreading and migration.

7.
Front Oncol ; 11: 655757, 2021.
Article in English | MEDLINE | ID: mdl-33987090

ABSTRACT

Lung cancer is one of the most prevalent cancers in both men and women worldwide. The nucleic acid G4 structures have been implicated in the transcriptional programmes of cancer-related genes in some cancers such as lung cancer. However, the role of the dominant G4 resolvase DHX36 in the progression of lung cancer remains unknown. In this study, by bioinformatic analysis of public datasets (TCGA and GEO), we find DHX36 is an independent prognosis indicator in non-small-cell lung carcinoma (NSCLC) with subtype dependence. The stable lentiviral knockdown of the DHX36 results in accelerated migration and aggregation of the S-phase subpopulation in lung cancer cells. The reduction of DHX36 level de-sensitises the proliferation response of lung cancer cells to chemotherapeutic drugs such as paclitaxel with cell dependence. The knockdown of this helicase leads to promoted tumour growth, demonstrated by a 3D fluorescence spheroid lung cancer model, and the stimulation of cell colony formation as shown by single-cell cultivation. High throughput proteomic array indicates that DHX36 functions in lung cancer cells through regulating multiple signalling pathways including activation of protein activity, protein autophosphorylation, Fc-receptor signalling pathway, response to peptide hormone and stress-activated protein kinase signalling cascade. A causal transcriptomic analysis suggests that DHX36 is significantly associated with mRNA surveillance, RNA degradation, DNA replication and Myc targets. Therefore, we unveil that DHX36 presents clinical significance and plays a role in tumour suppression in lung cancer, and propose a potentially new concept for an anti-cancer therapy based on helicase-specific targeting.

8.
Transfus Clin Biol ; 26(4): 316-323, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30391125

ABSTRACT

OBJECTIVES: The first-passage adherent human bone marrow fibroblast-like cell population corresponds, in terms of phenotype and three-lineage differentiation capacity (assayed in bulk culture), to commonly termed "mesenchymal stem cells". Here we determine the proportion of high proliferative capacity multipotent cells present in this population in order to estimate the proportion of cells that can or cannot be considered as stem and progenitor cells. MATERIAL AND METHODS: The single-cell cultures were established starting from human bone marrow-derived first-passage fibroblast-like cells and the proliferating clones were either transferred to secondary cultures to evaluate their further clonogenicity, or split into three wells to assess differentiation into each of the three different lineages. RESULTS: The analysis of 197 single-cell cultures from three different bone marrow donors shows that only∼40% of so-called "mesenchymal stem cells" exhibit multipotency and are capable of sustained clonogenicity in secondary cultures. CONCLUSION: Even in the first ex vivo passage under favorable conditions the majority (∼60%) of so-called "mesenchymal stem cells" are not multipotent and thus do not represent a stem cell entity.


Subject(s)
Mesenchymal Stem Cells/cytology , Antigens, CD/analysis , Bone Marrow Cells/classification , Cell Adhesion , Cell Division , Cell Lineage , Cell Self Renewal , Cell Separation , Cells, Cultured , Clone Cells/cytology , Colony-Forming Units Assay , Fibroblast Growth Factor 2/pharmacology , Humans , Single-Cell Analysis , Stromal Cells/cytology
9.
Stem Cell Reports ; 11(1): 142-156, 2018 07 10.
Article in English | MEDLINE | ID: mdl-30008324

ABSTRACT

We show that a human pluripotent stem cell (hPSC) population cultured on a low-adhesion substrate developed two hPSC subtypes with different colony morphologies: flat and domed. Notably, the dome-like cells showed higher active proliferation capacity and increased several pluripotent genes' expression compared with the flat monolayer cells. We further demonstrated that cell-matrix adhesion mediates the interaction between cell morphology and expression of KLF4 and KLF5 through a serum response factor (SRF)-based regulatory double loop. Our results provide a mechanistic view on the coupling among adhesion, stem cell morphology, and pluripotency, shedding light on the critical role of cell-matrix adhesion in the induction and maintenance of hPSC.


Subject(s)
Cell-Matrix Junctions/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biomarkers , Cell Adhesion/genetics , Cell Differentiation , Cell Proliferation , Cell Self Renewal/genetics , Gene Expression , Humans , Immunophenotyping , Karyotype , Kruppel-Like Factor 4 , Models, Biological
10.
Bio Protoc ; 8(10): e2851, 2018 May 20.
Article in English | MEDLINE | ID: mdl-34285968

ABSTRACT

The ability to conduct investigation of cellular transcription, signaling, and function at the single-cell level has opened opportunities to examine heterogeneous populations at unprecedented resolutions. Although methods have been developed to evaluate high-dimensional transcriptomic and proteomic data (relating to cellular mRNA and protein), there has not been a method to evaluate corresponding high-dimensional functionomic data (relating to cellular functions) from single cells. Here, we present a protocol to quantitatively measure the differentiation potentials of single human hematopoietic stem and progenitor cells, and then cluster the cells according to these measurements. High dimensional functionomic analysis of cell potential allows cell function to be linked to molecular mechanisms within the same progenitor population.

11.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-843673

ABSTRACT

Objective • To optimize the method of the flow cytometry MoFlo Astrios EQ on single-cell sorting in 96-well plate. Methods • Using different aperture nozzles and sorting ways, the 32D, U937, iBMDM and 293T cells were used for single-cell sorting after the precise adjustment of the instrument and various parameters. The hole numbers with single cell and single-cell clones were detected after sorting. Results • In the single-cell sorting mode, the hole numbers with single cell were 83-91 by 70 μm nozzle and 87-93 by 100 μm nozzle. After 7-10 days of culture, the hole numbers with single-cell clones were 36-58 by 70 μm nozzle. In 100 μm nozzle, the hole numbers with single-cell clones were 53-78 by electrostatic charge sorting and 69-81 by straight-down sorting, respectively. Conclusion • In single-cell sorting, a better cell viability and higher cloning rate are observed in 100 μm nozzle and straight-down sorting.

12.
Bio Protoc ; 7(4)2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28603750

ABSTRACT

To study the inhomogeneity within a cell population including exosomes properties such as exosome secretion rate of cells and surface markers carried by exosomes, we need to quantify and characterize those exosomes secreted by each individual cell. Here we develop a method to collect and analyze exosomes secreted by an array of single cells using antibody-modified glass slides that are position-registered to each single cell. After each collection, anti-body conjugated quantum dots are used to label exosomes to allow counting and analysis of exosome surface proteins. Detailed studies of exosome properties related to cell behaviors such as responses to drugs and stress at single cell resolution can be found in the publication (Chiu et al., 2016).

13.
Biotechnol Bioeng ; 114(8): 1771-1778, 2017 08.
Article in English | MEDLINE | ID: mdl-28401637

ABSTRACT

Enhancement of alcohol tolerance in microorganisms is an important strategy for improving bioalcohol productivity. Although cyanobacteria can be used as a promising biocatalyst to produce various alcohols directly from CO2 , low productivity, and low tolerance against alcohols are the main issues to be resolved. Nevertheless, to date, a mutant with increasing alcohol tolerance has rarely been reported. In this study, we attempted to select isopropanol (IPA)-tolerant mutants of Synechococcus elongatus PCC 7942 using UV-C-induced random mutagenesis, followed by enrichment of the tolerant candidates in medium containing 10 g/L IPA and screening of the cells with a high growth rate in the single cell culture system in liquid medium containing 10 g/L IPA. We successfully acquired the most tolerant strain, SY1043, which maintains the ability to grow in medium containing 30 g/L IPA. The photosynthetic oxygen-evolving activities of SY1043 were almost same in cells after 72 h incubation under light with or without 10 g/L IPA, while the activity of the wild-type was remarkably decreased after the incubation with IPA. SY1043 also showed higher tolerance to ethanol, 1-butanol, isobutanol, and 1-pentanol than the wild type. These results suggest that SY1043 would be a promising candidate to improve alcohol production using cyanobacteria. Biotechnol. Bioeng. 2017;114: 1771-1778. © 2017 Wiley Periodicals, Inc.


Subject(s)
Alcohols/administration & dosage , Drug Tolerance/physiology , High-Throughput Screening Assays/methods , Mutation/genetics , Synechococcus/drug effects , Synechococcus/genetics , Cell Survival/drug effects , Dose-Response Relationship, Drug , Species Specificity , Synechococcus/classification
14.
BMC Genomics ; 18(1): 53, 2017 01 07.
Article in English | MEDLINE | ID: mdl-28061811

ABSTRACT

BACKGROUND: Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. RESULTS: We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. CONCLUSION: As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.


Subject(s)
Gene-Environment Interaction , Macrophages/cytology , Sequence Analysis, RNA , Single-Cell Analysis , Gene Knockout Techniques , Humans , Macrophages/metabolism , Phenotype , SAM Domain and HD Domain-Containing Protein 1/deficiency , SAM Domain and HD Domain-Containing Protein 1/genetics
15.
Stem Cell Reports ; 6(3): 411-21, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26852942

ABSTRACT

Primordial germ cell (PGC) specification occurs early in development. PGC specifiers have been identified in Drosophila, mouse, and human but remained elusive in most animals. Here we identify the RNA-binding protein Dnd as a critical PGC specifier in the medaka fish (Oryzias latipes). Dnd depletion specifically abolished PGCs, and its overexpression boosted PGCs. We established a single-cell culture procedure enabling lineage tracing in vitro. We show that individual blastomeres from cleavage embryos at the 32- and 64-cell stages are capable of PGC production in culture. Importantly, Dnd overexpression increases PGCs via increasing PGC precursors. Strikingly, dnd RNA forms prominent particles that segregate asymmetrically. Dnd concentrates in germ plasm and stabilizes germ plasm RNA. Therefore, Dnd is a critical specifier of fish PGCs and utilizes particle partition as a previously unidentified mechanism for asymmetric segregation. These findings offer insights into PGC specification and manipulation in medaka as a lower vertebrate model.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/metabolism , Fish Proteins/metabolism , RNA-Binding Proteins/metabolism , Animals , Cells, Cultured , Embryonic Stem Cells/cytology , Fish Proteins/genetics , Oryzias , RNA-Binding Proteins/genetics
16.
Methods Mol Biol ; 1359: 503-14, 2016.
Article in English | MEDLINE | ID: mdl-26619884

ABSTRACT

Wheat zygotes can be mechanically isolated and cultivated to continue their development in vitro. Since each zygote needs to be individually isolated, only relatively few of these cells are available per experiment. To facilitate embryonic growth despite of this limitation, the zygotes are kept within a culture insert placed in a larger dish which itself contains embryogenic pollen cocultivated for continuous medium conditioning. This setup ensures that the two cultures, while being physically separated from one another, can exchange essential intercellular signal molecules passing through the bottom of the insert which is made of a permeable membrane. Thanks to the natural fate of zygotes, which is to form an embryo followed by the generation of a plant, embryogenesis and plant regeneration are achieved at much higher efficiency as compared to other single-cell systems. While the method is largely independent of the genotype, it allows for the nondestructive observation, manipulation, and individual analysis of zygotes and very young embryos.


Subject(s)
Plant Somatic Embryogenesis Techniques/methods , Tissue Culture Techniques/methods , Triticum/growth & development , Zygote/growth & development , Blastocyst , Fertilization in Vitro , Genotype , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...