Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Biol Lett ; 20(8): 20240336, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39102458

ABSTRACT

Domestication has long been considered the most powerful evolutionary engine behind dramatic reductions in brain size in several taxa, and the dog (Canis familiaris) is considered as a typical example that shows a substantial decrease in brain size relative to its ancestor, the grey wolf (Canis lupus). However, to make the case for exceptional evolution of reduced brain size under domestication requires an interspecific approach in a phylogenetic context that can quantify the extent by which domestication reduces brain size in comparison to closely related non-domesticated species responding to different selection factors in the wild. Here, we used a phylogenetic method to identify evolutionary singularities to test if the domesticated dog stands out in terms of relative brain size from other species of canids. We found that the dog does not present unambiguous signature of evolutionary singularity with regard to its small brain size, as the results were sensitive to the considerations about the ancestral trait values upon domestication. However, we obtained strong evidence for the hibernating common raccoon dog (Nyctereutes procyonoides) being an evolutionary outlier for its brain size. Therefore, domestication is not necessarily an exceptional case concerning evolutionary reductions in brain size in an interspecific perspective.


Subject(s)
Biological Evolution , Brain , Canidae , Domestication , Phylogeny , Animals , Brain/anatomy & histology , Dogs/anatomy & histology , Organ Size , Canidae/anatomy & histology , Wolves/anatomy & histology , Species Specificity , Raccoon Dogs/anatomy & histology
2.
Nano Lett ; 24(26): 7879-7885, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38901023

ABSTRACT

Twisted bilayer graphene (tBLG) possesses intriguing physical properties including unconventional superconductivity, enhanced light-matter interaction due to the formation of van Hove singularities (vHS), and a divergence of density of states in the electronic band structures. The vHS energy band gap provides optical resonant transition channels that can be tuned by the twist angle and interlayer coupling. Raman spectroscopy provides rich information on the vHS structure of tBLG. Here, we report the discovery of an ultralow-frequency Raman mode at ∼49 cm-1 in tBLG. This mode is assigned to the combination of ZA (an out-of-plane acoustic phonon) and TA (a transverse acoustic phonon) phonons, and the Raman scattering is proposed to occur at the so-called mini-valley. This mode is found to be particularly sensitive to the change in vHS in tBLG. Our findings may deepen the understanding of Raman scattering in tBLG and help to reveal vHS-related electron-phonon interactions in tBLG.

3.
Sci Bull (Beijing) ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38945751

ABSTRACT

Interlayer twist evokes revolutionary changes to the optical and electronic properties of twisted bilayer graphene (TBG) for electronics, photonics and optoelectronics. Although the ground state responses in TBG have been vastly and clearly studied, the dynamic process of its photoexcited carrier states mainly remains elusive. Here, we unveil the photoexcited hot carrier dynamics in TBG by time-resolved ultrafast photoluminescence (PL) autocorrelation spectroscopy. We demonstrate the unconventional ultrafast PL emission between the van Hove singularities (VHSs) with a ∼4 times prolonged relaxation lifetime. This intriguing photoexcited carrier behavior is ascribed to the abnormal hot carrier thermalization brought by bottleneck effects at VHSs and interlayer charge distribution process. Our study on hot carrier dynamics in TBG offers new insights into the excited states and correlated physics of graphene twistronics systems.

4.
J Phys Condens Matter ; 36(40)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38941987

ABSTRACT

In this study, we examine the topological character of spectral singularities by using transverse magnetic (TM) mode configuration in a Topological Weyl Semimetal (TWSM). TM mode configuration restrains the effect of Kerr/Faraday rotations and therefore does not allow an extra degree of freedom to occur. We find out that surface currents arise due to topological terms on the surface of TWSM slab where no Fermi arcs are localized. We also investigate the contribution of the Θ-term, which is the origin of axions in topological materials, and especially theb-term, to the topological properties. As a result of our study, we clearly reveal the topological character ofb-term for the first time and we demonstrate the Weyl degeneracy situation in an obvious manner. Our system produces circular currents in the plane of propagation, maintaining a cyclotron shape motion. The presence ofb-term causes the induced current to be topologically protected. Our findings verify that topological properties of TWSM containing two opposite chirality Weyl fermions are robust against external influences. With the findings of our study, the appropriate conditions for the construction of a topological laser and the values that the system parameters can take have been demonstrated.

5.
Int J Numer Method Biomed Eng ; 40(7): e3831, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38690649

ABSTRACT

Despite being among the most common medical procedures, needle insertions suffer from a high error rate. Impedance measurements using electrode-equipped needles offer promise for improved tissue targeting and reduced errors. Impedance visualization usually requires an extensive pre-measured impedance dataset for tissue differentiation and knowledge of the electric fields contributing to the resulting impedances. This work presents two finite element simulation approaches for both problems. The first approach describes the generation of a multitude of impedances with Monte Carlo simulations for both, homogeneous and inhomogeneous tissue to circumvent the need to rely on previously measured data. These datasets could be used for tissue discrimination. The second method describes the simulation of the spatial sensitivity distribution of an electrode layout. Two singularity analysis methods were employed to determine the bulk of the sensitivity within a finite volume, which in turn enables consistent 3D visualization. The modeled electrode layout consists of 12 electrodes radially placed around a hypodermic needle. Electrical excitation was simulated using two neighboring electrodes for current carriage and voltage pickup, which resulted in 12 distinct bipolar excitation states. Both, the impedance simulations and the respective singularity analysis methods were compared with each other. The results show that the statistical spread of impedances is highly dependent on the tissue type and its inhomogeneities. The bounded bulk of sensitivities of both methods are of similar extent and symmetry. Future models should incorporate more detailed tissue properties such as anisotropy or changing material properties due to tissue deformation to gain more accurate predictions.


Subject(s)
Electric Impedance , Finite Element Analysis , Monte Carlo Method , Needles , Humans , Computer Simulation , Electrodes
6.
ACS Nano ; 18(21): 13738-13744, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38741024

ABSTRACT

We demonstrate the impact of high-density calcium introduction into Ca-intercalated bilayer graphene on a SiC substrate, wherein a metallic layer of Ca has been identified at the interface. We have discerned that the additional Ca layer engenders a free-electron-like band, which subsequently hybridizes with a Dirac band, leading to the emergence of a van Hove singularity. Coinciding with this, there is an increase in the critical temperature for superconductivity. These findings allude to the manifestation of Ca-driven confinement epitaxy, augmenting superconductivity through the enhancement of attractive interactions in a pair of electron and hole bands with flat dispersion around the Fermi level.

7.
Creat Nurs ; 30(2): 95-99, 2024 May.
Article in English | MEDLINE | ID: mdl-38711170

ABSTRACT

Generative artificial intelligence (AI) is currently a source of angst, because of its ability to give us content that sounds uncannily like a real person, and because of concern that people will not stop at using it as a tool to generate and synthesize ideas, but instead will cede control over our words, and then our thoughts. This editorial details each article in Creative Nursing Vol. 30 Issue 2, highlighting the ways in which social media, different kinds of AI, and other tools for connectivity can be used for good: finding our purpose, uniting people over long distances, expediting knowledge implementation, managing large volumes of literature, advancing health equity, and enriching nursing education.


Subject(s)
Artificial Intelligence , Humans , Social Media
8.
Proc Natl Acad Sci U S A ; 121(16): e2321665121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38593078

ABSTRACT

Different mechanisms driving a linear temperature dependence of the resistivity ρ ∼ T at van Hove singularities (VHSs) or metal-insulator transitions when doping a Mott insulator are being debated intensively with competing theoretical proposals. We experimentally investigate this using the exceptional tunability of twisted bilayer (TB) WSe2 by tracking the parameter regions where linear-in-T resistivity is found in dependency of displacement fields, filling, and magnetic fields. We find that even when the VHSs are tuned rather far away from the half-filling point and the Mott insulating transition is absent, the T-linear resistivity persists at the VHSs. When doping away from the VHSs, the T-linear behavior quickly transitions into a Fermi liquid behavior with a T2 relation. No apparent dependency of the linear-in-T resistivity, besides a rather strong change of prefactor, is found when applying displacement fields as long as the filling is tuned to the VHSs, including D ∼ 0.28 V/nm where a high-order VHS is expected. Intriguingly, such non-Fermi liquid linear-in-T resistivity persists even when magnetic fields break the spin-degeneracy of the VHSs at which point two linear in T regions emerge, for each of the split VHSs separately. This points to a mechanism of enhanced scattering at generic VHSs rather than only at high-order VHSs or by a quantum critical point during a Mott transition. Our findings provide insights into the many-body consequences arising out of VHSs, especially the non-Fermi liquid behavior found in moiré materials.

9.
J Med Humanit ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433163

ABSTRACT

Informed by medical science and biotechnology, Karoline Georges's novel Under the Stone offers a reflection on suffering bodies and imagines responses to an overwhelming sense of fear and passivity that embodied trauma and the world's many crises can create. In line with the editors' reclaiming of the milieu for the medical humanities, I draw on Deleuze and Guattari's geophilosophy and Sara Ahmed's notions of stranger and encounter for reading the novel's spatialization of oppressive power dynamics and its imagination of subversive emergence. I also complicate the literary text's discourse on space and body by relying on wonder studies to examine further its alternative forms of careful attunement enacted through the protagonist's affective and disembodied awakening, the latter fueled by his escape from "the incessant movement of automatic components that delineat[e] [his] presence in the world" (Georges 2016, 61). Happening from and because of the Tower's milieu, this escape becomes a mitigating force to physical, affective, and social struggles. I thus contend that Georges's text provides thought-provoking material about the functions and effects of art for addressing the dangers and promises of bioethics, body sovereignty, and life protection.

10.
Bioinformation ; 20(2): 146-150, 2024.
Article in English | MEDLINE | ID: mdl-38497066

ABSTRACT

Microbial organisms have been implicated in several mass extinction events throughout Earth's planetary history. Concurrently, it can be reasoned from recent viral pandemics that viruses likely exacerbated the decline of life during these periods of mass extinction. The fields of exovirology and exobiology have evolved significantly since the 20th century, with early investigations into the varied atmospheric compositions of exoplanets revealing complex interactions between metallic and non-metallic elements. This diversity in exoplanetary and stellar environments suggests that life could manifest in forms previously unanticipated by earlier, more simplistic models of the 20th century. Non-linear theories of complexity, catastrophe, and chaos (CCC) will be important in understanding the dynamics and evolution of viruses.

11.
Adv Mater ; 36(21): e2312853, 2024 May.
Article in English | MEDLINE | ID: mdl-38353164

ABSTRACT

Ince-Gaussian beams (IGBs) are the third complete family of exact and orthogonal solutions of the paraxial wave equation and have been applied in many fields ranging from particle trapping to quantum optics. IGBs play a very important role in optics as they represent the exact and continuous transition modes connecting Laguerre-Gaussian and Hermite-Gaussian beams. The method currently in use suffers from the high cost, complexity, and large volume of the optical system. The superposition of IGBs can generate complicated structured beams with multiple phase and polarization singularities. A metasurface approach is proposed to realizing various superpositions of IGBs without relying on a complicated optical setup. By superimposing IGBs with even and odd modes, multiple phase, and polarization singularities are observed in the resultant beams. The phase and polarization singularities are modulated by setting the initial phase in the design and controlling the incident linear polarization. The compactness of the developed metasurface devices and the unique properties of the generated beams have the potential to impact many practical applications such as particle manipulation, orbital angular momentum spectrum manipulation, and optical communications.

12.
Nano Lett ; 24(8): 2444-2450, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363218

ABSTRACT

Quantum Griffiths phase (QGP) is a novel quantum phenomenon of quantum phase transition in two-dimensional (2D) superconductors, and the emergence of inhomogeneous superconducting rare regions immersed in a metallic matrix is theoretically related to the quantum Griffiths singularity (QGS). However, the theoretical proposal of superconducting rare regions still lacks intuitive experimental verification. Here, we construct an artificial ordered superconducting-islands-array on monolayer graphene with the aid of an anodic aluminum oxide (AAO) membrane. The QGS under both in-plane and out-of-plane magnetic fields is evidenced by the divergent dynamical critical exponent and is in compliance with the direct activated scaling behavior. The phase diagram clearly shows that the QGP is indeed bred in the rare superconducting regions within isolated superconducting islands with a vanished quantum coherence. Our results reveal the universal features of QGP in artificial heterostructured systems and provide a visualized platform for the theoretical proposal of QGS.

13.
J Phys Condens Matter ; 36(24)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38411011

ABSTRACT

Superconductivity in two-dimensional materials has gained significant attention in the last few years. In this work, we report phonon-mediated superconductivity investigations in monolayer Tungsten monofluoride (WF) by solving anisotropic Migdal Eliashberg equations as implemented in EPW. By employing first-principles calculations, our examination of phonon dispersion spectra suggests that WF is dynamically stable. Our results show that WF has weak electron-phonon coupling (EPC) strength (λ) of 0.49 with superconducting transition temperature (Tc) of 2.6 K. A saddle point is observed at 0.11 eV below the Fermi level (EF) of WF, which corresponds to the Van Hove singularity (VHS). On shifting the Fermi level to the VHS by hole doping (3.7 × 1014cm-2), the EPC strength increases to 0.93, which leads to an increase in theTcto 11 K. However, the superconducting transition temperature of both pristine and doped WF increases to approximately 7.2 K and 17.2 K, respectively, by applying the Full Bandwidth (FBW) anisotropic Migdal-Eliashberg equations. Our results provide a platform for the experimental realization of superconductivity in WF and enhancement of the superconducting transition temperature by adjusting the position ofEFto the VHS.

14.
J Insect Physiol ; 154: 104618, 2024 05.
Article in English | MEDLINE | ID: mdl-38286255

ABSTRACT

With increasing soil depth, the amplitude and phase of the daily temperature cycle decreases and is delayed, respectively. The onion fly, Delia antiqua, which pupates at a soil depth of 2-20 cm, advances the eclosion phase of its circadian clock as the temperature amplitude decreases. This "temperature-amplitude response" compensates for the depth-dependent phase delay of the temperature change and ensures eclosion in the early morning. To clarify the physiological mechanisms that induce a temperature-amplitude response, we performed phase-resetting experiments using a 12-h high- or low-temperature pulse with an amplitude of 1 °C or 4 °C. Based on the results obtained, four phase transition curves and four phase response curves were constructed. These curves show that the phase of the eclosion clock shifted more as the magnitude of the temperature change increased. The 24-h temperature cycle delayed, rather than advanced, the phase of the D. antiqua circadian eclosion rhythm. Therefore, we propose that a small phase delay is caused by a small temperature amplitude at a deep site in the soil and a large phase delay is caused by a large temperature amplitude at a shallow site, leading to the temperature-amplitude response exhibited by D. antiqua.


Subject(s)
Circadian Clocks , Animals , Onions , Temperature , Circadian Rhythm/physiology , Soil
15.
Sci Bull (Beijing) ; 69(3): 319-324, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38105164

ABSTRACT

Van Hove singularities in proximity to the Fermi level promote electronic interactions and generate diverse competing instabilities. It is also known that a nontrivial Berry phase derived from spin-orbit coupling can introduce an intriguing decoration into the interactions and thus alter correlated phenomena. However, it is unclear how and what type of new physics can emerge in a system featured by the interplay between van Hove singularities (VHSs) and the Berry phase. Here, based on a general Rashba model on the square lattice, we comprehensively explore such an interplay and its significant influence on the competing electronic instabilities by performing a parquet renormalization group analysis. Despite the existence of a variety of comparable fluctuations in the particle-particle and particle-hole channels associated with higher-order VHSs, we find that the chiral p±ip pairings emerge as two stable fixed trajectories within the generic interaction parameter space, namely the system becomes a robust topological superconductor. The chiral pairings stem from the hopping interaction induced by the nontrivial Berry phase. The possible experimental realization and implications are discussed. Our work sheds new light on the correlated states in quantum materials with strong spin-orbit coupling (SOC) and offers fresh insights into the exploration of topological superconductivity.

16.
Rep Prog Phys ; 87(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38086096

ABSTRACT

Superconductor-insulator/metal transition (SMT) as a paradigm of quantum phase transition has been a research highlight over the last three decades. Benefit from recent developments in the fabrication and measurements of two-dimensional (2D) superconducting films and nanodevices, unprecedented quantum phenomena have been revealed in the quantum phase transitions of 2D superconductors. In this review, we introduce the recent progress on quantum phase transitions in 2D superconductors, focusing on the quantum Griffiths singularity (QGS) and anomalous metal state. Characterized by a divergent critical exponent when approaching zero temperature, QGS of SMT is discovered in ultrathin crystalline Ga films and subsequently detected in various 2D superconductors. The universality of QGS indicates the profound influence of quenched disorder on quantum phase transitions. Besides, in a 2D superconducting system, whether a metallic ground state can exist is a long-sought mystery. Early experimental studies indicate an intermediate metallic state in the quantum phase transition of 2D superconductors. Recently, in high-temperature superconducting films with patterned nanopores, a robust anomalous metal state (i.e. quantum metal or Bose metal) has been detected, featured as the saturated resistance in the low temperature regime. Moreover, the charge-2equantum oscillations are observed in nanopatterned films, indicating the bosonic nature of the anomalous metal state and ending the debate on whether bosons can exist as a metal. The evidences of the anomalous metal states have also been reported in crystalline epitaxial thin films and exfoliated nanoflakes, as well as granular composite films. High quality filters are used in these works to exclude the influence of external high frequency noises in ultralow temperature measurements. The observations of QGS and metallic ground states in 2D superconductors not only reveal the prominent role of quantum fluctuations and dissipations but also provide new perspective to explore quantum phase transitions in superconducting systems.

17.
J Med Imaging (Bellingham) ; 10(6): 064004, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38094902

ABSTRACT

Purpose: The utility of fluorescence microscopy imaging comes with the challenge of low resolution acquisitions, which severely limits information extraction and quantitative analysis. Image denoising is a technique that aims to remove noise from microscopy acquisitions by taking into account prior statistics of the corrupting noise. In this work, we propose an image denoising technique for fluorescence microscopy imaging. Approach: The proposed technique is based on the principle of multifractal feature extraction from a noisy sample followed by a reconstruction technique from these features. It is observed that by following a proper hierarchical classification procedure, meaningful features can be extracted from a noisy image. A denoised image is then estimated from this sparse feature set through proper formulation of an optimization problem. Results: Experiments are performed on both synthetic image databases as well as on real fluorescence microscopy data. Superior denoising results, in comparison to multiple comparing techniques, validate the potential of the proposed approach. Conclusion: The proposed method gives superior denoising results for low resolution fluorescence microscopy image acquisitions and can be used for post processing of data by biologists.

18.
Heliyon ; 9(9): e19828, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809696

ABSTRACT

In this paper, we present new axisymmetric and reflection symmetric vacuum solutions to the Einstein field equations. They are obtained using the Hankel integral transform method and all three solutions exhibit naked singularities. Our results further reinforce the importance and special character of axisymmetric solutions in general relativity and highlight the role of integral transforms methods in solving complex problems in this field. We compare our results to already existing solutions which exhibit the same type of singularities. In this context we notice that most known axial-symmetric solutions possess naked singularities. A discussion of characteristic features of the newly found metrics, e.g., blueshift and the geometry of the singularities, is given.

19.
Adv Sci (Weinh) ; : e2305059, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840410

ABSTRACT

The appearance of van Hove singularities near the Fermi level leads to prominent phenomena, including superconductivity, charge density wave, and ferromagnetism. Here a bilayer Kagome lattice with multiple van Hove singularities is designed and a novel borophene with such lattice (BK-borophene) is proposed by the first-principles calculations. BK-borophene, which is formed via three-center two-electron (3c-2e) σ-type bonds, is predicted to be energetically, dynamically, thermodynamically, and mechanically stable. The electronic structure hosts both conventional and high-order van Hove singularities in one band. The conventional van Hove singularity resulting from the horse saddle is 0.065 eV lower than the Fermi level, while the high-order one resulting from the monkey saddle is 0.385 eV below the Fermi level. Both the singularities lead to the divergence of electronic density of states. Besides, the high-order singularity is just intersected to a Dirac-like cone, where the Fermi velocity can reach 1.34 × 106  m s-1 . The interaction between the two Kagome lattices is critical for the appearance of high-order van Hove singularities. The novel bilayer Kagome borophene with rich and intriguing electronic structure offers an unprecedented platform for studying correlation phenomena in quantum material systems and beyond.

20.
ACS Nano ; 17(18): 17751-17760, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37695313

ABSTRACT

The nontrivial and rigorous Heaviside phase jump behavior of phase singularities (PSs) empowers exotic topological modes and widely divergent nature compared to neighboring points, which has attracted great attention in condensed matter physics as well as applications in photonics and ultrasensitive sensors. Here we demonstrate the universal existence of a family of topologically protected PSs generated from exciton resonances of single-atom layers. We obtain the PSs by coating the transition metal dichalcogenide (TMDC) monolayers on a nonabsorptive semi-infinite substrate without surface plasmon effect or other assisted resonators, which exploits the benefits of both exciton-dominated enhancement and peculiarities of the singular phase. We show that a refractive indices matched transparent substrate enables TMDC monolayers to exhibit topologically protected zero reflection accompanied by a perfect Heaviside π-phase jump at strong light adsorptions, which can be utilized to radically reduce the thickness of PS-based devices to a single atomic layer. By using the TMDC monolayer-based PSs for refractive index biosensors, we demonstrate its superior phase sensitivity at a level of 104 degrees per refractive index unit and detection of bioactive bacteria, respectively, which is comparable to the cutting-edge surface plasmon and Fabry-Perot resonance sensors. Our proof-of-concept results offer experimental and theoretical insights into a single atomic playground for flat singular optics and label-free biosensing technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...