Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012504

ABSTRACT

Skeletal fluorosis is a chronic metabolic bone disease caused by long-term excessive fluoride intake. Abnormal differentiation of osteoblasts plays an important role in disease progression. Research on the mechanism of fluoride-mediated bone differentiation is necessary for the prevention and treatment of skeletal fluorosis. In the present study, a rat model of fluorosis was established by exposing it to drinking water containing 50 mg/L F-. We found that fluoride promoted Runt-related transcription factor 2 (RUNX2) as well as superoxide dismutase 2 (SOD2) and sirtuin 3 (SIRT3) expression in osteoblasts of rat bone tissue. In vitro, we also found that 4 mg/L sodium fluoride promoted osteogenesis-related indicators as well as SOD2 and SIRT3 expression in MG-63 and Saos-2 cells. In addition, we unexpectedly discovered that fluoride suppressed the levels of reactive oxygen species (ROS) and mitochondrial reactive oxygen species (mtROS) in osteoblasts. When SOD2 or SIRT3 was inhibited in MG-63 cells, fluoride-decreased ROS and mtROS were alleviated, which in turn inhibited fluoride-promoted osteogenic differentiation. In conclusion, our results suggest that SIRT3/SOD2 mediates fluoride-promoted osteoblastic differentiation by down-regulating reactive oxygen species.

2.
Endocrinology ; 165(4)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38354290

ABSTRACT

Sirt3 is a mitochondrial protein deacetylase functioning in energy metabolism, regulation of intracellular reactive oxygen species (ROS) levels, and aging. Although Sirt3 loss has negative effects on fertility of oocytes during in vitro fertilization and on progesterone production in granulosa cells, Sirt3's function in Leydig cells remains unclear. Therefore, we investigated Sirt3 activity in Leydig cells, focusing on androgen production. To do so, we performed immunohistochemistry to confirm Sirt3 localization in gonads and observed strong Sirt3 immunostaining in Leydig cells of human testes and of Sirt3+/+ and Sirt3+/- mouse testes, while Sirt3-/- mouse testis tissue was negative. In human ovary, hilus cells were strongly Sirt3-positive, theca cells showed weak positivity, and granulosa cells showed very weak or almost no immunostaining. Next, we used the murine Leydig tumor cell line MA-10 as a model. We overexpressed Sirt3 but observed no changes in proliferation, expression of Star, Cyp11a1 (p450scc gene), and Hsd3b, or progesterone production in MA-10 cells. Sirt3 knockdown significantly reduced proliferation, suppressed expressions of steroidogenic enzymes and of transcription factors Ad4bp (Sf-1 gene) and Gata4, and decreased progesterone production. Sirt3 knockdown in MA-10 cells also increased intracellular ROS levels based on CM-H2DCFDA fluorescence dye analysis and increased the proportion of both early and late apoptotic (necrotic) cells based on Annexin V/7AAD assays. These results indicate that Sirt3 has a potential function in androgen production in Leydig cells by regulating intracellular ROS levels.


Subject(s)
Progesterone , Sirtuin 3 , Female , Humans , Mice , Male , Animals , Reactive Oxygen Species/metabolism , Progesterone/metabolism , Leydig Cells/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism , Testis/metabolism , Androgens/metabolism , Cell Proliferation
3.
Trends Pharmacol Sci ; 45(2): 173-190, 2024 02.
Article in English | MEDLINE | ID: mdl-38242748

ABSTRACT

Sirtuin 3 (SIRT3), an NAD+-dependent deacetylase, plays a key role in the modulation of metabolic reprogramming and regulation of cell death, as well as in shaping tumor phenotypes. Owing to its critical role in determining tumor-type specificity or the direction of tumor evolution, the development of small-molecule modulators of SIRT3, including inhibitors and activators, is of significant interest. In this review, we discuss recent studies on the oncogenic or tumor-suppressive functions of SIRT3, evaluate advances in SIRT3-targeted drug discovery, and present potential avenues for the design of small-molecule modulators of SIRT3 for cancer therapy.


Subject(s)
Neoplasms , Sirtuin 3 , Humans , Sirtuin 3/genetics , Sirtuin 3/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Drug Discovery
4.
Eur J Pharmacol ; 963: 176155, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37914065

ABSTRACT

Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.


Subject(s)
Sirtuin 3 , Sirtuins , Sirtuin 3/metabolism , Sirtuins/metabolism , Mitochondria/metabolism , Oxidative Stress , Longevity
6.
Exp Anim ; 72(3): 346-355, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-36858596

ABSTRACT

An increasing number of studies have suggested that oxidative stress and inflammation play momentous roles in acute pulmonary embolism (APE). Honokiol, a bioactive biphenolic phytochemical substance, is known for its strong anti-oxidative and anti-inflammatory effects, and it served as an activator of sirtuin3 (SIRT3) in the present study. The purposes of the study were to explore the effects of honokiol on APE rats and investigate whether the function of honokiol is mediated by SIRT3 activation. In the study, the rats received a right femoral vein injection of dextran gel G-50 particles (12 mg/kg) to establish the APE model and were subsequently administered honokiol and/or a selective SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl)pyridine (3-TYP; 5 mg/kg) intraperitoneally. The results showed that SIRT3 activation by honokiol attenuated the loss in lung function, ameliorated the inflammatory response and oxidative damage, and inhibited apoptosis in lung tissues of the rats with APE but that this was reversed by 3-TYP. In addition, we found that the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway might be activated by honokiol but restrained by 3-TYP. These results indicated that honokiol was capable of suppressing the adverse effects of APE and that this was diminished by SIRT3 suppression, implying that activation of SIRT3 might serve as a therapeutic method for APE.


Subject(s)
Hominidae , Pulmonary Embolism , Sirtuin 3 , Rats , Animals , Sirtuin 3/metabolism , Sirtuin 3/pharmacology , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/pharmacology , Sirolimus/pharmacology , Signal Transduction , Oxidative Stress , TOR Serine-Threonine Kinases/metabolism , Anti-Inflammatory Agents/pharmacology , Pulmonary Embolism/drug therapy , Hominidae/metabolism , Mammals/metabolism
7.
Int J Mol Sci ; 23(16)2022 Aug 14.
Article in English | MEDLINE | ID: mdl-36012382

ABSTRACT

Structural and functional alterations of vasculature caused by age-related factors is critically involved in the pathogenesis of ischemic stroke. The longevity genes sirtuins (SIRTs) are extensively investigated in aging-associated pathologies, but their distinct roles in ischemic stroke still remain to be clarified. To address this question, we applied oxygen and glucose deprived/reperfusion (OGD/R) to induce ischemic injury in human endothelial cells (ECs), which are the main component of vasculature in the brain. The results showed that OGD/R led to various damages to ECs, including compromised cell viability, increased LDH release, overproduced ROS, enhanced apoptosis and caspase activity. Meanwhile, the expression of mitochondrial SIRT3 was robustly decreased in ECs after OGD/R treatment. Consistently, rescue of SIRT3 by ectopic expression, but not nuclear SIRT1, in ECs reversed the OGD/R-induced cell damage. Interestingly, some front-line drugs for ischemic stroke, including clopidogrel, aspirin and dl-3-n-butylphthalide (NBP), also rescued SIRT3 and reduced OGD/R-induced endothelial injury, suggesting that the recovery of SIRT3 expression was critical for the protection of these drugs. Moreover, our results demonstrated that 10-hydroxy-NBP (OHNBP), a major metabolite of NBP, showed better blood-brain barrier crossing capability than NBP, but still retained the effects on SIRT3 by NBP. Together, our results suggested that SIRT3 may serve as a potential novel target for treatment of ischemic stroke.


Subject(s)
Ischemic Stroke , Reperfusion Injury , Sirtuin 3 , Apoptosis , Endothelial Cells/metabolism , Glucose/metabolism , Humans , Ischemia/pathology , Oxidative Stress , Oxygen/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Signal Transduction , Sirtuin 3/genetics , Sirtuin 3/metabolism
8.
Ann Transl Med ; 10(4): 211, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35280405

ABSTRACT

Background: Myocardial injury induced by refeeding syndrome (RFS) is one of the important causes of deterioration in critically ill patients. Sirtuin-3 (SIRT3) has been shown to regulate mitochondrial autophagy in myocardial ischemia/reperfusion injury; however, the role of mitochondrial autophagy on RFS-related myocardial injury in patients in critical condition has not been reported on. Methods: Thirty Sprague-Dawley (SD) rats were divided into 3 groups (n=10 each group): the control group; the standard calorie refeeding (SCR) group; and the low calorie refeeding (LCR) group. The rats were weighed every third or four days from day 1 to day 14. On day 14, all rats were anesthetized and received an echocardiography test. Blood and bronchoalveolar lavage fluid (BALF) were collected and tested for arterial oxygen pressure (PaO2), phosphorus (P), and calcium (Ca), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and cardiac troponin 1 (cTnI), myeloperoxidase (MPO), tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), and IL-6. The histopathological change of hearts and lungs were evaluated, and lung injury score was calculated. Mitochondrial autophagy related proteins (including Beclin1, LC3, mitofusin-2, Mfn2, PINK1, Parkin, and SIRT3) were analyzed using a Western blot. To evaluate the effect of SIRT3, 20 rats were divided into 2 groups (n=10 each group): The adeno-associated virus 9 (AAV9-Nc) group; and the AAV9-SIRT3 overexpression (AAV9-SIRT3) group. The protocols for rats were the same as the SCR group since day 22 after injection of AAV9. The protein expressions of PINK1, Parkin, and SIRT3 were compared between the AAV9-Nc group and AAV9-SIRT3 group. Results: SCR caused significant decline in cardiac contractility and increased inflammatory cell infiltration in myocardial tissue. Meanwhile, Beclin1, LC3, PINK1, Parkin, and SIRT3 levels decreased, while Mfn2 showed no significant change. Furthermore, significant positive correlations were also found between SIRT3 and P, PINK1, and Parkin, and significant negative correlations were found between SIRT3 and CK-MB, LDH, and cTnI. Overexpression of SIRT3 activated the PINK1/Parkin mediated mitochondrial autophagy. Conclusions: SIRT3 has an essential role in RFS-related myocardial injury during LPS induced chronic sepsis in rats, probably via regulating mitochondrial autophagy.

9.
Organ Transplantation ; (6): 618-2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-941483

ABSTRACT

Objective To evaluate the effect and mechanism of nicotinamide mononucleotide (NMN) on ischemia-reperfusion injury (IRI) induced by donor liver after cardiac death in rat models. Methods Rat models of orthotopic liver transplantation were established by "magnetic ring + double cuff" method. SD rats were randomly divided into the sham operation group (Sham group), orthotopic liver transplantation group (OLT group), NMN treatment + orthotopic liver transplantation group (NMN group), NMN+sirtuin-3 (Sirt3) inhibitor (3-TYP) + orthotopic liver transplantation group (NMN+3-TYP group), respectively. Pathological changes and hepatocyte apoptosis of the rats were observed in each group. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were determined. Superoxide dismutase (SOD) and malondialdehyde (MDA) contents in liver tissues were detected. The expression levels of Sirt3, microtubule-associated protein 1 light chain 3 (LC3)Ⅱ, PTEN-induced putative kinase 1 (PINK1), Parkin and translocase of the outer mitochondrial membrane 20 (TOMM20) in liver tissues were measured. Postoperative survival of the rats in each group was analyzed. Results Compared with the Sham group, serum ALT and AST levels were higher in the OLT group. Compared with the OLT group, the levels of ALT and AST were decreased in the NMN group. Compared with the NMN group, the levels of ALT and AST were increased in the NMN +3-TYP group (all P < 0.05). The liver tissue structure of rats in the Sham group was basically normal. In the OLT group, pathological changes, such as evident congestion, vacuolar degeneration and hepatocyte necrosis, were observed in the liver tissues. Compared with the Sham group, Suzuki score and apoptosis rate were higher in the OLT group. Suzuki score and apoptosis rate in the NMN group were lower than those in the OLT group. Suzuki score and apoptosis rate in the NMN+3-TYP group were higher compared with those in the NMN group (all P < 0.05). Compared with the Sham group, the SOD content was decreased, whereas the MDA content was increased in the OLT group. Compared with the OLT group, the SOD content was increased, whereas the MDA content was decreased in the NMN group. Compared with the NMN group, the SOD content was decreased, whereas the MDA content was increased in the NMN+3-TYP group (all P < 0.05). Compared with the Sham group, the relative expression levels of Sirt3 and TOMM20 proteins were down-regulated, whereas those of PINK1, Parkin and LC3Ⅱproteins were up-regulated in the OLT group. Compared with the OLT group, the relative expression levels of Sirt3, PINK1, Parkin and LC3Ⅱproteins were up-regulated, whereas that of TOMM20 protein was down-regulated in the NMN group. Compared with the NMN group, the relative expression levels of PINK1, Parkin and LC3Ⅱproteins were down-regulated, whereas that of TOMM20 protein was up-regulated in the NMN+3-TYP group (all P < 0.05). In the Sham group, the 7 d survival rate of rats was 100%, 50% in the OLT group, 75% in the NMN group and 58% in the NMN+3-TYP group, respectively. Conclusions NMN may enhance the antioxidative capacity of the liver, induce PINK1/Parkin-mediated mitochondrial autophagy, and alleviate IRI of the liver by up-regulating Sirt3, thereby playing a protective role in the donor liver after cardiac death.

10.
Clin Transl Med ; 11(11): e592, 2021 11.
Article in English | MEDLINE | ID: mdl-34841698

ABSTRACT

BACKGROUND: The key role of hypoxia-inducible factor 2alpha (HIF2α) in the process of renal cancer has been confirmed. In the field of tumour research, oxidative stress is also considered to be an important influencing factor. However, the relationship and biological benefits of oxidative stress and HIF2α in ccRCC remain unclear. This research attempts to explore the effect of oxidative stress on the cancer-promoting effect of HIF2α in ccRCC and reveal its mechanism of action. METHODS: The bioinformatics analysis for ccRCC is based on whole transcriptome sequencing and TCGA database. The detection of the expression level of related molecules is realised by western blot and PCR. The expression of Nucleoside diphosphate-linked moiety X-type motif 1 (NUDT1) was knocked down by lentiviral infection technology. The functional role of NUDT1 were further investigated by CCK8 assays, transwell assays and cell oxidative stress indicator detection. The exploration of related molecular mechanisms is realised by Luciferase assays and Chromatin immunoprecipitation (ChIP) assays. RESULTS: Molecular screening based on knockdown HIF2α sequencing data and oxidative stress related data sets showed that NUDT1 is considered to be an important molecule for the interaction of HIF2α with oxidative stress. Subsequent experimental results showed that NUDT1 can cooperate with HIF2α to promote the progression of ccRCC. And this biological effect was found to be caused by the oxidative stress regulated by NUDT1. Mechanistically, HIF2α transcription activates the expression of NUDT1, thereby inhibiting oxidative stress and promoting the progression of ccRCC. CONCLUSIONS: This research clarified a novel mechanism by which HIF2α stabilises sirtuin 3 (SIRT3) through direct transcriptional activation of NUDT1, thereby inhibiting oxidative stress to promote the development of ccRCC. It provided the possibility for the selection of new therapeutic targets for ccRCC and the study of combination medication regimens.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/adverse effects , Carcinoma, Renal Cell/genetics , DNA Repair Enzymes/drug effects , Oxidative Stress/genetics , Phosphoric Monoester Hydrolases/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Renal Cell/physiopathology , Cell Line, Tumor/metabolism , DNA Repair Enzymes/genetics , Humans , Neoplasms , Oxidative Stress/drug effects , Phosphoric Monoester Hydrolases/genetics
11.
J Dairy Sci ; 103(7): 6557-6568, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32331890

ABSTRACT

Sirtuin 3 (SIRT3), a mitochondrial deacetylase, is a key regulator of energy metabolism in the liver. In nonruminants, the hepatic abundance of SIRT3 is decreased in individuals with nonalcoholic fatty liver diseases, and recovery of SIRT3 alleviates hepatic triacylglycerol (TG) deposition. However, the level of SIRT3 expression and its effects on lipid metabolism in dairy cows have not been characterized. Here we studied the hepatic expression of SIRT3 in cows with fatty liver and the role of SIRT3 in fatty acid metabolism in bovine hepatocytes. This in vivo study involved 10 healthy cows and 10 cows with fatty liver, from which we collected samples of liver tissue and blood. Primary hepatocytes were isolated from Holstein calves and treated with 0, 0.5, or 1.0 mM nonesterified fatty acids (NEFA) for 24 h or transinfected with SIRT3 overexpression adenovirus (Ad-SIRT3)/SIRT3-short interfering (si)RNA for 48 h. Cows with fatty liver displayed lower serum glucose concentrations but higher serum NEFA and ß-hydroxybutyrate concentrations relative to healthy cows. Cows with fatty liver also had significant lower mRNA and protein abundance of hepatic SIRT3. Incubation of primary hepatocytes with NEFA reduced SIRT3 abundance in primary hepatocytes in a dose-dependent manner. Fatty acid (1 mM) treatment also markedly increased the abundance of acetyl-CoA carboxylase 1 (ACC1) and fatty acid synthase (FAS) but significantly decreased the abundance of carnitine palmitoyltransferase I (CPT1A), carnitine palmitoyltransferase II (CPT2), and acyl-CoA oxidase (ACO). Knockdown of SIRT3 by SIRT3-siRNA downregulated the mRNA abundance of CPT1A, CPT2, and ACO. In contrast, overexpression of SIRT3 by Ad-SIRT3 upregulated the mRNA abundance of CPT1A, CPT2, and ACO; downregulated the mRNA abundance of ACC1 and FAS; and consequently, decreased intracellular TG concentrations. Overexpression of SIRT3 ameliorated exogenous NEFA-induced TG accumulation by downregulating the abundance of ACC1 and FAS and upregulating the abundance of CPT1A, CPT2, and ACO in calf hepatocytes. Our data demonstrated that cows with fatty liver had lower hepatic SIRT3 contents, and an increase in SIRT3 abundance by overexpression mitigated TG deposition by modulating the expression of lipid metabolism genes in bovine hepatocytes. These data suggest a possible role of SIRT3 as a therapeutic target for fatty liver disease prevention in periparturient dairy cattle.


Subject(s)
Cattle Diseases/metabolism , Fatty Acids, Nonesterified/administration & dosage , Fatty Liver/veterinary , Lipid Metabolism/drug effects , Sirtuin 3/metabolism , 3-Hydroxybutyric Acid/blood , Acetyl-CoA Carboxylase/drug effects , Acyl-CoA Oxidase/drug effects , Animals , Carnitine O-Palmitoyltransferase/drug effects , Cattle , Cattle Diseases/prevention & control , Fatty Acids/metabolism , Fatty Acids, Nonesterified/blood , Fatty Liver/metabolism , Fatty Liver/prevention & control , Female , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Mitochondria/enzymology , Sirtuin 3/genetics , Triglycerides/metabolism
12.
Front Cardiovasc Med ; 6: 15, 2019.
Article in English | MEDLINE | ID: mdl-30873415

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is characterized by diastolic dysfunction and is commonly seen in the elderly and diabetic and hypertensive patients. Despite its rising prevalence, the pathophysiology of HFpEF is poorly understood and its optimal treatment remains undefined. Recent clinical studies indicate that coronary microvascular rarefaction (reduced myocardial capillary density) with reduced coronary flow reserve (CFR) is a major contributor to diastolic dysfunction in HFpEF patients. On a molecular level, endothelial cells (EC) are dependent on glycolysis for supporting their functions and vascular homeostasis. Sirtuin 3 (SIRT3) has a critical role in the regulation of endothelial glycolytic metabolism and thus affects angiogenesis. Disruption of SIRT3-mediated EC metabolism and impairment of angiogenesis may promote cardiomyocyte hypoxia and myocardial fibrosis, leading to diastolic dysfunction and HFpEF. This review summarizes current knowledge of SIRT3 in EC metabolism, coronary microvascular rarefaction and HFpEF.

13.
Int J Vitam Nutr Res ; 89(3-4): 144-151, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30856082

ABSTRACT

Background: The cellular and molecular mechanisms of cardioprotective effects of Vitamin D are poorly understood. Given the essential role of sirtuin-3 (SIRT3) as an endogenous negative regulator of cardiac hypertrophy, this study was designed to investigate the effect of 1, 25-dihydroxyvitamin D3 (calcitriol) on hypertrophy markers and SIRT3 mRNA and protein levels following angiotensin II induced - hypertrophy in cardiomyoblast H9c2 cells. Methods: Rat cardiomyoblast H9c2 cells were treated for 48 hr with angiotensin II alone (Ang group) or in combination with 1, 10 and 100 nM of calcitriol (C + Ang groups). Intact cells served as control (Ctl). The cell area was measured using methylene blue staining. Atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and SIRT3 transcription levels were measured by real time RT-PCR. SIRT3 protein expression was evaluated using western blot technique. Results: The results showed that in Ang group cell size was increase by 128.4 ± 15% (P < 0.001 vs. Ctl) whereas in C100 + Ang group it was increased by 21.3 ± 6% (P < 0.001 vs. Ang group). Calcitriol pretreatment decreased ANP mRNA level significantly (P < 0.05) in comparison with Ang group (Ang: 75.5 ± 15%, C100 + Ang: 19.2 ± 9%). There were no significant differences between Ang group and cells pretreated with 1 and 10 nM of calcitriol. SIRT3 at mRNA and protein levels did not change significantly among the experimental groups. Conclusions: In conclusion, pretreatment with calcitriol (100 nM) prevents Ang II-induced hypertrophy in cardiomyoblast H9c2 cells. This probably occurs through other pathways except SIRT3 upregulation.


Subject(s)
Angiotensin II/metabolism , Calcitriol/pharmacology , Cardiomegaly , Myocytes, Cardiac , RNA, Messenger/metabolism , Angiotensin II/chemistry , Animals , Myocytes, Cardiac/drug effects , RNA, Messenger/chemistry , Rats
14.
J Cell Physiol ; 234(7): 11463-11473, 2019 07.
Article in English | MEDLINE | ID: mdl-30588609

ABSTRACT

This study aims to verify whether the inhibitory effect of Sirtuin 3 (SIRT3) on the formation of renal calcium oxalate crystals was mediated through promoting macrophages (Mϕs) polarization. Identification and quantification of M1 and M2 monocytes were performed using fluorescence-activated cell sorting analysis. SIRT3 protein level and forkhead box O1 (FOXO1) acetylation level were measured using western blot analysis. Cell apoptosis of HK-2 was detected by flow cytometry. Mouse kidney tissues were subjected to Von Kossa staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemical staining for detection of kidney crystals deposition, apoptosis, and expression of crystal-related molecules, respectively. The results showed that human peripheral blood monocytes from patients with kidney stone (KS) exhibited decreased M2 monocytes percentage and SIRT3 expression, whereas increased FOXO1 acetylation compared with the normal controls. In vitro assay revealed that SIRT3 overexpression in bone marrow-derived M0/M1/M2 Mϕs induced M2 polarization and decreased FOXO1 acetylation. Furthermore, FOXO1 knockdown reversed SIRT3-mediated induction of M2 polarization and inhibition of HK-2 (human proximal tubular cell line) apoptosis. Further in vivo experiments demonstrated that SIRT3-overexpressing Mϕs transfusion not only induced M2 polarization, but also alleviated inflammation, apoptosis, and crystals deposition in glyoxylate-induced KS mice. In conclusion, SIRT3 suppresses formation of renal calcium oxalate crystals through promoting M2 polarization via deacetylating FOXO1.


Subject(s)
Calcium Oxalate/chemistry , Kidney Calculi/metabolism , Macrophages/physiology , Sirtuin 3/metabolism , Animals , Calcium Oxalate/metabolism , Cell Line , Coculture Techniques , Cytokines/genetics , Cytokines/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Gene Expression Regulation/drug effects , Glyoxylates/toxicity , Humans , Kidney Calculi/chemistry , Macrophages/transplantation , Male , Mice , Mice, Inbred C57BL , Random Allocation , Sirtuin 3/genetics
15.
J Biochem Mol Toxicol ; 33(2): e22249, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30368983

ABSTRACT

Sirtuin3 (SIRT3) plays an important role in maintaining normal mitochondrial function and alleviating oxidative stress. After carbon tetrachloride (CCl4 ) administration, the expression of SIRT3 decreased in the liver of mice, which indicated that the SIRT3 might play a crucial role during chemical-induced acute hepatic injury. To verify the hypothesis, CCl 4 was given to induce acute hepatic injury in SIRT3 knockout (KO) mice and wild-type (WT) mice. CCl 4 -induced liver injury was more severe in SIRT3 KO mice compared with the WT mice. In addition, the oxidative stress induced by CCl 4 was enhanced in the SIRT3 KO mice. Furthermore, the increased expression of dynamin-related protein 1 was also aggravated in SIRT3 KO mice after CCl 4 administration. In conclusion, our study demonstrated that SIRT3 deficiency exacerbated CCl 4 -induced impairment of the liver in mice, and the mechanism might be related to enhanced oxidative stress.


Subject(s)
Carbon Tetrachloride Poisoning , Chemical and Drug Induced Liver Injury , Oxidative Stress/genetics , Sirtuin 3/deficiency , Animals , Carbon Tetrachloride Poisoning/genetics , Carbon Tetrachloride Poisoning/metabolism , Carbon Tetrachloride Poisoning/pathology , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Mice , Mice, Knockout
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-801827

ABSTRACT

Objective: To observe the effect of phlegm and blood stasis on the expressions of sirtuin 3(SIRT3)protein and urate transporter 1(URAT1) mRNA in skeletal muscle of diabetic rats with gout. Method: The 40 healthy rats, excepting the normal group, the remaining groups were fed with high-fat diet combined with low-dose streptozotocin solution (40 mg·kg-1) once a day, with blood glucose "16.7 mmol·L-1" as the criterion for the diabetes model. After 4 days, the 5% sodium urate solution was injected into the joint cavity once to induce the gout model. After the successful modeling, the Biling group (10 g·kg-1), the indomethacin group (5 mg·kg-1) and the pioglitazone group (10 mg·kg-1) continued to be administered for 21 days. The normal group and the model group were given the same amount of normal saline. The expression of SIRT3 protein in skeletal muscle tissue was determined by Western blot, URAT1 mRNA expression in bone tissue was detected by quantitative real-time fluorescence polymerase chain reaction(Real-time PCR),and blood was collected to measure blood glucose (GLU), blood uric acid (UA) and C-reactive protein (CRP). Result: Compared with the normal group, GLU, UA and CRP in the model group were significantly increased (PPPPPPPPConclusion: Biling Qutong prescription with effects in purging turbidity, detoxifying and dredging collaterals can significantly reduce the content of serum inflammatory factor CRP, significantly increase the protein expression of SIRT3 in skeletal muscle tissue of model rats, lower the content of URAT1 mRNA, reduce the blood glucose and blood uric acid levels in diabetic gout rats, and protect joints.

17.
J Alzheimers Dis ; 64(1): 291-302, 2018.
Article in English | MEDLINE | ID: mdl-29865070

ABSTRACT

Accumulating evidence has demonstrated that mitochondrial dysfunction is a prominent early event in the progression of Alzheimer's disease (AD). Whether protecting mitochondrial function can reduce amyloid-ß oligomer (AßO)-induced neurotoxicity in PS1V97L transgenic mice remains unknown. In this study, we examined the possible protective effects of honokiol (HKL) on mitochondrial dysfunction induced by AßOs in neurons, and cognitive function in AD PS1V97Ltransgenic mice. We determined that HKL increased mitochondrial sirtuin 3 (SIRT3) expression levels and activity, which in turn markedly improved ATP production and weakened mitochondrial reactive oxygen species production. We demonstrated that the enhanced energy metabolism and attenuated oxidative stress of HKL restores AßO-mediated mitochondrial dysfunction in vitro and in vivo. Consequently, memory deficits in the PS1V97L transgenic mice were rescued by HKL in the early stages. These results suggest that HKL has therapeutic potential for delaying the onset of AD symptoms by alleviating mitochondrial impairment and increasing hyperactivation of SIRT3 in the pathogenesis of preclinical AD.


Subject(s)
Alzheimer Disease/complications , Biphenyl Compounds/therapeutic use , Cognition Disorders/etiology , Enzyme Inhibitors/therapeutic use , Lignans/therapeutic use , Mitochondria/metabolism , Sirtuin 3/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/chemistry , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Disease Models, Animal , Embryo, Mammalian , Female , Hippocampus/cytology , Male , Membrane Potential, Mitochondrial/drug effects , Membrane Potential, Mitochondrial/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria/drug effects , Neurons/drug effects , Neurons/ultrastructure , Oligoribonucleotides/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Presenilin-1/genetics , Rats , Rats, Sprague-Dawley
18.
Am J Transl Res ; 9(7): 3360-3373, 2017.
Article in English | MEDLINE | ID: mdl-28804553

ABSTRACT

Doxorubicin (Dox) is an anthracycline antibiotic widely used in cancer treatment. Although its antitumor efficacy appears to be dose dependent, its clinical use is greatly restricted by development of cardiotoxicity. Sirtuin-3 (Sirt3) is the major deacetylase within the mitochondrial matrix that plays an important role in regulation of cardiac function. This study was performed to identify the regulatory role of Sirt3 on Dox-induced cardiac hypertrophy and mitochondrial dysfunction in rats in vivo and in vitro. We found that adenovirus-mediated overexpression of Sirt3 resulted in marked inhibition of Dox-induced cardiac hypertrophy, particularly mitochondrial dysfunction including opening of the mitochondrial permeability transition pore (mPTP), loss of mitochondrial membrane potential (ΔΨm), respiration dysfunction, and mitochondrial reactive oxygen species (ROS) production. Further study revealed that Bcl-2-like 19 kDa-interacting protein 3 (Bnip3) mRNA and protein expression levels were altered in cardiomyocytes in vivo and in vitro after Dox treatment, and these increases were significantly inhibited by Sirt3 overexpression. Interestingly, the Dox-disrupted mitochondrial Cox1-Ucp3 complexes were preserved by Sirt3 overexpression. Finally, recombinant adeno-associated virus-mediated overexpression of Bnip3 (AAV-Bnip3) in rat hearts and cardiomyocytes completely impaired the protective effects of Sirt3 on Dox-induced cardiac toxicity and mitochondrial dysfunction. These findings reveal a new molecular mechanism in which Sirt3 restores mitochondrial respiratory chain defects, and cell viability of Dox-damaged cardiomyocytes is mutually dependent on and obligatorily linked to suppression of Bnip3 gene expression. Interventions that antagonize Bnip3 may contribute to the beneficial effect of Sirt3 regarding prevention of mitochondrial injury and heart failure in cancer patients undergoing chemotherapy.

19.
Int J Mol Sci ; 18(7)2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28737710

ABSTRACT

Recovered blood supply after cerebral ischemia for a certain period of time fails to restore brain function, with more severe dysfunctional problems developing, called cerebral ischemia-reperfusion injury (CIR). CIR involves several extremely complex pathophysiological processes in which the interactions between key factors at various stages have not been fully elucidated. Mitochondrial dysfunction is one of the most important mechanisms of CIR. The mitochondrial deacetylase, sirtuin 3 (SIRT3), can inhibit mitochondrial oxidative stress by deacetylation, to maintain mitochondrial stability. Uncoupling protein 2 (UCP2) regulates ATP (Adenosine triphosphate) and reactive oxygen species production by affecting the mitochondrial respiratory chain, which may play a protective role in CIR. Finally, we propose that UCP2 regulates the activity of SIRT3 through sensing the energy level and, in turn, maintaining the mitochondrial steady state, which demonstrates a cytoprotective effect on CIR.


Subject(s)
Brain Diseases/metabolism , Mitochondria/metabolism , Oxidative Stress , Reperfusion Injury/metabolism , Sirtuin 3/metabolism , Uncoupling Protein 2/metabolism , Animals , Brain Diseases/pathology , Humans , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...