Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters











Publication year range
1.
Pest Manag Sci ; 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39350697

ABSTRACT

BACKGROUND: Climate change has far-reaching effects on food security and agriculture, affecting crop yields and food distribution. Agriculture relies heavily on water for irrigation and production, making it vulnerable to water scarcity. Additionally, climate change can affect crop pest insects, leading to increased global crop losses, particularly in cereals, an important component of the human diet. Aphids are major crop pests and have a symbiotic relationship with bacterial endosymbionts that can contribute to their success as pests under a climate change scenario. To test the effect of drought on aphids, we examined varying levels of water deficit and endosymbiont composition on the grain aphid (Sitobion avenae) performance on wheat under controlled laboratory conditions. We measured the intrinsic rate of population increase (rm), the body weight of adult aphids, and the pre-reproductive period for different genotypes of the grain aphid (including Chilean superclones) under different irrigation regimes. We also analyzed the relative abundance of their endosymbionts under the different water treatments. RESULTS: Our findings revealed that water deficit affects each aphid genotype differently, impacting various traits. For instance, the body weight of adult aphids was notably affected by different water treatments, with aphids grown under intermediate water deficit (IW) being significantly bigger. The relative abundance of endosymbionts also varied among genotypes and water treatments-specifically Regiella insecticola had a noticeably higher abundance under IW (P < 0.05). CONCLUSION: This study provides valuable insights into the impact of water deficit on aphid performance and the role of endosymbionts in mitigating the effects of water deficit. © 2024 Society of Chemical Industry.

2.
Pest Manag Sci ; 2024 Aug 17.
Article in English | MEDLINE | ID: mdl-39152728

ABSTRACT

BACKGROUND: Due to the increasing presence of insecticide resistance across cereal aphid populations, new aphid management strategies, including the engineering of host resistance to aphids into commercial wheat varieties, are required. Previous studies have identified ancestor wheat, Triticum monococcum accessions MDR045 and MDR049, with resistance against the grain aphid, Sitobion avenae. To test the hypothesis that resistance can be accounted for by antixenosis (reduced attractiveness of host plants) via the release of repellent volatile organic compounds (VOCs), we explored the response of S. avenae to MDR045 and MDR049 following S. avenae herbivory, using behaviour and electrophysiology experiments. RESULTS: In four-arm olfactometry assays, alate S. avenae showed aphid density-dependent reduced preference to VOC extracts from T. monococcum MDR045 and MDR049. By contrast, alate S. avenae showed aphid density-dependent increased preference to extracts from aphid-susceptible hexaploid wheat, Triticum aestivum var. Solstice and T. monococcum MDR037. Coupled gas chromatography-electroantennography (GC-EAG), using the antennae of alate S. avenae, located 24 electrophysiologically active compounds across all tested accessions. Synthetic blends created from 21 identified EAG-active compounds confirmed bioactivity of corresponding VOC extracts in four-arm olfactometry assays against alate S. avenae. CONCLUSION: Our data suggest that resistance of T. monococcum MDR045 and MDR049 to S. avenae can be at least partially accounted for by antixenosis through antennal perception of specific repellent VOC blends induced by S. avenae feeding behaviour. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891867

ABSTRACT

MicroRNAs (miRNA) play a vital role in insects' growth and development and have significant potential value in pest control. Previously, we identified miR-306 from small RNA libraries within the English grain aphid, Sitobion avenae, a devasting insect pest for wheat. miR-306 not only involves in wing morphogenesis, but also is critically important for aphid survival. Its specific impacts on the life history traits, however, remain unclear. Here, we evaluate the impact of miR-306 perturbation on S. avenae populations using a two-sex life table approach. This comprehensive analysis revealed that miR-306 perturbation significantly prolongs the developmental stages (9.64% and 8.20%) and adult longevity of S. avenae, while decreasing pre-adult survival rate (41.45% and 38.74%) and slightly reducing average fecundity (5.80% and 13.05%). Overall, miR-306 perturbation negatively affects the life table parameters of the aphid population. The population prediction models show a significant decline in the aphid population 60 days post interference, compared to the control groups (98.14% and 97.76%). Our findings highlight the detrimental effects of miR-306 perturbation on S. avenae population growth and suggest potential candidate genes for the development of RNAi-based biopesticides targeted specifically at this pest species.


Subject(s)
Aphids , MicroRNAs , Animals , Aphids/genetics , Aphids/physiology , Fertility/genetics , Longevity/genetics , MicroRNAs/genetics
4.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731798

ABSTRACT

Aphids are insect pests that suck phloem sap and introduce salivary proteins into plant tissues through saliva secretion. The effector of salivary proteins plays a key role in the modulation of host plant defense responses and enhancing aphid host adaptation. Based on previous transcriptome sequencing results, a candidate effector cyclin-dependent kinase-like (CDK) was identified from the grain aphid Sitobion avenae. In this study, the function of SaCDK in wheat defense response and the adaptation of S. avenae was investigated. Our results showed that the transient overexpression of SaCDK in tobacco Nicotiana benthamiana suppressed cell death triggered by mouse pro-apoptotic protein-BAX or Phytophthora infestans PAMP-INF1. SaCDK, delivered into wheat cells through a Pseudomonas fluorescens-mediated bacterial type III secretion system, suppressed callose deposition in wheat seedlings, and the overexpression of SaCDK in wheat significantly decreased the expression levels of salicylic acid and jasmonic acid signaling pathway-related genes phenylalanine ammonia lyase (PAL), pathogenesis-related 1 protein (PR1), lipoxygenase (LOX) and Ω-3 fatty acid desaturase (FAD). In addition, aphid bioassay results showed that the survival and fecundity of S. avenae were significantly increased while feeding on the wheat plants carrying SaCDK. Taken together, our findings demonstrate that the salivary protein SaCDK is involved in inhibiting host defense response and improving its host adaptation, which lays the foundation to uncover the mechanism of the interaction of cereal aphids and host plants.


Subject(s)
Aphids , Triticum , Animals , Aphids/physiology , Triticum/parasitology , Triticum/genetics , Triticum/metabolism , Salivary Proteins and Peptides/metabolism , Salivary Proteins and Peptides/genetics , Insect Proteins/metabolism , Insect Proteins/genetics , Adaptation, Physiological , Plant Diseases/parasitology , Gene Expression Regulation, Plant , Nicotiana/parasitology , Nicotiana/genetics , Cyclopentanes/metabolism , Oxylipins
5.
Pest Manag Sci ; 80(7): 3389-3400, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38391141

ABSTRACT

BACKGROUND: Over the course of evolution, plants have developed various sophisticated defense mechanisms to resist pests and diseases. The phytohormone abscisic acid (ABA) has an important role in the growth and development of plants and confers tolerance to selected abiotic stressors, such as drought. Previous studies have shown that ABA promotes the deposit of callose in response to piercing/sucking insect pests. The English grain aphid, Sitobion avenae Fabricius, causes huge losses in rice and is especially harmful to rice seedlings. RESULTS: Exogenous ABA promoted growth and reduced the feeding behavior of S. avenae nymphs in rice. Our results suggested that enhanced trichome density and increased expression of related genes may be associated with rice resistance to aphids. An analysis of volatiles revealed the production of seven compounds associated with pest resistance. CONCLUSION: These results indicate that ABA reduces aphid feeding in rice. Our findings provide a basis for understanding ABA-mediated defense responses in rice and provide insights on more environmentally-friendly approaches to control. © 2024 Society of Chemical Industry.


Subject(s)
Abscisic Acid , Aphids , Oryza , Seedlings , Oryza/genetics , Oryza/parasitology , Aphids/physiology , Aphids/drug effects , Aphids/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Animals , Seedlings/genetics , Seedlings/growth & development , Seedlings/parasitology , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Nymph/growth & development , Nymph/drug effects , Nymph/physiology , Nymph/genetics , Plant Diseases/parasitology
6.
Pest Manag Sci ; 80(2): 569-576, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37732942

ABSTRACT

BACKGROUND: Maximizing the effectiveness of natural pest control requires a detailed understanding of how service delivery is affected by natural enemy community diversity and composition. Many studies have investigated the effects of natural enemy abundance and species richness on pest control. Studies examining the effects of evenness and species identity are fewer and have produced inconsistent results. Here we test the effects of arthropod predator community evenness and species identity on natural pest control by exposing aphid (Sitobion avenae) colonies in experimental cages to arthropod predator communities that had the same abundance and species richness but differed in evenness and dominant species. RESULTS: We found that the identity of the most dominant species in the arthropod predator community predominantly drove the pest control efficiency. However, additional to the effects of species identity, we also found a causal positive relationship between the evenness of arthropod predator communities and the suppression of pest growth. CONCLUSION: Our results provide support for the hypothesis that ecosystem service provision is generally a function of the abundance and efficiency of the most dominant species of the service-providing groups. This could partly explain why management practices aiming at promoting abundance of natural enemies often have mixed effects on pest control. Our results also demonstrate that diversity components such as evenness have important additional effects. However, in real-world ecosystems these effects may be obscured because evenness is generally confounded with abundance or species richness in natural enemy predator communities. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Arthropods , Animals , Ecosystem , Pest Control, Biological/methods , Predatory Behavior
7.
Pest Manag Sci ; 80(4): 1949-1956, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38088471

ABSTRACT

BACKGROUND: Facultative bacterial endosymbionts have the potential to influence the interactions between aphids, their natural enemies, and host plants. Among the facultative symbionts found in populations of the grain aphid Sitobion avenae in central Chile, the bacterium Regiella insecticola is the most prevalent. In this study, we aimed to investigate whether infected and cured aphid lineages exhibit differential responses to wheat cultivars containing varying levels of the benzoxazinoid DIMBOA (2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3(4H)-one), which is a xenobiotic compound produced by plants. Specifically, we examined the reproductive performance responses of the most frequently encountered genotypes of Sitobion avenae when reared on wheat seedlings expressing low, medium, and high concentrations of DIMBOA. RESULTS: Our findings reveal that the intrinsic rate of population increase (rm ) in cured lineages of Sitobion avenae genotypes exhibits a biphasic pattern, characterized by the lowest rm and an extended time to first reproduction on wheat seedlings with medium levels of DIMBOA. In contrast, the aphid genotypes harbouring Regiella insecticola display idiosyncratic responses, with the two most prevalent genotypes demonstrating improved performance on seedlings featuring an intermediate content of DIMBOA compared to their cured counterparts. CONCLUSION: This study represents the first investigation into the mediating impact of facultative endosymbionts on aphid performance in plants exhibiting varying DIMBOA contents. These findings present exciting prospects for identifying novel targets for aphid control by manipulating the presence of aphid symbionts. © 2023 Society of Chemical Industry.


Subject(s)
Aphids , Benzoxazines , Animals , Aphids/physiology , Triticum , Reproduction , Enterobacteriaceae/genetics , Bacteria
8.
BMC Biol ; 21(1): 157, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443008

ABSTRACT

BACKGROUND: Aphids are common crop pests. These insects reproduce by facultative parthenogenesis involving several rounds of clonal reproduction interspersed with an occasional sexual cycle. Furthermore, clonal aphids give birth to live young that are already pregnant. These qualities enable rapid population growth and have facilitated the colonisation of crops globally. In several cases, so-called "super clones" have come to dominate agricultural systems. However, the extent to which the sexual stage of the aphid life cycle has shaped global pest populations has remained unclear, as have the origins of successful lineages. Here, we used chromosome-scale genome assemblies to disentangle the evolution of two global pests of cereals-the English (Sitobion avenae) and Indian (Sitobion miscanthi) grain aphids. RESULTS: Genome-wide divergence between S. avenae and S. miscanthi is low. Moreover, comparison of haplotype-resolved assemblies revealed that the S. miscanthi isolate used for genome sequencing is likely a hybrid, with one of its diploid genome copies closely related to S. avenae (~ 0.5% divergence) and the other substantially more divergent (> 1%). Population genomics analyses of UK and China grain aphids showed that S. avenae and S. miscanthi are part of a cryptic species complex with many highly differentiated lineages that predate the origins of agriculture. The complex consists of hybrid lineages that display a tangled history of hybridisation and genetic introgression. CONCLUSIONS: Our analyses reveal that hybridisation has substantially contributed to grain aphid diversity, and hence, to the evolutionary potential of this important pest species. Furthermore, we propose that aphids are particularly well placed to exploit hybridisation events via the rapid propagation of live-born "frozen hybrids" via asexual reproduction, increasing the likelihood of hybrid lineage formation.


Subject(s)
Aphids , Animals , Aphids/genetics , Poaceae , Reproduction, Asexual , Reproduction , Genomics
9.
J Therm Biol ; 114: 103550, 2023 May.
Article in English | MEDLINE | ID: mdl-37344023

ABSTRACT

How to predict animals' heat-avoidance behaviors is critical since behavior stands the first line for animals dealing with frequent heat events under ongoing climate warming. However, the discrepancy between the scarcity of research on heat-avoidance behaviors and the commonness of eco-physiological data for thermal tolerance and for thermal sensitivity such as the temperature-dependent survival time makes it difficult to link physiological thermal traits to heat-avoidance behavior. Aphids usually suck plant sap on a fixed site on the host plants at moderate temperatures, but they will leave and seek cooler feeding sites under stressful temperatures. Here we take the cereal aphid assemblages comprising different species with various development stages as a model system. We tested the hypotheses that heat tolerance (critical thermal maximum, CTmax) or heat sensitivity (temperature-dependent declining rate of survival time, similarly hereinafter) would associate with the temperature at which aphid activate heat-avoidance behavior. Specifically, we hypothesized the aphids with less heat tolerance or greater heat sensitivity would take a lower heat risk by leaving the host plant earlier. By mimicking the linear increase in ambient temperature during the daytime, we measured the CTmax and the heat-avoidance temperature (HAT, at which aphids leave the host plant to find cooler places) to understand their heat tolerance and heat-avoidance behavior. Then, we tested the survival time of aphids at different temperatures and calculated the slope of survival time declining with temperature to assess their heat sensitivity (HS). Finally, we examined the relationships between CTmax and HAT and between HS and HAT to understand if the heat-avoidance behavior associates with heat tolerance or with heat sensitivity. The results showed that HS and HAT had a strong correlation, with more heat sensitive individuals displayed lower HAT. By contrast, CTmax and HAT had a weak correlation. Our results thus provide evidence that heat sensitivity is a more reliable indicator than thermal tolerance linking with the heat-avoidance behavior in the aphid assemblages. Most existing studies use the indexes related to thermal tolerance to predict warming impacts. Our findings highlight the urgency to incorporate thermal sensitivity when predicting animal responses to climate change.


Subject(s)
Aphids , Thermotolerance , Animals , Aphids/physiology , Avoidance Learning , Hot Temperature , Behavior, Animal
10.
Pest Manag Sci ; 79(10): 3970-3978, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37283187

ABSTRACT

BACKGROUND: The English grain aphid, Sitobion avenae (Fabricius), is a devastating pest impacts yield and quality in wheat (Triticum aestivum L.). Breeding resistant wheat varieties and detecting resistance genes are important strategies to control aphid. RESULTS: In this study, we evaluated the number of aphids per spike, the rate of thousand kernel weight decrease and aphid index based on three classic resistance mechanisms (antibiosis, tolerance and antixenosis), and detected SNPs/QTLs for resistance to S. avenae in a natural population of 163 varieties with 20 689 high-quality single-nucleotide polymorphism (SNP) markers and recombinant inbred line (RIL) population of 164 lines with 3627 diversity arrays technology (DArT) markers. Results showed that 83 loci significantly associated with S. avenae antibiosis and 182 loci significantly associated with S. avenae tolerance were detected by genome-wide association study (GWAS), explaining 6.47-15.82% and 8.36-35.61% of the phenotypic variances, respectively. The wsnp_Ku_c4568_8243646 detected in two periods was localized at 34.52 Mb on chromosome 3AS. Then, we confirmed a stable QSa.haust-3A.2 explained 11.19-20.10% of the phenotypic variances in two periods with S. avenae antixenosis in the physical interval of 37.49-37.50 Mb on chromosome 3A in the RIL population. Therefore, a narrow region in the physical interval of 34.52-37.50 Mb on chromosome 3AS was named as qSa-3A, which was a new locus between wsnp_Ku_c4568_8243646 and QSa.haust-3A.2 associated with S. avenae resistance. CONCLUSION: We found qSa-3A was a new locus associated with S. avenae resistance. The results could be applied in gene cloning and genetic improvement of S. avenae resistance in wheat. © 2023 Society of Chemical Industry.


Subject(s)
Aphids , Genome-Wide Association Study , Animals , Triticum/genetics , Aphids/genetics , Plant Breeding , Chromosome Mapping
11.
J Therm Biol ; 114: 103583, 2023 May.
Article in English | MEDLINE | ID: mdl-37270894

ABSTRACT

A single critical thermal limit is often used to explain and infer the impact of climate change on geographic range and population abundance. However, it has limited application in describing the temporal dynamic and cumulative impacts of extreme temperatures. Here, we used a thermal tolerance landscape approach to address the impacts of extreme thermal events on the survival of co-existing aphid species (Metopolophium dirhodum, Sitobion avenae and Rhopalosiphum padi). Specifically, we built the thermal death time (TDT) models based on detailed survival datasets of three aphid species with three ages across a broad range of stressful high (34-40 °C) and low (-3∼-11 °C) temperatures to compare the interspecific and developmental stage variations in thermal tolerance. Using these TDT parameters, we performed a thermal risk assessment by calculating the potential daily thermal injury accumulation associated with the regional temperature variations in three wheat-growing sites along a latitude gradient. Results showed that M. dirhodum was the most vulnerable to heat but more tolerant to low temperatures than R. padi and S. avenae. R. padi survived better at high temperatures than Sitobion avenae and M. dirhodum but was sensitive to cold. R. padi was estimated to accumulate higher cold injury than the other two species during winter, while M. dirhodum accrued more heat injury during summer. The warmer site had higher risks of heat injury and the cooler site had higher risks of cold injury along a latitude gradient. These results support recent field observations that the proportion of R. padi increases with the increased frequency of heat waves. We also found that young nymphs generally had a lower thermal tolerance than old nymphs or adults. Our results provide a useful dataset and method for modelling and predicting the consequence of climate change on the population dynamics and community structure of small insects.


Subject(s)
Aphids , Cold Injury , Animals , Climate Change , Temperature , Cold Temperature
12.
Molecules ; 28(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37241874

ABSTRACT

Wheat is critical for food security, and is challenged by biotic stresses, chiefly aphids and the viruses they transmit. The objective of this study was to determine whether aphids feeding on wheat could trigger a defensive plant reaction to oxidative stress that involved plant oxylipins. Plants were grown in chambers with a factorial combination of two nitrogen rates (100% N vs. 20% N in Hoagland solution), and two concentrations of CO2 (400 vs. 700 ppm). The seedlings were challenged with Rhopalosiphum padi or Sitobion avenae for 8 h. Wheat leaves produced phytoprostanes (PhytoPs) of the F1 series, and three types of phytofurans (PhytoFs): ent-16(RS)-13-epi-ST-Δ14-9-PhytoF, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF. The oxylipin levels varied with aphids, but not with other experimental sources of variation. Both Rhopalosiphum padi and Sitobion avenae reduced the concentrations of ent-16(RS)-13-epi-ST-Δ14-9-PhytoF and ent-16(RS)-9-epi-ST-Δ14-10-PhytoF in relation to controls, but had little or no effect on PhytoPs. Our results are consistent with aphids affecting the levels of PUFAs (oxylipin precursors), which decreased the levels of PhytoFs in wheat leaves. Therefore, PhytoFs could be postulated as an early indicator of aphid hosting for this plant species. This is the first report on the quantification of non-enzymatic PhytoFs and PhytoPs in wheat leaves in response to aphids.


Subject(s)
Aphids , Oxylipins , Animals , Aphids/physiology , Triticum , Carbon Dioxide , Plant Leaves
13.
Insects ; 14(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37103198

ABSTRACT

Ecdysteroid hormones are key regulators of insect development and metamorphosis. Ecdysone-inducible E75, a major component of insect ecdysone signaling pathway, has been well characterized in holometabolous insects, however, barely in hemimetabolous species. In this study, a total of four full-length E75 cDNAs from the English grain aphid, Sitobion avenae, were identified, cloned, and characterized. The four SaE75 cDNAs contained 3048, 2625, 2505, and 2179 bp open reading frames (ORF), encoding 1015, 874, 856, and 835 amino acids, respectively. Temporal expression profiles showed that SaE75 expression was low in adult stages, while high in pseudo embryo and nymphal stages. SaE75 was differentially expressed between winged and wingless morphs. RNAi-mediated suppression of SaE75 led to substantial biological impacts, including mortality and molting defects. As for the pleiotropic effects on downstream ecdysone pathway genes, SaHr3 (hormone receptor like in 46) was significantly up-regulated, while Sabr-c (broad-complex core protein gene) and Saftz-f1 (transcription factor 1) were significantly down-regulated. These combined results not only shed light on the regulatory role of E75 in the ecdysone signaling pathway, but also provide a potential novel target for the long-term sustainable management of S. avenae, a devastating global grain pest.

14.
Plants (Basel) ; 12(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903850

ABSTRACT

Silicon occupies an important position in the nutrient requirements of wheat. It has been reported that silicon enhances plant resistance to phytophagous insects. However, only limited research has been carried out on the effects of silicon application to wheat and Sitobion avenae populations. In this study, three silicon fertilizer concentrations were treated for potted wheat seedlings, including 0 g/L, 1 g/L, and 2 g/L of water-soluble silicon fertilizer solution. The effect of silicon application on the developmental period, longevity, reproduction, wing pattern differentiation, and other vital life table parameters of the S. avenae were determined. The cage method and the Petri dish isolated leaf method were used to determine the effect of silicon application on the feeding preference of the winged and wingless aphid. The results showed silicon application had no significant effect on the aphid instar of 1-4; although, 2 g/L silicon fertilizer prolonged the nymph stage and 1 and 2 g/L of silicon application all shortened the adult stage and reduced the longevity and fertility of the aphid. Two instances of silicon application reduced the net reproductive rate (R0), intrinsic rate of increase (rm), and finite rate of increase (λ) of the aphid. A 2 g/L silicon application prolonged the population doubling time (td), significantly reduced the mean generation time (T), and increased the proportion of winged aphids. The results also demonstrated that the selection ratio of winged aphids in wheat leaves treated with 1 g/L and 2 g/L silicon was reduced by 8.61% and 17.88%, respectively. The number of aphids on leaves treated with 2 g/L silicon was significantly reduced at 48 and 72 h of aphids released, and the application of silicon to wheat was detrimental to the feeding preference of S. avenae. Therefore, the application of silicon at 2 g/L to wheat has an inhibitory effect on the life parameters and feeding preference of S. avenae.

15.
Plants (Basel) ; 12(2)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36678951

ABSTRACT

Imidacloprid seed treatments are effective at reducing the cohorts of many insect pests on crops such as cotton, corn, and cereals. The effects of imidacloprid seed treatments depend on the aphid species. In China, there are four wheat aphid species-Sitobion avenae (Fabricius), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Metopolophium dirhodum (Walker)-and for a given region, these four aphid species differ in dominance with changes in cultivation practices and climate. Therefore, it is necessary to evaluate the effects of imidacloprid seed treatments on the four different aphid species. In experiments in the laboratory, imidacloprid seed treatments significantly reduced the survival rates of S. avenae, R. padi, and S. graminum to 57.33 ± 2.86%, 12.67 ± 1.92%, and 20.66 ± 2.33%, respectively, but for M. dirhodum, there was no significant difference between the control (96.33 ± 1.08%) and the treatment (97.00 ± 0.98%). The fecundities of the four aphid species were much reduced, especially for R. padi when feeding on treated wheat plants. For the field survey, only three aphid species were considered because the density of S. graminum was too low to be analyzed. The effects of imidacloprid seed treatment on the three aphid species in the field were consistent with the laboratory results. Imidacloprid seed treatment reduced the population sizes of S. avenae and R. padi at rates of 70.30 ± 3.15% and 87.62 ± 2.28%, respectively, for the whole wheat season in the field. For M. dirhodum, imidacloprid seed treatments were less effective, and the densities of M. dirhodum increased on four sample days. From this study, we confirmed that the effect of imidacloprid seed treatment varied with the composition of aphid species, being especially less effective for M. dirhodum.

16.
Insects ; 13(9)2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36135478

ABSTRACT

Clip cages are commonly used to confine aphids or other small insects to a single leaf when conducting plant-small insect interaction studies; however, clip cages are usually heavy or do not efficiently transmit light, which has an impact on leaf physiology, limiting their application. Here, simple, lightweight, and transparent modified clip cages were constructed using punched clear plastic cups, cut transparent polyvinyl chloride sheets, nylon organdy mesh, and bent duck-bill clips. These cages can be clipped directly onto dicot leaves or attached to monocot leaves with bamboo skewers and elastic bands. The weight, production time, and aphid escape rates of the modified clip cages were 3.895 ± 0.004 g, less than 3 min, and 2.154 ± 0.323%, respectively. The effects of the modified clip cage on the growth, development, and reproduction of the English grain aphid (Sitobion avenae Fabricius) in comparison with the whole cage were studied. The biochemical responses of wheat (Triticum aestivum) to the cages were also investigated. No significant differences were observed in the life table parameters, nymph mortality, and adult fecundity in S. avenae confined to clip cages and whole cages, but the clip cages were more time efficient than whole cages when conducting life table studies. Moreover, the hydrogen peroxide accumulation, callose deposition, and cell necrosis in wheat leaves covered by empty clip cages and empty whole cages were similar, and significantly lower than treatments where the aphids were inside the clip cage. The results demonstrate that the modified clip cages had negligible effects on the plant and aphid physiology, suggesting that they are effective for studying plant-small insect interactions.

17.
Insects ; 13(6)2022 May 27.
Article in English | MEDLINE | ID: mdl-35735845

ABSTRACT

Resistant variety screening is widely recommended for the management of Sitobion avenae. The purpose of this study was to assess responses of six wheat varieties (lines) to S. avenae. The aphid quantity ratio (AQR) was used to assess S. avenae resistance. Pearson's correlation coefficient was used to perform a correlation analysis between AQR, biological parameters, and the accumulation of total phenolic and flavonoid content. When compared to the other cultivars, the results showed that two cultivars, Yongliang No.15 and Ganchun No.18, had high resistance against S. avenae. The correlation analysis revealed a positive relationship between total phenol and flavonoid content accumulation and developmental duration (DD), and a negative relationship between accumulation and weight gain (WG) and mean relative growth rate (MRGR). The correlation between flavonoid and biological parameters was statistically stronger than the correlation between total phenol and biological parameters. This research provides critical cues for screening and improving aphid-resistant wheat varieties in the field and will aid in our understanding of the resistance mechanism of wheat varieties against S. avenae.

18.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682692

ABSTRACT

The grain aphid Sitobion avenae (Fabricius) is one of the most destructive pests of wheat (Triticum aestivum). Deployment of resistant wheat germplasm appears as an excellent solution for this problem. Elite bread wheat cultivars only have limited resistance to this pest. The present study was carried out to investigate the potential of the tetraploid wheat (Triticum turgidum) variety Lanmai, which showed high resistance to S. avenae at both seedling and adult plant stages, as a source of resistance genes. Based on apterous adult aphids' fecundity tests and choice bioassays, Lanmai has been shown to display antixenosis and antibiosis. Suppression subtractive hybridization (SSH) was employed to identify and isolate the putative candidate defense genes in Lanmai against S. avenae infestation. A total of 134 expressed sequence tags (ESTs) were identified and categorized based on their putative functions. RT-qPCR analysis of 30 selected genes confirmed their differential expression over time between the resistant wheat variety Lanmai and susceptible wheat variety Polan305 during S. avenae infestation. There were 11 genes related to the photosynthesis process, and only 3 genes showed higher expression in Lanmai than in Polan305 after S. avenae infestation. Gene expression analysis also revealed that Lanmai played a critical role in salicylic acid and jasmonic acid pathways after S. avenae infestation. This study provided further insights into the role of defense signaling networks in wheat resistance to S. avenae and indicates that the resistant tetraploid wheat variety Lanmai may provide a valuable resource for aphid tolerance improvement in wheat.


Subject(s)
Aphids , Animals , Antibiosis , Salicylic Acid , Tetraploidy , Triticum/genetics
19.
Oecologia ; 198(2): 443-456, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35001172

ABSTRACT

Many insect herbivores engage in apparent competition whereby two species interact through shared natural enemies. Upon insect attack, plants release volatile blends that attract natural enemies, but whether these volatiles mediate apparent competition between herbivores is not yet known. We investigate the role of volatiles that are emitted by bean plants upon infestation by Acyrthosiphon pisum aphids on the population dynamics and fitness of Sitobion avenae aphids, and on wheat phloem sap metabolites. In a field experiment, the dynamics of S. avenae aphids on wheat were studied by crossing two treatments: exposure of aphid colonies to A. pisum-induced bean volatiles and exclusion of natural enemies. Glasshouse experiments and analyses of primary metabolites in wheat phloem exudates were performed to better understand the results from the field experiment. In the field, bean volatiles did not affect S. avenae dynamics or survival when aphids were exposed to natural enemies. When protected from them, however, volatiles led to larger aphid colonies. In agreement with this observation, in glasshouse experiments, aphid-induced bean volatiles increased the survival of S. avenae aphids on wheat plants, but not on an artificial diet. This suggests that volatiles may benefit S. avenae colonies via metabolic changes in wheat plants, although we did not find any effect on wheat phloem exudate composition. We report a potential case of associational susceptibility whereby plant volatiles weaken the defences of receiving plants, thus leading to increased herbivore performance.


Subject(s)
Aphids , Fabaceae , Animals , Herbivory , Triticum
20.
G3 (Bethesda) ; 12(3)2022 03 04.
Article in English | MEDLINE | ID: mdl-34878113

ABSTRACT

The English grain aphid, Sitobion avenae, is a major agricultural pest of wheat, barley and oats, and one of the principal vectors of barley yellow dwarf virus leading to significant reductions in grain yield, annually. Emerging resistance to and increasing regulation of insecticides has resulted in limited options for their control. Using PacBio HiFi data, we have produced a high-quality draft assembly of the S. avenae genome; generating a primary assembly with a total assembly size of 475.7 Mb, and an alternate assembly with a total assembly size of 430.8 Mb. Our primary assembly was highly contiguous with only 326 contigs and a contig N50 of 15.95 Mb. Assembly completeness was estimated at 97.7% using BUSCO analysis and 31,007 and 29,037 protein-coding genes were predicted from the primary and alternate assemblies, respectively. This assembly, which is to our knowledge the first for an insecticide resistant clonal lineage of English grain aphid, will provide novel insight into the molecular and mechanistic determinants of resistance and will facilitate future research into mechanisms of viral transmission and aphid behavior.


Subject(s)
Aphids , Buchnera , Animals , Aphids/genetics , Buchnera/genetics , Genome , Sequence Analysis, DNA , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL