Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 228
Filter
1.
Skin Res Technol ; 30(7): e13849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978227

ABSTRACT

BACKGROUND: Skin hydration (SKH) measurements are used for multiple purposes: to study skin physiology, to clinically investigate dermatological issues, and to assess localized skin water in pathologies like diabetes and lymphedema. Often the volar forearm is measured at various times of day (TOD). This report aims to characterize intra-day variations in volar forearm SKH to provide guidance on expected TOD dependence. MATERIALS AND METHODS: Forty medical students (20 male) self-measured tissue dielectric constant (TDC) on their non-dominant forearm in triplicate as an index of local skin tissue water every 2 h starting at 0800 and ending at 2400 h. All were trained and pre-certified in the procedure and had whole-body fat (FAT%) and water (H2O%) measured. Day average TDC (TDCAVG) was determined as the average of all time points expressed as mean ± SD. RESULTS: Males versus females had similar ages (25.1 ± 2.2 years vs. 25.1 ± 1.5 years), higher H2O% (56.6 ± 5.0 vs. 51.8 ± 5.7, p = 0.002), and higher TDCAVG (32.7 ± 4.1 vs. 28.5 ± 5.1, p = 0.008). TDC values were not significantly impacted by H2O% or FAT%. Female TDC exhibited a significant decreasing trend from morning to night (p = 0.004); male TDC showed no trend. CONCLUSION: Skin water assessed by TDC shows some intra-day variations for females and males but with quite different temporal patterns. Clinical relevance relates to the confidence level associated with skin hydration estimates when measured at different times of day during normal clinic hours which, based on the present data, is expected to be around 5% for both males and females.


Subject(s)
Body Water , Forearm , Humans , Male , Female , Adult , Skin , Young Adult , Skin Physiological Phenomena
2.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891811

ABSTRACT

In the cosmetics industry, the extract from Raphanus sativus L. is fermented using specific starter cultures. These cosmetic ingredients act as preservatives and skin conditioners. Kombucha is traditionally made by fermenting sweetened tea using symbiotic cultures of bacteria and yeast and is used in cosmetic products. The aim of this study was to evaluate the cosmetic properties of radish leaf and root extract fermented with the SCOBY. Both unfermented water extracts and extracts after 7, 14, and 21 days of fermentation were evaluated. The analysis of secondary plant metabolites by UPLC-MS showed higher values for ferments than for extracts. A similar relationship was noted when examining the antioxidant properties using DPPH and ABTS radicals and the protective effect against H2O2-induced oxidative stress in fibroblasts and keratinocytes using the fluorogenic dye H2DCFDA. The results also showed no cytotoxicity to skin cells using Alamar Blue and Neutral Red tests. The ability of the samples to inhibit IL-1ß and COX-2 activity in LPS-treated fibroblasts was also demonstrated using ELISA assays. The influence of extracts and ferments on bacterial strains involved in inflammatory processes of skin diseases was also assessed. Additionally, application tests were carried out, which showed a positive effect of extracts and ferments on TEWL and skin hydration using a TEWAmeter and corneometer probe. The results obtained depended on the concentration used and the fermentation time.


Subject(s)
Anti-Bacterial Agents , Anti-Inflammatory Agents , Antioxidants , Fermentation , Plant Extracts , Plant Leaves , Plant Roots , Raphanus , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Raphanus/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Roots/chemistry , Fibroblasts/drug effects , Fibroblasts/metabolism , Kombucha Tea , Cyclooxygenase 2/metabolism , Interleukin-1beta/metabolism , Oxidative Stress/drug effects
3.
J Cosmet Dermatol ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712728

ABSTRACT

BACKGROUND: Papulopustular rosacea (PPR) is a chronic inflammatory disease with a significant impact on facial aesthetics. An impaired skin barrier is an important factor in the development and exacerbation of PPR. Tranexamic acid (TXA) has immune regulatory and anti-inflammatory effects, inhibits angiogenesis and endothelial hyperplasia, and promotes skin barrier repair. AIMS: We investigated the efficacy and safety of oral TXA for PPR treatment. PATIENTS/METHODS: In total, 70 patients were randomly assigned to receive traditional therapy plus oral TXA or traditional therapy alone for 8 weeks, with a 4-week follow-up period. The subjective improvement in rosacea was assessed using the clinical erythema assessment (CEA), investigator's global assessment (IGA), patient self-assessment (PSA) score, rosacea-specific quality of life (RQoL) score, and global aesthetic improvement score (GAIS). An objective improvement in rosacea was assessed using skin hydration, trans-epidermal water loss (TEWL), clinical photography, and an eight spectrum facial imager. RESULTS: CEA/IGA/PSA, dryness, and RQoL scores were significantly lower and GAIS was higher in the TXA group than in the traditional therapy group. Furthermore, oral TXA significantly improved skin barrier function, increased skin hydration, and decreased TEWL, with no significant side effects. Notably, we observed better outcomes and a greater improvement in skin barrier function with TXA treatment in patients with dry-type rosacea than in patients with oily skin. CONCLUSIONS: The addition of oral TXA to traditional therapy can lead to rapid and effective improvements in PPR, which may be attributed to improvements in skin barrier function.

4.
Sensors (Basel) ; 24(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38793869

ABSTRACT

Photothermal techniques are infrared remote sensing techniques that have been used for biomedical applications, as well as industrial non-destructive testing (NDT). Machine learning is a branch of artificial intelligence, which includes a set of algorithms for learning from past data and analyzing new data, without being explicitly programmed to do so. In this paper, we first review the latest development of machine learning and its applications in photothermal techniques. Next, we present our latest work on machine learning for data analysis in opto-thermal transient emission radiometry (OTTER), which is a type of photothermal technique that has been extensively used in skin hydration, skin hydration depth profiles, skin pigments, as well as topically applied substances and skin penetration measurements. We have investigated different algorithms, such as random forest regression, gradient boosting regression, support vector machine (SVM) regression, and partial least squares regression, as well as deep learning neural network regression. We first introduce the theoretical background, then illustrate its applications with experimental results.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38668218

ABSTRACT

This study aimed to assess natural oils for their antioxidant and anti-hyaluronidase properties and select the most effective candidate for development into nanoemulsions (NE) for clinical evaluations. The oils were assessed using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS•+) and ferric thiocyanate assays for antioxidant properties and an enzyme-substrate reaction assay for anti-hyaluronidase activity. The most potent oil was formulated into conventional emulsions (CE) and NE, which were characterized and evaluated for their stability, both in accelerated and long-term conditions. The irritation potential was assessed using both the hen's eggs chorioallantoic membrane test and a clinical trial. Skin hydration enhancement and skin wrinkle reduction efficacy were clinically assessed. Macadamia integrifolia oil exhibited significant potency as an ABTS•+ radical scavenger, lipid peroxidation inhibitor, and hyaluronidase inhibitor (p < 0.05). Both the CE and NE, comprising 15% w/w oil, 5% w/w Tween® 80 and Span® 80, and 80% w/w DI water, were found to be optimal. NE with an internal droplet size of 112.4 ± 0.8 nm, polydispersity index of 0.17 ± 0.01, and zeta potential of -31.5 ± 1.0 mV, had good stability and induced no irritation. Both CE and NE enhanced skin hydration and reduced skin wrinkles in human volunteers, while NE was outstanding in skin hydration enhancement.

6.
Sensors (Basel) ; 24(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38474955

ABSTRACT

Human skin acts as a protective barrier, preserving bodily functions and regulating water loss. Disruption to the skin barrier can lead to skin conditions and diseases, emphasizing the need for skin hydration monitoring. The gold-standard sensing method for assessing skin hydration is the Corneometer, monitoring the skin's electrical properties. It relies on measuring capacitance and has the advantage of precisely detecting a wide range of hydration levels within the skin's superficial layer. However, measurement errors due to its front end requiring contact with the skin, combined with the bipolar configuration of the electrodes used and discrepancies due to variations in various interfering analytes, often result in significant inaccuracy and a need to perform measurements under controlled conditions. To overcome these issues, we explore the merits of a different approach to sensing electrical properties, namely, a tetrapolar bioimpedance sensing approach, with the merits of a novel optical sensing modality. Tetrapolar bioimpedance allows for the elimination of bipolar measurement errors, and optical spectroscopy allows for the identification of skin water absorption peaks at wavelengths of 970 nm and 1450 nm. Employing both electrical and optical sensing modalities through a multimodal approach enhances skin hydration measurement sensitivity and validity. This layered approach may be particularly beneficial for minimising errors, providing a more robust and comprehensive tool for skin hydration assessment. An ex vivo desorption experiment was carried out on fresh porcine skin, and an in vivo indicative case study was conducted utilising the developed optical and bioimpedance sensing devices. Expected outcomes were expressed from both techniques, with an increase in the output of the optical sensor voltage and a decrease in bioimpedance as skin hydration decreased. MLR models were employed, and the results presented strong correlations (R-squared = 0.996 and p-value = 6.45 × 10-21), with an enhanced outcome for hydration parameters when both modalities were combined as opposed to independently, highlighting the advantage of the multimodal sensing approach for skin hydration assessment.


Subject(s)
Body Water , Skin Diseases , Humans , Skin , Skin Diseases/diagnosis , Water , Spectrum Analysis
7.
Clin Cosmet Investig Dermatol ; 17: 581-591, 2024.
Article in English | MEDLINE | ID: mdl-38495912

ABSTRACT

Purpose: Collagen supplements are rising in the market as collagen has been demonstrated to be an important protein in the human aging process. Also, it is safe and easily absorbed in the body. Hence the aim of this study was to examine the effectiveness and safety of a collagen and antioxidant-rich treatment compared to a placebo in relation to various skin and hair indicators in healthy adult human subjects. Patients and Methods: Forty healthy adult non-pregnant/non-lactating women (aged 38-50 years) provided their informed consent in writing before their participation. Skin Radiance Collagen (SRC) treatment and a placebo were assessed for efficacy before application on Day 1, and post-application on Days 28 and 56, to measure changes in skin elasticity, hydration, brightness, pigmentation; texture, wrinkles, dryness, smoothness, fine lines, changes in the crow's feet region; as well as hair strength and hair fall. Results: It was observed after 56 days that therapy with SRC, compared to placebo, produced a substantial effect on reduction of wrinkle depth and fine lines by 48.11% and 39%, respectively, with p-value <0.01 in the test group. There was a 15.69% improvement in skin hydration observed and 28% reduction in hair fall with p-value <0.01. Conclusion: SRC, a combination of collagen with hyaluronic acid (HA), biotin, and vitamins C and E, showed a significant improvement in skin and hair health, including improvements in skin elasticity, skin hydration, reduction in crow's feet area wrinkles and fine lines, hair fall, and decrease in roughness, leading to improved skin texture. Vitamin C in the formulation also acts as a collagen builder for the body and helps in preventing oxidative stress in the body. The test treatment SRC was found to be efficacious and safe in healthy human adult subjects.

8.
AAPS PharmSciTech ; 25(4): 71, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538958

ABSTRACT

The development of cosmetic formulations with moisturizing and film-forming properties has been very important to help keep skin physiology and protection. In this context, this study aimed to develop a cosmetic formulation containing Tara gum and Brazilian berry extract and evaluate its physical-mechanical, film-forming, and sensory properties. A gel formulation was developed based on Tara gum added to Plinia cauliflora extract and was characterized by its spreadability profile and sensory properties. A clinical study was carried out with ten participants to evaluate the skin microrelief, stratum corneum water content, transepidermal water loss (TEWL), and skin morphological characteristics by reflectance confocal microscopy (RCM) before and after 2 h of application of the formulations. The formulation with Brazilian berry significantly decreased the work of shear parameter, which can be correlated with improved spreadability in the sensory analysis. The clinical study showed that both formulations improved skin hydration and reduced the TEWL. The RCM imaging analysis showed the visible film on the skin surface, a decrease in the size of furrows, an increase in the reflectance of the interkeratinocytes, and reflectance of the stratum corneum for both formulations. These results were more pronounced for the formulation containing Brazilian berry. The Tara gum in the gel formulation promoted the formation and visualization of a polymeric net on the stratum corneum surface, demonstrated by the images obtained from RCM. However, the formulation added with the Brazilian berry extract improved the skin microrelief, honeycomb pattern of the epidermis, and skin hydration in deeper layers of the epidermis.


Subject(s)
Cosmetics , Fruit , Plant Gums , Humans , Brazil , Epidermis/physiology , Skin , Water
9.
Biomol Ther (Seoul) ; 32(2): 249-260, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38355138

ABSTRACT

New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.

10.
J Cosmet Dermatol ; 23(1): 296-307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37522513

ABSTRACT

BACKGROUND: Tactile sensation plays a crucial role in object manipulation, communication, and even emotional well-being. It has been reported that the deformability of skin (also described as skin compliance) that shows a large mechanical response to stimuli is associated with high tactile sensitivity. However, although the compliance of the stratum corneum, the outermost layer of skin, can change daily due to skin care and environmental factors, few studies have quantified the effect of the stratum corneum on tactile sensation. AIMS: We investigated the changes in tactile sensitivity resulting from skin hydration and identified corresponding alterations in the compliance of the stratum corneum. METHODS: A randomized controlled trial was conducted. Participants were randomly assigned to an intervention group (n = 20) that had a moisturizing cream applied to their cheeks or a control group (n = 19) that had Milli-Q water applied to their cheeks. Tactile discrimination performance was assessed using psychophysical techniques before and after application. The water content, mechanical response characteristics, and penetration of PEG/PPG-17/4 dimethyl ether from the cream in the stratum corneum were evaluated to identify hydration effects. Skin deformations occurring during tactile sensation were measured concurrently using a suction device employed for tactile stimulation. RESULTS: Tactile sensitivity was increased in participants who had cream applied to the skin surface, while no significant change was observed in participants who received Milli-Q water. The improved discrimination of tactile stimulus intensity was directly related to the magnitude of skin displacement. The higher water content of the stratum corneum due to cream application decreased the dynamic modulus of elasticity of the stratum corneum and increased the skin's extensibility in response to tactile stimuli. CONCLUSIONS: Hydrating the stratum corneum significantly enhances tactile sensitivity and is accompanied by an increase in skin extensibility, a factor in tactile intensity perception. The compliance of the thin stratum corneum layer plays a crucial role in tactile experiences that involve skin stretching.


Subject(s)
Epidermis , Skin , Humans , Water/pharmacology , Elasticity , Skin Care , Randomized Controlled Trials as Topic
11.
Int J Cosmet Sci ; 46(1): 85-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37699769

ABSTRACT

OBJECTIVE: This study aimed to assess the effect of 1,3-propanediol at different concentrations (5%, 10%, or 15%), either applied alone or in combination with butylene glycol (BG) (5%) and/or glycerol (5%), on skin hydration and skin barrier function. The measurements were conducted using capacitance to determine skin hydration and trans epidermal water loss (TEWL) rates to evaluate skin barrier function. METHODS: A total of 30 healthy female subjects participated in the study. Capacitance and TEWL measurements were conducted at multiple time points, including before application and at 15 min, 2 and 8 h after the humectants were applied to the forearms of the subjects. All the subjects provided written informed consent. RESULTS: The 1,3-propanediol in all concentrations and in all combinations (with BG and/or glycerol) increased skin hydration and improved skin barrier function 15 min, 2 and 8 h after application. Glycerol increased the hydration performance of 1,3-propanediol. The application of 1,3-propanediol at a concentration of 15%, either alone or in combination with other humectants, reduced the TEWL to a greater extent than lower concentrations of 1,3-propanediol. Furthermore, the addition of glycerol to 1,3-propanediol 15% improved the skin barrier and reduced TEWL when compared with 1,3-propanediol alone and with the combination of 1,3-propanediol + BG. CONCLUSION: The humectants significantly improved skin hydration and reduced TEWL throughout the 8-h time course. The increase in 1,3-propanediol concentration, as well as its combination with glycerol, provided a greater benefit to the skin, improving both hydration and the skin barrier function.


OBJECTIF: Cette étude visait à évaluer l'effet sur l'hydratation de la peau et la fonction de barrière cutanée du 1,3-propanediol à différentes concentrations (5 %, 10 % ou 15 %), appliqué seul ou en association avec du butylène glycol (5 %) et/ou du glycérol (5 %). Les mesures ont été effectuées à l'aide de la capacitance pour déterminer l'hydratation de la peau et les taux de perte d'eau transépidermique (Trans Epidermal Water Loss, TEWL) pour évaluer la fonction de barrière cutanée. MÉTHODES: Au total, 30 sujets de sexe féminin en bonne santé ont participé à l'étude. Les mesures de la capacitance et de la TEWL ont été effectuées à plusieurs moments, y compris avant l'application, 15 minutes, 2 heures et 8 heures après l'application des produits humectant sur les avant-bras des sujets. Tous les sujets ont fourni un consentement éclairé écrit. RÉSULTATS: Le 1,3-propanediol, à toutes les concentrations et dans toutes les associations (avec le butylène glycol et/ou le glycérol), a augmenté l'hydratation de la peau et amélioré la fonction de barrière cutanée à 15 minutes, 2 heures et 8 heures après l'application. Le glycérol a augmenté les performances d'hydratation du 1,3-propanediol. L'application de 1,3-propanediol à une concentration de 15 %, seul ou en association avec d'autres produits humectant, a réduit la TEWL dans une plus grande mesure que des concentrations inférieures de 1,3-propanediol. En outre, l'ajout de glycérol au 1,3-propanediol 15 % a amélioré la barrière cutanée et réduit la TEWL par rapport au 1,3-propanediol seul et à l'association 1,3-propanediol + butylène glycol. CONCLUSION: Les produits humectant ont significativement amélioré l'hydratation de la peau et réduit la TEWL tout au long des 8 heures. L'augmentation de la concentration de 1,3-propanediol, ainsi que son association avec le glycérol, ont apporté un plus grand bénéfice à la peau, améliorant à la fois l'hydratation et la fonction de barrière cutanée.


Subject(s)
Glycerol , Hygroscopic Agents , Propylene Glycols , Female , Humans , Glycerol/pharmacology , Glycerol/metabolism , Hygroscopic Agents/pharmacology , Skin , Water/metabolism , Propylene Glycol/pharmacology , Propylene Glycol/metabolism , Butylene Glycols/metabolism , Butylene Glycols/pharmacology , Water Loss, Insensible
12.
Lasers Surg Med ; 56(1): 107-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37974375

ABSTRACT

OBJECTIVES: Erbium lasers have become an accepted tool for performing both ablative and non-ablative medical procedures, especially when minimal invasiveness is desired. Hard-tissue desiccation during Er:YAG laser procedures is a well-known phenomenon in dentistry, the effect of which is to a certain degree being addressed by the accompanying cooling water spray. The desiccation of soft tissue has attracted much less attention due to the soft tissue's high-water content, resulting in a smaller effect on the ablation process. MATERIALS AND METHODS: In this study, the characteristics of skin temperature decay following irradiations with Er:YAG laser pulses were measured using a fast thermal camera. RESULTS: The measurements revealed a substantial increase in temperature decay times and resulting thermal exposure times following irradiations with Er:YAG pulses with fluences below the laser ablation threshold. Based on an analytical model where the skin surface cooling time is calculated from the estimated thickness of the heated superficial layer of the stratum corneum (SC), the observed phenomena is attributed to the accelerated evaporation of water from the SC's surface. By using an Arrhenius damage integral-based variable heat shock model to describe the dependence of the critical temperature on the duration of thermal exposure, it is shown that contrary to what an inexperienced practitioner might expect, the low-to-medium level fluences may result in a larger thermal damage in comparison to treatments where higher fluences are used. This effect may be alleviated by hydrating the skin before Er:YAG treatments. CONCLUSION: Our study indicates that tissue desiccation may play a more important role than expected for soft-tissue procedures. It is proposed that its effect may be alleviated by hydrating the skin before Er:YAG treatments.


Subject(s)
Laser Therapy , Lasers, Solid-State , Lasers, Solid-State/therapeutic use , Temperature , Desiccation , Laser Therapy/adverse effects , Laser Therapy/methods , Water
13.
Phytomedicine ; 123: 155167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952408

ABSTRACT

BACKGROUND: Protopanaxatriol (PPT) is an important ginsenoside produced by ginseng, a tonic plant used in many areas. PPT has beneficial effects against many disease states including inflammation, diabetes, and cancer. However, PPT's protective effects on skin integrity have been rarely studied. Previously, we reported that PPT can maintain skin moisture through activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPKs) pathways. However, the cellular targets for enhancing skin moisturizing effects via PPT are still unknown. PURPOSE: We wanted to identify the upstream targets of PPT on upregulating moisturizing factor (HAS-2) expression. STUDY DESIGN: We investigated which upstream proteins can be directly stimulated by PPT to modulate NF-κB, MAPKs and other signaling cascades. Then, the targeted proteins were overexpressed to check the relationship with HAS-2. Next, the cellular thermal shift assay (CETSA) was conducted to check the relationship between targeted proteins and PPT. METHODS: A human keratinocyte HaCaT were employed to measure the levels of moisturizing factors and the signaling proteins activated by PPT. Transfection conditions were established with DNA constructs expressing epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) and their mutants prepared by site-directed mutagenesis. Further investigation on molecular mechanisms was conducted by RT-PCR, luciferase reporter gene assay, CETSA, or Western blot. RESULTS: We found that PPT can activate the phosphorylation of EGFR and HER2. These stimulations caused Src phosphorylation, which resulted in the activation of phosphoinositide 3-kinases (PI3K)/pyruvate dehydrogenase kinase 1 (PDK1)/protein kinase B (AKT)/NF-κB and MAPKs signaling cascades. Additionally, EGFR and HER2 activation resulted in phosphorylation of signal transducer and activator of transcription 3 (STAT3) and calcium/calmodulin-dependent protein kinase II (CaMKII). This induced the AMP-activated protein kinase alpha (AMPKα) signaling pathway. Additionally, PPT blocked peroxisome proliferator activated receptor gamma (PPARγ), which also contributed to the phosphorylation of Src. CONCLUSION: Overall, we first found that PPT offers excellent protection of the skin barrier and hydrogen supply in keratinocytes. Moreover, growth factor receptors such as EGFR and HER2 were revealed to be central enzymes to be directly targeted by PPT. These results suggest a potentially valuable role as a cosmetic ingredient.


Subject(s)
NF-kappa B , Sapogenins , Humans , NF-kappa B/metabolism , Signal Transduction , Sapogenins/pharmacology , Phosphorylation , Keratinocytes/metabolism , Mitogen-Activated Protein Kinases/metabolism , ErbB Receptors/metabolism
14.
Fitoterapia ; 172: 105755, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000761

ABSTRACT

Ficus deltoidea was known for its potent antioxidant, anti-melanogenic and photoprotective skin barrier activities. These properties are contributed by its biomarkers which are vitexin and isovitexin. This study aims to optimize the yield of methanolic extraction of Ficus deltoidea leaves (EFD) and evaluate their effects on skin barrier function and hydration. For optimization, Box-Behnken design was utilized to investigate the effects of methanol concentration, sonication time, and solvent-to-sample ratio on the yields of vitexin and isovitexin in EFD. The optimal yields obtained were 32.29 mg/g for vitexin and 35.87 mg/g for isovitexin. The optimum extraction conditions were 77.66% methanol concentration, 20.03 min sonication time, and 19.88 mL/g solvent-to-sample ratio. The quantitative real-time polymerase chain reaction was utilized to measure variant marker genes of transglutaminase-1, caspase 14, ceramide synthase 3, involucrin, and filaggrin of EFD-induced keratinocyte differentiation by in vitro study. Exposure to EFD has elevated the mRNA levels of all tested marker genes by 0.7-9.2 folds. Then, in vivo efficacy study was conducted on 20 female subjects for 14 days to evaluate skin biophysical assessment of hydration. EFD topical formulation treatment successfully increased skin hydration on day 7 (43.74%) and day 14 (47.23%). In silico study by molecular docking was performed to identify intermolecular binding interactions of vitexin and isovitexin with the interested proteins of tested marker genes. The result of molecular docking to the interested proteins revealed a similar trend with real-time PCR data. In conclusion, EFD potentially enhanced the skin barrier function and hydration of human skin cells.


Subject(s)
Ficus , Plant Extracts , Humans , Female , Plant Extracts/pharmacology , Plant Extracts/chemistry , Ficus/chemistry , Methanol , Molecular Docking Simulation , Molecular Structure , Solvents
15.
Molecules ; 28(21)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37959803

ABSTRACT

Due to the growing popularity of herbal extract-loaded hydrogels, this study assessed the biological activity of extracts and hydrogels containing three types (water (WE), water-ethanol (EE) and water-glycerin (GE)) of Cornus mas L. (dogwood) extracts. The content of biologically active compounds in the extracts was assessed using the UPLC-DAD-MS technique. Antioxidant properties were assessed by using DPPH and ABTS radicals and measuring the intracellular level of reactive oxygen species. Alamar Blue and Neutral Red tests were used to measure the cytotoxicity of the tested samples on skin cells-fibroblasts and keratinocytes. Cell migration and the anti-aging activity of the tested extracts and hydrogels were assessed. Transepidermal water loss and skin hydration after applying the hydrogels to the skin were also determined. A chromatographic analysis revealed that the extracts contained polyphenols, including gallic, caftaric, protocatechuic, chlorogenic, ellagic and p-coumaroylquinic acids, as well as iridoids, with loganic acid as the predominant component. Additionally, they contained cyanidin 3-O-galactoside, pelargonidin 3-O-glucoside and quinic acid. The obtained results show that the tested extracts and hydrogels had strong antioxidant properties and had a positive effect on the viability of skin cells in vitro. Additionally, it was shown that they stimulated the migration of these cells and had the ability to inhibit the activity of collagenase and elastase. Moreover, the tested hydrogels increased skin hydration and prevented transepidermal water loss. The obtained results indicate that the developed hydrogels may be effective delivery systems for phytochemicals contained in dogwood extracts.


Subject(s)
Cornus , Dermatology , Antioxidants/chemistry , Cornus/chemistry , Hydrogels , Water , Plant Extracts/pharmacology , Plant Extracts/chemistry
16.
Skin Res Technol ; 29(11): e13518, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38009026

ABSTRACT

AIMS: Oriental herbs have been used as medicines in the folk remedy for their numerous phytochemicals and bioactivities. In this study, we have selected five Korean traditional medical herbs and applied bio conversion extraction technology, named it as Bioconversion Oji complex, to identify phytochemicals and evaluate skin related efficacies. MATERIAL AND METHODS: The process of two-step bio conversion was sequentially conducted. The first step of fermentation was to produce biosurfactants using macadamia seed oil with Candida bombicola, and then five natural plants were added to carry out the main fermentation. To evaluate skin improvement efficacy of Bioconversion Oji complex, in vitro and in vivo studies were conducted. We studied HaCaT cells cultured to assess viability, skin anti-inflammatory, moisturizing and barrier improvement-related mRNA expression. For efficacy study, 21 participants were tested evaluating anti-inflammatory, skin moisturizing and skin barrier improving effects of Bioconversion Oji complex compared to Water extraction of Oji (placebo) for the 4 weeks test period. RESULTS: The application of bioconversion technology highly increased the content of amino acids and lipids within Bioconversion Oji complex, and 23 flavonoids were also identified. Bioconversion Oji complex was found to be non-toxic and showed significant effects in all parameters tested, including anti-inflammation, skin moisture, and skin barrier in both in vitro and in clinical studies. CONCLUSIONS: Bioconversion Oji complex has demonstrated skin-friendly properties with significant beneficial effects on anti-inflammatory, skin hydration and barrier function properties. This study provides evidence for the use of Bioconversion Oji complex as an active ingredient in cosmetics and skincare products.


Subject(s)
Saccharomyces cerevisiae , Skin , Humans , Fermentation , Anti-Inflammatory Agents/pharmacology
17.
Cureus ; 15(9): e45032, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37842370

ABSTRACT

Introduction Skin hydration is important for maintaining adequate skin barrier function. After delivery, the baby's skin faces the most difficult challenge as they are exposed to the exterior world's environmental changes, friction, and microorganisms. The management is further complicated by the availability of a large range of infant skin-care products with varying claims. The first-ever Indian study on babies was done to analyze the test product (Venusia baby moisturizer; Dr. Reddy's Laboratories Ltd., Hyderabad, India) in order to bring scientific clarity to consumers. This product is devoid of parabens, alcohol, and animal origin (Dr. Reddy's Laboratories Ltd., Hyderabad, India) and is designed for skin hydration and in-use tolerance in babies with dry and/or normal skin. The endpoints were hydration and clinical evaluation of the skin, evaluated using a moisture meter scale (MMSC; Delfin Technologies Ltd., Kuopio, Finland) and parent self-assessment questionnaire, respectively. Material and methods A total of 136 healthy babies aged between six months to two years were enrolled in a four-group, monocentric, non-randomized, evaluator-blinded study: Group 1 (Venusia baby cream for dry skin), Group 2 (Venusia baby lotion for Dry Skin), Group 3 (Venusia baby cream for normal skin), and Group 4 (Venusia baby lotion for normal skin). The endpoints were hydration and clinical evaluation of the skin, evaluated using an MMSC and parent self-assessment questionnaire, respectively. Results In babies with dry skin, skin hydration was improved with Venusia baby cream (37.50%) and Venusia baby lotion (66.40%). Additionally, 66.66% of participants strongly agreed that the baby's skin became softer and smoother after the application of Venusia baby cream; 76.47% of participants strongly agreed that the baby's skin became softer and smoother after the application of Venusia baby lotion. In babies with normal skin, skin hydration was improved with Venusia baby cream (12.20%) and Venusia baby lotion (7.20%); 59.37% of participants strongly agreed that the baby's skin became softer and smoother after the application of Venusia baby cream; and 84.84% of participants strongly agreed that the baby's skin became softer and smoother after the application of Venusia baby lotion. Conclusion Significant improvement was seen in skin hydration using Venusia baby cream and Venusia baby lotion in babies with dry skin and normal skin. No skin intolerances and product-related adverse or serious adverse events were clinically observed or reported during the study duration. Venusia baby lotion had the highest effect (66.4%) on skin hydration in babies with dry skin, where there was a significant shift from dry skin to normal skin range.

18.
Int J Mol Sci ; 24(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37834083

ABSTRACT

Atopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness. Therefore, we recruited 21 AD patients (9 female, 12 male) and compared the lesional (LAS) with non-lesional atopic skin (nLAS) in vivo with confocal Raman microspectroscopy. Our results demonstrated decreased total intercellular lipid and carotenoid concentrations, as well as a shift towards decreased orthorhombic lateral lipid organisation in LAS. Further, we observed a lower concentration of natural moisturising factor (NMF) and a trend towards increased strongly bound and decreased weakly bound water in LAS. Finally, LAS showed an altered secondary and tertiary keratin structure, demonstrating a more folded keratin state than nLAS. The obtained results are discussed in comparison with healthy skin and yield detailed insights into the atopic SC structure. LAS clearly shows molecular alterations at certain SC depths compared with nLAS which imply a reduced SBF. A thorough understanding of these alterations provides useful information on the aetiology of AD and for the development/control of targeted topical therapies.


Subject(s)
Dermatitis, Atopic , Adult , Humans , Male , Female , Dermatitis, Atopic/metabolism , Neoplasm Recurrence, Local/pathology , Skin/metabolism , Epidermis/metabolism , Keratins/metabolism , Lipids/analysis
19.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762597

ABSTRACT

The use of face masks during the COVID-19 pandemic resulted in significant societal changes, particularly for individuals with sensitive skin. To address this issue, the researchers explored traditional medicine and identified Potentilla anserina extract as a potential solution due to its anti-inflammatory and moisturizing effects. This research investigated how this extract influences skin hydration, barrier function, and itching. The findings revealed that the extract had a hydrating effect by elevating Aquaporin-3 (AQP3) expression. Additionally, the study demonstrated that the extract improved skin barrier function, with Filaggrin (FLG) expression being approximately three times higher (p < 0.001) in the Potentilla-anserina-extract-treated group compared to the control group and the genes associated with itching being reduced. In this process, we researched and developed HPßCD (hydroxypropyl-ß-cyclodextrin)-Liposome containing Potentilla anserina extract, gradually and sustainably releasing the active components of the Potentilla anserina extract. During four weeks of clinical trials involving individuals wearing masks for over 6 h a day, a moisturizer containing Potentilla anserina extract demonstrated a notable reduction in skin redness. Hemoglobin values (A.U.), which serve as indicators of skin redness, showed decreases of 5.06% and 6.74% in the test area inside the mask after 2 and 4 weeks, respectively, compared to the baseline measurements. Additionally, the moisturizer containing Potentilla anserina extract notably decreased Trans Epidermal Water Loss (TEWL), with reductions of 5.23% and 9.13% observed in the test area inside the mask after 2 and 4 weeks, respectively. The moisturizer, especially in the test area treated with the extract-containing moisturizer, significantly enhanced skin hydration compared to the control group. The Corneometer values (A.U) exhibited notable increases of 11.51% and 15.14% in the test area inside the mask after 2 and 4 weeks, respectively. These discoveries emphasize the potential of Potentilla anserina extract and its utility in tackling skin issues caused by mask wearing, including enhancing moisture, fortifying the skin's barrier, and alleviating itching. These results indicate that moisturizers incorporating specific ingredients provide greater benefits compared to conventional moisturizers.


Subject(s)
COVID-19 , Potentilla , Humans , Masks , Pandemics , Pruritus , 2-Hydroxypropyl-beta-cyclodextrin
20.
J Mol Graph Model ; 123: 108527, 2023 09.
Article in English | MEDLINE | ID: mdl-37270896

ABSTRACT

To meet the needs of dehydrated skin, molecules with a high hygroscopic potential are necessary to hydrate it effectively and durably. In this context, we were interested in pectins, and more precisely in apiogalacturonans (AGA), a singular one that is currently only found in a few species of aquatic plants. As key structures in water regulation of these aquatic plants and thanks to their molecular composition and conformations, we hypothesized that they could have beneficial role for skin hydration. Spirodela polyrhiza is a duckweed known to be naturally rich in AGA. The aim of this study was to investigate the hygroscopic potential of AGA. Firstly, AGA models were built based on structural information obtained from previous experimental studies. Molecular dynamics (MD) simulations were performed, and the hygroscopic potential was predicted in silico by analyzing the frequency of interaction of water molecules with each AGA residue. Quantification of interactions identified the presence of 23 water molecules on average in contact with each residue of AGA. Secondly, the hygroscopic properties were investigated directly in vivo. Indeed, the water capture in the skin was measured in vivo by Raman microspectroscopy thanks to the deuterated water (D20) tracking. Investigations revealed that AGA significantly capture and retain more water in the epidermis and deeper than a placebo control. Not only do these original natural molecules interact with water molecules, but they capture and retain them efficiently in the skin.


Subject(s)
Molecular Dynamics Simulation , Water , Water/chemistry , Molecular Conformation , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL
...