Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 825
Filter
1.
Adv Sci (Weinh) ; : e2402804, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953462

ABSTRACT

Understanding the regulation of normal erythroid development will help to develop new potential therapeutic strategies for disorders of the erythroid lineage. Cellular repressor of E1A-stimulated genes 1 (CREG1) is a glycoprotein that has been implicated in the regulation of tissue homeostasis. However, its role in erythropoiesis remains largely undefined. In this study, it is found that CREG1 expression increases progressively during erythroid differentiation. In zebrafish, creg1 mRNA is preferentially expressed within the intermediate cell mass (ICM)/peripheral blood island (PBI) region where primitive erythropoiesis occurs. Loss of creg1 leads to anemia caused by defective erythroid differentiation and excessive apoptosis of erythroid progenitors. Mechanistically, creg1 deficiency results in reduced activation of TGF-ß/Smad2 signaling pathway. Treatment with an agonist of the Smad2 pathway (IDE2) could significantly restore the defective erythroid development in creg1-/- mutants. Further, Klf1, identified as a key target gene downstream of the TGF-ß/Smad2 signaling pathway, is involved in creg1 deficiency-induced aberrant erythropoiesis. Thus, this study reveals a previously unrecognized role for Creg1 as a critical regulator of erythropoiesis, mediated at least in part by the TGF-ß/Smad2-Klf1 axis. This finding may contribute to the understanding of normal erythropoiesis and the pathogenesis of erythroid disorders.

2.
Front Immunol ; 15: 1386260, 2024.
Article in English | MEDLINE | ID: mdl-38975349

ABSTRACT

Introduction: Lrba is a cytoplasmic protein involved in vesicular trafficking. Lrba-deficient (Lrba-/-) mice exhibit substantially higher levels of IgA in both serum and feces than wild-type (WT) mice. Transforming growth factor ß1 (TGFß1) and its receptors (TGFßR I and II) is essential for differentiating IgA+ B cells. Furthermore, increased IgA production suggests a potential connection between Lrba and the TGFßR signaling pathway in IgA production. However, the specific function of Lrba in B cell biology remains unknown. Aim: Given the increased IgA levels in Lrba-/- mice, the goal in this work was to explore the lymph organs where the switch to IgA occurs, and if TGFßR function is affected. Methods: Non-immunized Lrba-/- mice were compared with Lrba+/+ mice. IgA levels in the serum and feces, as well as during peripheral B cell development, were determined. IgA+ B cells and plasma cells were assessed in the small intestine and secondary lymphoid organs, such as the spleen, mesenteric lymph nodes, and Peyer's patches. The TGFßR signaling pathway was evaluated by determining the expression of TGFßR on B cells. Additionally, SMAD2 phosphorylation was measured under basal conditions and in response to recombinant TGFß. Finally, confocal microscopy was performed to investigate a possible interaction between Lrba and TGFßR in B cells. Results: Lrba-/- mice exhibited significantly higher levels of circulating IgA, IgA+ B, and plasma cells than in peripheral lymphoid organs those in WT mice. TGFßR expression on the membrane of B cells was similar in both Lrba-/- and Lrba+/+ mice. However, intracellular TGFßR expression was reduced in Lrba-/- mice. SMAD2 phosphorylation showed increased levels under basal conditions; stimulation with recombinant TGFß elicited a poorer response than in that in Lrba+/+ B cells. Finally, we found that Lrba colocalizes with TGFßR in B cells. Conclusion: Lrba is essential in controlling TGFßR signaling, subsequently regulating SMAD2 phosphorylation on B cells. This mechanism may explain the increased differentiation of IgA+ B cells and production of IgA-producing plasma cells.


Subject(s)
B-Lymphocytes , Cell Differentiation , Immunoglobulin A , Mice, Knockout , Signal Transduction , Animals , Immunoglobulin A/immunology , Mice , Cell Differentiation/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Receptors, Transforming Growth Factor beta/genetics , Mice, Inbred C57BL , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Smad2 Protein/metabolism , Peyer's Patches/immunology , Peyer's Patches/metabolism
3.
Neurosci Lett ; : 137890, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38971300

ABSTRACT

Spinal cord injury (SCI) remains a worldwide challenge due to limited treatment strategies. Repetitive trans-spinal magnetic stimulation (rTSMS) is among the most cutting-edge treatments for SCI. However, the mechanism underlying rTSMS on functional recovery is still unclear. In this study, 8-week-old C57BL/6J female mice were used to design SCI models followed by treatment with monotherapy (1 Hz rTSMS or LY364947) or combination therapy (rTSMS + LY364947). Our results showed obvious functional recovery after monotherapies compared to untreated mice. Immunofluorescence results demonstrated that rTSMS and LY364947 modulate the lesion scar by decreasing fibrosis and GFAP and possess the effect on neural protection. In addition, rTSMS suppressed inflammation and the activation of TGFß1/Smad2/3 signaling pathway, as evidenced by markedly reduced TGF-ßRⅠ, Smad2/3, and p-Smad2/3 compared with untreated mice. Overall, it was confirmed that 1 Hz rTSMS promotes SCI recovery by suppressing the TGFß1/Smad2/3 signaling, revealing a novel pathological mechanism of 1 Hz rTSMS intervention, and may provide potential targets for clinical treatment.

4.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38984969

ABSTRACT

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Subject(s)
Epimedium , MicroRNAs , Osteoblasts , RNA, Long Noncoding , Signal Transduction , Smad2 Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoblasts/metabolism , Osteoblasts/drug effects , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Smad2 Protein/metabolism , Smad2 Protein/genetics , Mice , Epimedium/chemistry , Signal Transduction/drug effects , Male , Bone Regeneration/drug effects , Humans , Gene Expression Regulation/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics
5.
Transl Cancer Res ; 13(6): 2618-2628, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38988927

ABSTRACT

Background: Resistance to cisplatin (DDP) in patients with ovarian cancer (OC) poses a great challenge to improving the quality of life of patients. Past reports have revealed that naringin can induce apoptosis of OC cells and delay the occurrence of drug resistance in OC cells. However, the molecular role by which naringin inhibits DDP resistance in OC has not been definitively proven by researchers. The objective of this study is to investigate the effect of naringin on DDP resistance in OC cells and the specific mechanism of naringin mediating autophagy. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were selected to evaluate the role of naringin or DDP on the proliferation and apoptosis of human OC cells (SKOV3/A2780). The protein levels of Sequestosome 1 (SQSTM1/p62, hereinafter referred to as p62), microtubule-associated protein 1 light chain 3 (LC3), transforming growth factor-ß2 (TGF-ß2) and SMAD family member 2 (smad2) were detected with Western blotting assay. Immunofluorescence assay was also used to evaluate the level of LC3 in different groups of cells. Besides, functional analyses were performed in vivo. Results: Naringin was shown to promote DDP sensitivity and apoptosis of human OC DDP-resistant cell line (SKOV3/A2780-DDP cells). Significantly increased p62 expression and reduced LC3 expression were found in naringin-treated cells. The autophagy agonist, rapamycin, reversed the effect of naringin on the resistance of SKOV3-DDP cells to DDP. Naringin inhibited levels of TGF-ß2/smad2 pathway-related proteins, and regulated autophagy in SKOV3-DDP cells. In vivo experiments demonstrated that injection of naringin inhibited DDP resistance and autophagy in mice xenograft model. Conclusions: In summary, naringin inhibits DDP resistance in OC cells by inhibiting autophagy mediated by the TGF-ß2/smad2 pathway.

6.
Gene ; 927: 148729, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936784

ABSTRACT

OBJECTIVES: Periodontitis is associated with Fusobacterium nucleatum (F.n) infection. Although the colonization of renal tissue by F.n is well documented, its specific role in kidney disease has yet to be determined. This study aimed to investigate the potential association between F.n-induced periodontitis and renal interstitial fibrosis. METHODS: The rat gingival sulcus was injected with F.n suspension, while the control group (NC) was injected with PBS. The levels of total protein (TP), albumin (ALB), creatinine, and urea nitrogen (BUN) in rat serum and/or urine were quantified using the appropriate kits. Renal interstitial fibrosis and epithelial-mesenchymal transition (EMT) were evaluated in rats using Masson staining, Periodic Schiff-Methenamine (PASM) staining, and immunohistochemical staining. The levels of fibrosis- and EMT-related proteins and the TGF-ß/SMAD2/3 and ß-catenin signaling pathways were determined using Western blot analysis. F.n in the kidney tissues was quantitatively determined using bacterial 16S rRNA technology. RESULTS: Serum levels of TP, ALB, creatinine, and BUN were not significantly decreased in F.n-infected rats with periodontitis. The levels of creatinine and ALB in the urine were not statistically different between two groups. Masson and PASM staining showed that F.n-induced periodontitis could promote renal interstitial fibrosis in rats. The levels of collagen I, fibronectin (FN), vimentin, and α-SMA were upregulated in the kidney tissues of rats with F.n-induced periodontitis and in F.n-treated HK-2 cells. However, E-cadherin levels were reduced. F.n promoted renal interstitial and HK-2 cell fibrosis in rats by modulating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways. F.n colonization increased renal interstitial fibrosis in rats. CONCLUSION: F.n-induced periodontitis promoted EMT by activating the TGF-ß/SMAD2/3 and ß-catenin signaling pathways, thus promoting renal interstitial fibrosis in rats.

7.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847786

ABSTRACT

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Subject(s)
Diabetic Nephropathies , Mesenchymal Stem Cells , Smad2 Protein , Smad3 Protein , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mesenchymal Stem Cells/metabolism , Smad2 Protein/metabolism , Mice , Humans , Smad3 Protein/metabolism , Male , Mice, Inbred C57BL , Adenosine/metabolism , Adenosine/analogs & derivatives , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction , Methyltransferases/metabolism , Methyltransferases/genetics , Mesenchymal Stem Cell Transplantation/methods , Transforming Growth Factor beta1/metabolism , Cell Line
8.
Arch Dermatol Res ; 316(7): 338, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847916

ABSTRACT

Diabetic foot ulcer (DFU) is a predominant complication of diabetes mellitus with poor prognosis accompanied by high amputation and mortality rates. Dang-Gui-Si-Ni decoction (DSD), as a classic formula with a long history in China, has been found to improve DFU symptoms. However, mechanism of DSD for DFU therapy remains unclear with no systematic elaboration. In vivo, following establishment of DFU rat model, DSD intervention with low, medium and high doses was done, with Metformin (DM) as a positive control group. With wound healing detection, pathological changes by HE staining, inflammatory factor expression by ELISA and qRT-PCR, oxidative stress levels by ELISA, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were performed. In vitro, intervention with LY2109761 (TGF-ß pathway inhibitor) based on DSD treatment in human dermal fibroblast-adult (HDF-a) cells was made. Cell viability by CCK8, migration ability by cell scratch, apoptosis by flow cytometry, and AGEs/RAGE/TGF-ß/Smad2/3 expression by Western blot were measured. DFU rats exhibited elevated AGEs/RAGE expression, whereas decreased TGF-ß1 and p-Smad3/Smad3 protein expression, accompanied by higher IL-1ß, IL-6, TNF-α levels, and oxidative stress. DSD intervention reversed above effects. Glucose induction caused lower cell viability, migration, TGF-ß1 and p-Smad3/Smad3 protein expression, with increased apoptosis and AGEs/RAGE expression in HDF-a cells. These effects were reversed after DSD intervention, and further LY2109761 intervention inhibited DSD effects in cells. DSD intervention may facilitate wound healing in DFU by regulating expression of AGEs/RAGE/TGF-ß/Smad2/3, providing scientific experimental evidence for DSD clinical application for DFU therapy.


Subject(s)
Diabetic Foot , Drugs, Chinese Herbal , Glycation End Products, Advanced , Smad2 Protein , Smad3 Protein , Wound Healing , Diabetic Foot/drug therapy , Diabetic Foot/metabolism , Diabetic Foot/pathology , Animals , Wound Healing/drug effects , Rats , Drugs, Chinese Herbal/pharmacology , Smad2 Protein/metabolism , Humans , Smad3 Protein/metabolism , Glycation End Products, Advanced/metabolism , Male , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Rats, Sprague-Dawley , Oxidative Stress/drug effects , Apoptosis/drug effects , Disease Models, Animal , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Fibroblasts/metabolism , Fibroblasts/drug effects , Cell Movement/drug effects , Cell Survival/drug effects
9.
Future Oncol ; : 1-15, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38861304

ABSTRACT

Aim: The present study aimed to figure out the potential role of exosomal microRNAs, and their targeted genes in HNC detection/diagnosis. Methods: In the present study, exosomes were extracted from the serum samples of 400 HNC patients and 400 healthy controls. Exosomes were characterized using TEM, NTA, TEM-immunogold labeling and ELISA. Quantitative PCR was used to measure the expression level of exosomal miRNA-19a, miRNA-19b and targeted genes SMAD2 and SMAD4 in HNC patients and controls. Results: The deregulation of miR-19a (p < 0.01), miR-19b (p < 0.03), SMAD2 (p < 0.04) and SMAD4 (p < 0.04) was observed in HNC patients vs controls. Conclusion: ROC curve and Kaplan-Meier analysis showed the good diagnostic/prognostic value of selected exosomal microRNAs and related genes in HNC patients.


[Box: see text].

10.
Biomed Pharmacother ; 177: 117014, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908195

ABSTRACT

This study examines the involvement of TRIM59 in silica-induced pulmonary fibrosis and explores the therapeutic efficacy of Tanshinone IIA (Tan IIA). In vivo experiments conducted on rats with silica-induced pulmonary fibrosis unveiled an increase in TRIM59 levels and a decrease in PPM1A levels. Subsequent investigations using in vitro silicosis cell models demonstrated that modulation of TRIM59 expression significantly impacts silicosis fibrosis, influencing the levels of PPM1A and activation of the Smad2/3 signaling pathway. Immunofluorescence and co-immunoprecipitation assays confirmed the interaction between TRIM59 and PPM1A in fibroblasts, wherein TRIM59 facilitated the degradation of PPM1A protein via proteasomal and ubiquitin-mediated pathways. Furthermore, employing a rat model of silica-induced pulmonary fibrosis, Tan IIA exhibited efficacy in mitigating lung tissue damage and fibrosis. Immunohistochemical analysis validated the upregulation of TRIM59 and downregulation of PPM1A in silica-induced pulmonary fibrosis, which Tan IIA alleviated. In vitro studies elucidated the mechanism by which Tan IIA regulates the Smad2/3 signaling pathway through TRIM59-mediated modulation of PPM1A. Treatment with Tan IIA in silica-induced fibrosis cell models resulted in concentration-dependent reductions in fibrotic markers and attenuation of relevant protein expressions. Tan IIA intervention in silica-induced fibrosis cell models mitigated the TRIM59-induced upregulation of fibrotic markers and enhanced PPM1A expression, thereby partially reversing Smad2/3 activation. Overall, the findings indicate that while overexpression of TRIM59 may activate the Smads pathway by suppressing PPM1A expression, treatment with Tan IIA holds promise in counteracting these effects by inhibiting TRIM59 expression.

11.
Adv Exp Med Biol ; 1441: 505-534, 2024.
Article in English | MEDLINE | ID: mdl-38884729

ABSTRACT

Ventricular septal defects (VSDs) are recognized as one of the commonest congenital heart diseases (CHD), accounting for up to 40% of all cardiac malformations, and occur as isolated CHDs as well as together with other cardiac and extracardiac congenital malformations in individual patients and families. The genetic etiology of VSD is complex and extraordinarily heterogeneous. Chromosomal abnormalities such as aneuploidy and structural variations as well as rare point mutations in various genes have been reported to be associated with this cardiac defect. This includes both well-defined syndromes with known genetic cause (e.g., DiGeorge syndrome and Holt-Oram syndrome) and so far undefined syndromic forms characterized by unspecific symptoms. Mutations in genes encoding cardiac transcription factors (e.g., NKX2-5 and GATA4) and signaling molecules (e.g., CFC1) have been most frequently found in VSD cases. Moreover, new high-resolution methods such as comparative genomic hybridization enabled the discovery of a high number of different copy number variations, leading to gain or loss of chromosomal regions often containing multiple genes, in patients with VSD. In this chapter, we will describe the broad genetic heterogeneity observed in VSD patients considering recent advances in this field.


Subject(s)
Heart Septal Defects, Ventricular , Humans , Chromosome Aberrations , DNA Copy Number Variations/genetics , Genetic Predisposition to Disease/genetics , Heart Septal Defects, Ventricular/genetics , Mutation , Transcription Factors/genetics
12.
Eur J Med Res ; 29(1): 315, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849933

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are involved in the progression of osteoporosis; however, their impact on osteogenic differentiation has yet to be fully elucidated. In this study, we identified a novel circRNA known as circZfp644-205 and investigated its effect on osteogenic differentiation and apoptosis in osteoporosis. METHODS: CircZfp644-205, miR-445-3p, and SMAD2 levels were measured using quantitative real-time polymerase chain reaction (qRT-PCR). MC3T3-E1 cells were subjected to microgravity (MG) to establish a cell model. Osteogenic differentiation was assessed using qRT-PCR, Alizarin Red S staining, alkaline phosphatase staining, and western blot. The apoptosis was evaluated using flow cytometry. The relationship between miR-445-3p and circZfp644-205 or SMAD2 was determined using bioinformatics, RNA pull-down, and luciferase reporter assay. Moreover, a hindlimb unloading mouse model was generated to investigate the role of circZfp644-205 in vivo using Micro-CT. RESULTS: CircZfp644-205 expression was up-regulated significantly in HG-treated MC3T3-E1 cells. Further in vitro studies confirmed that circZfp644-205 knockdown inhibited the osteogenic differentiation and induced apoptosis of pre-osteoblasts. CircZfp644-205 acted as a sponge for miR-455-3p, which reversed the effects of circZfp644-205 on pre-osteoblasts. Moreover, miR-455-3p directly targeted SMAD2, thus inhibiting the expression of SMAD2 to regulate cellular behaviors. Moreover, circZfp644-205 alleviated the progression of osteoporosis in mice. CONCLUSIONS: This study provides a novel circRNA that may serve as a potential therapeutic target for osteoporosis and expands our understanding of the molecular mechanism underlying the progression of osteoporosis.


Subject(s)
Apoptosis , Cell Differentiation , MicroRNAs , Osteoblasts , Osteogenesis , RNA, Circular , Smad2 Protein , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , RNA, Circular/genetics , Apoptosis/genetics , Osteoblasts/metabolism , Cell Differentiation/genetics , Mice , Smad2 Protein/metabolism , Smad2 Protein/genetics , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology
14.
Clin Rheumatol ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38866992

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) play various roles in the development of many autoimmune diseases. However, their expression profiles and specific function in Sjögren's Syndrome remains largely unknown. OBJECTIVES: We aimed to investigate circRNAs potential diagnostic value in primary Sjögren's syndrome (pSS) and contribution to the pathogenesis of pSS. METHODS: This study included 102 subjects, 51 pSS patients and 51 healthy controls. The concentration of hsa_circ_0045800 was analyzed in peripheral blood mononuclear cells obtained from 51 pSS patients and 51 healthy controls by qRT-PCR. We established a receiver operating characteristic curve (ROC) to assess the biological diagnostic value of hsa_circ_0045800 for pSS. In addition, we analyzed the correlation between hsa_circ_0045800 and disease activity in Sjogren's syndrome. A differential analysis was also conducted on the concentration of hsa_circ_0045800 in patients in pSS patients before and after treatment. We studied the downstream mechanism of hsa_circ_0045800 through bioinformatics analysis and confirmed it using luciferase reporter gene assay. RESULTS: We confirmed that the concentration of hsa_circ_0045800 was elevated 10.4-fold in peripheral blood mononuclear cells of pSS patients than in healthy controls (p = 0.00). In the pSS active disease group, the concentration of hsa_circ_0045800 is 2.5-fold higher compared to the pSS non-active disease group (p = 0.04). The concentration of hsa_circ_0045800 after treatment was decreased by 80% compared with that before treatment (p = 0.037), suggesting its utility as a potential marker for monitoring treatment efficacy. ROC curve analysis showed that the diagnostic value of hsa_circ_0045800 in pSS patients was significantly higher than that in healthy controls, with an area under the curve of 0.865, a sensitivity of 74%, and a specificity of 92%. The concentration of hsa_circ_0045800 is correlated with various clinical factors: the concentration of hsa_circ_0045800 is positively associated with age (r = 0.328, P = 0.019), oral dryness (r = 0.331, P = 0.017), while it is negatively correlated with HGB (r = -0.435, P = 0.001) and and hypothyroidism (r = -0.318, P = 0.023). Bioinformatics predictions and luciferase assays indicated that hsa_circ_0045800 acts as a molecular sponge for miR-1247-5p, with SMAD2 being a target gene of miR-1247-5p. CONCLUSION: Our study results show that hsa_circ_0045800 potentially contributes to the development and progression of pSS via the miR-1247-5p/SMAD2 pathway. Peripheral blood mononuclear cells are directly involved in the pathogenesis of pSS, and the discovery of hsa_circ_0045800 in peripheral blood mononuclear cells highlights its potential as a novel biomarker for disease activity and diagnosis in patients with pSS. Key Points • The concentration of hsa_circ_0045800 was higher in peripheral blood mononuclear cells of pSS patients. • Hsa_circ_0045800 promoted pSS progression through miR-1247-5p-SMAD2 axis. • Hsa_circ_0045800 is a potential biomarker for pSS.

15.
Transl Oncol ; 47: 102035, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878613

ABSTRACT

BACKGROUND: Considerable studies show that ETS variant 4 (ETV4) plays an important roles in multitudinous tumor. This study investigated its function in cholangiocarcinoma (CCA) progression and revealed the underlying mechanisms. METHODS: The expression of ETV4 in CCA was evaluated using TCGA database and the single-cell analysis based on GSE189903 dataset. ETV4 expression in CCA human specimens was detected by reverse transcription-quantitative PCR, immunohistochemistry, and western blot. Cell Counting Kit-8, EdU, colony formation, wound healing, and Transwell assays were used to analyze the effects of ETV4. Extracellular acidification rate, oxygen consumption rate, glucose uptake, and lactate production were used to measure glycolysis in CAA cells. Western blot was performed to explore glycolysis-related proteins. Tumor growth was evaluated in mice xenograft tumors. RESULTS: ETV4 was up-regulated in CCA epithelial cells. The high-expression of ETV4 was associated with poor prognosis of patients with CCA. ETV4 overexpression enhanced the proliferation, migration, invasion, and glycolysis of CCA cells; ETV4 silencing led to the contrary effects. Mechanistically, ETV4 activates TGF-ß/Smad2/3 signaling pathway. In mice xenograft mode, ETV4 silencing inhibits the tumor growth, the expression of glycolysis-related proteins and TGF-ß/Smad2/3 pathway proteins. CONCLUSIONS: ETV4 functions as an essential factor in the roles of TGF-ß1 in CCA cells, and may be a promising target for TGF-ß1-mediated CCA progression.

16.
Sci Rep ; 14(1): 11131, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750140

ABSTRACT

This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-ß1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.


Subject(s)
Mice, Inbred BALB C , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , PPAR gamma , Pulmonary Fibrosis , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta1 , Vinca Alkaloids , Animals , Vinca Alkaloids/pharmacology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1/metabolism , PPAR gamma/metabolism , Mice , NF-kappa B/metabolism , Smad3 Protein/metabolism , Smad2 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction/drug effects , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Humans , Bleomycin/adverse effects , Disease Models, Animal , Male , Cell Line , Oxidative Stress/drug effects
17.
Protein Cell ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758030

ABSTRACT

Tissue formation and organ homeostasis is achieved by precise coordination of proliferation and differentiation of stem cells and progenitors. While deregulation of these processes can result in degenerative disease or cancer, their molecular interplays remain unclear. Here we show that the switch of human pluripotent stem cell (hPSC) self-renewal to differentiation is associated with the induction of distinct cyclin dependent kinase inhibitors (CDKIs). In hPSCs, Activin/Nodal/TGFß signalling maintains CDKIs in a poised state via SMAD2/3-NANOG-OCT4-EZH2-SNON transcriptional complex. Upon gradual differentiation, CDKIs are induced by successive transcriptional complexes between SMAD2/3-SMYD2 and developmental regulators such as EOMES, thereby lengthening the G1 phase. This, in turn, induces SMAD2/3 transcriptional activity by blocking its linker phosphorylation. Such SMAD2/3-CDKI positive feedback loops drive the exit from pluripotency and stepwise cell fate specification that could be harnessed for producing cells for therapeutic applications. Our study uncovers fundamental mechanisms how cell fate specification is interconnected to cell cycle dynamics and provides insight to autonomous circuitries governing tissue self-formation.

18.
Burns Trauma ; 12: tkad064, 2024.
Article in English | MEDLINE | ID: mdl-38765787

ABSTRACT

Background: Hypertrophic scarring is the most serious and unmet challenge following burn and trauma injury and often leads to pain, itching and even loss of function. However, the demand for ideal scar prevention and treatment is difficult to satisfy. We aimed to discover the effects and mechanisms of adipose-derived stem cell (ADSC) exosomes in hypertrophic scarring. Methods: ADSC exosomes were isolated from the culture supernatant of ADSCs and identified by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The effect of ADSC exosomes on wound healing and scar formation was detected by the wound model of BALB/c mice. We isolated myofibroblasts from hypertrophic scar tissue and detected the cell viability, proliferation and migration of myofibroblasts. In addition, collagen formation and fibrosis-related molecules were also detected. To further disclose the mechanism of ADSC exosomes on fibrosis in myofibroblasts, we detected the expression of Smad2 in hypertrophic scar tissue and normal skin and the regulatory mechanism of ADSC exosomes on Smad2. Injection of bleomycin was performed in male BALB/c mice to establish an in vivo fibrosis model while ADSC exosomes were administered to observe their protective effect. The tissue injury of mice was observed via hematoxylin and eosin and Masson staining and related testing. Results: In this study, we found that ADSC exosomes could not only speed up wound healing and improve healing quality but also prevent scar formation. ADSC exosomes inhibited expression of fibrosis-related molecules such as α-smooth muscle actin, collagen I (COL1) and COL3 and inhibited the transdifferentiation of myofibroblasts. In addition, we verified that Smad2 is highly expressed in both hypertrophic scar tissue and hypertrophic fibroblasts, while ADSC exosomes downregulated the expression of Smad2 in hypertrophic fibroblasts. Further regulatory mechanism analysis revealed that microRNA-125b-5p (miR-125b-5p) is highly expressed in ADSC exosomes and binds to the 3' untranslated region of Smad2, thus inhibiting its expression. In vivo experiments also revealed that ADSC exosomes could alleviate bleomycin-induced skin fibrosis and downregulate the expression of Smad2. Conclusions: We found that ADSC exosomes could alleviate hypertrophic scars via the suppression of Smad2 by the specific delivery of miR-125b-5p.

19.
J Biomed Res ; : 1-14, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38807415

ABSTRACT

The main pathogenic factor leading to cardiac remodeling and heart failure is myocardial fibrosis. Recent research indicates that microRNAs are essential for the progress of cardiac fibrosis. Myocardial fibrosis is considered to be alleviated through the bone morphogenetic protein and activin membrane-bound inhibitor (BAMBI), which does this by blocking the transforming growth factor ß1 (TGF-ß1) signaling pathway. Here, this study sought to elucidate the post-transcriptional regulation of miR-19a-3p on BAMBI and its role in TGF-ß1-induced cardiac fibroblast activation. Transverse aortic constriction (TAC) caused both myocardial interstitial and perivascular collagen deposition. RT-PCR showed that miR-19a-3p was upregulated in the myocardial tissue of cardiac fibrosis, and TGF-ß1 induced an increase of miR-19a-3p expression in cardiac fibroblasts. The dual-luciferase reporter test and qRT-PCR confirmed that miR-19a-3p directly combined with BAMBI mRNA 3'UTR, thus reduced BAMBI expression, which diminished the capability of BAMBI to inhibit TGF-ß1. Furthermore, miR-19a-3p mimic increased the activation of TGF-ß1/SMAD2/3 pathway signaling, which supported cardiac fibroblast activation, which blocked by overexpression of BAMBI. These findings imply that miR-19a-3p enhances the activation of TGF-ß1/SMAD2/3 by inhibiting BAMBI, further boosting the activation of cardiac fibroblasts, and may thus offer a novel strategy to tackling myocardial fibrosis.

20.
Environ Pollut ; 355: 124194, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38782158

ABSTRACT

Nowadays, silica products are widely used in daily life, especially in skin applications, which inevitably increases the risk of silica exposure in general population. However, inadequate awareness of silica's potential hazards and lack of self-protection are of concern. Systemic sclerosis (SSc) is characterized by progressive tissue fibrosis under environmental and genetic interactions. Silica exposure is considered an important causative factor for SSc, but its pathogenesis remains unclear. Within this study, we showed that lower doses of silica significantly promoted the proliferation, migration, and activation of human skin fibroblasts (HSFs) within 24 h. Silica injected subcutaneously into mice induced and exacerbated skin fibrosis. Notably, silica increased histone deacetylase-4 (HDAC4) expression by inducing its DNA hypomethylation in normal HSFs. The elevated HDAC4 expression was also confirmed in SSc HSFs. Furthermore, HDAC4 was positively correlated with Smad2/3 phosphorylation and COL1, α-SMA, and CTGF expression. The HDAC4 inhibitor LMK235 mitigated silica-induced upregulation of these factors and alleviated skin fibrosis in SSc mice. Taken together, silica induces and exacerbates skin fibrosis in SSc patients by targeting the HDAC4/Smad2/3 pathway. Our findings provide new insights for evaluating the health hazards of silica exposure and identify HDAC4 as a potential interventional target for silica-induced SSc skin fibrosis.


Subject(s)
Fibrosis , Histone Deacetylases , Scleroderma, Systemic , Silicon Dioxide , Skin , Smad2 Protein , Smad3 Protein , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/chemically induced , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Animals , Mice , Humans , Smad3 Protein/metabolism , Skin/metabolism , Smad2 Protein/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...