Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.705
Filter
1.
Arterioscler Thromb Vasc Biol ; 44(8): 1813-1832, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38957984

ABSTRACT

BACKGROUND: Cellular communication among different types of vascular cells is indispensable for maintaining vascular homeostasis and preventing atherosclerosis. However, the biological mechanism involved in cellular communication among these cells and whether this biological mechanism can be used to treat atherosclerosis remain unknown. We hypothesized that endothelial autophagy mediates the cellular communication in vascular tissue through exosome-mediated delivery of atherosclerosis-related genes. METHODS: Rapamycin and adeno-associated virus carrying Atg7 short hairpin RNA under the Tie (TEK receptor tyrosine kinase) promoter were used to activate and inhibit vascular endothelial autophagy in high-fat diet-fed ApoE-/- mice, respectively. miRNA microarray, in vivo and in vitro experiments, and human vascular tissue were used to explore the effects of endothelial autophagy on endothelial function and atherosclerosis and its molecular mechanisms. Quantitative polymerase chain reaction and miRNA sequencing were performed to determine changes in miRNA expression in exosomes. Immunofluorescence and exosome coculture experiments were conducted to examine the role of endothelial autophagy in regulating the communication between endothelial cells and smooth muscle cells (SMCs) via exosomal miRNA. RESULTS: Endothelial autophagy was inhibited in thoracic aortas of high-fat diet-fed ApoE-/- mice. Furthermore, rapamycin alleviated high-fat diet-induced atherosclerotic burden and endothelial dysfunction, while endothelial-specific Atg7 depletion aggravated the atherosclerotic burden. miRNA microarray, in vivo and in vitro experiments, and human vascular tissue analysis revealed that miR-204-5p was significantly increased in endothelial cells after high-fat diet exposure, which directly targeted Bcl2 to regulate endothelial cell apoptosis. Importantly, endothelial autophagy activation decreased excess miR-204-5p by loading miR-204-5p into multivesicular bodies and secreting it through exosomes. Moreover, exosomal miR-204-5p can effectively transport to SMCs, alleviating SMC calcification by regulating target proteins such as RUNX2 (runt-related transcription factor 2). CONCLUSIONS: Our study revealed the exosomal pathway by which endothelial autophagy protects atherosclerosis: endothelial autophagy activation transfers miR-204-5p from endothelial cells to SMCs via exosomes, both preventing endothelial apoptosis and alleviating SMC calcification. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2200064155.


Subject(s)
Atherosclerosis , Autophagy , Cell Communication , Disease Models, Animal , Exosomes , Mice, Inbred C57BL , Mice, Knockout, ApoE , MicroRNAs , Myocytes, Smooth Muscle , MicroRNAs/metabolism , MicroRNAs/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Atherosclerosis/pathology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/prevention & control , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Mice , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Autophagy-Related Protein 7/metabolism , Autophagy-Related Protein 7/genetics , Cells, Cultured , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Plaque, Atherosclerotic , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Aortic Diseases/metabolism , Coculture Techniques , Signal Transduction , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Diet, High-Fat
2.
Recent Pat Anticancer Drug Discov ; 19(4): 503-515, 2024.
Article in English | MEDLINE | ID: mdl-39044710

ABSTRACT

BACKGROUND: Both apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) inhibition and melatonin suppress prostate cancer (PCa) growth. OBJECTIVE: This study evaluated the therapeutic efficiency of self-assembled and prostate-specific membrane antigen (PSMA)-targeted nanocarrier loading 125I radioactive particles and encapsulating siRNA targeting APE1 (siAPE1) and melatonin for PCa. METHODS: The linear polyarginine R12 polypeptide was prepared using Fmoc-Arg-Pbf-OH. The PSMA-targeted polymer was synthesized by conjugating azide-modified R12 peptide to PSMA monoclonal antibody (mAb). Before experiments, the PSMA-R12 nanocarrier was installed with melatonin and siAPE1, which were subsequently labeled by 125I radioactive particles. In vitro biocompatibility and cytotoxicity of nanocomposites were examined in LNCaP cells and in vivo biodistribution and pharmacokinetics were determined using PCa tumor-bearing mice. RESULTS: PSMA-R12 nanocarrier was ~120 nm in size and was increased to ~150 nm by melatonin encapsulation. PSMA-R12 nanoparticles had efficient loading capacities of siAPE1, melatonin, and 125I particles. The co-delivery of melatonin and siAPE1 by PSMA-R12-125I showed synergistic effects on suppressing LNCaP cell proliferation and Bcl-2 expression and promoting cell apoptosis and caspase-3 expression. Pharmacokinetics analysis showed that Mel@PSMA-R12-125I particles had high uptake activity in the liver, spleen, kidney, intestine, and tumor, and were accumulated in the tumor sites within the first 8 h p.i., but was rapidly cleared from all the tested organs at 24 h p.i. Administration of nanoparticles to PCa tumors in vivo showed that Mel@PSMA-R12- 125I/siAPE1 had high efficiency in suppressing PCa tumor growth. CONCLUSION: The PSMA-targeted nanocarrier encapsulating siAPE1 and melatonin is a promising therapeutic strategy for PCa and can provide a theoretical basis for patent applications.


Subject(s)
Antigens, Surface , Glutamate Carboxypeptidase II , Iodine Radioisotopes , Melatonin , Nanoparticles , Prostatic Neoplasms , Male , Animals , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Humans , Iodine Radioisotopes/administration & dosage , Melatonin/pharmacology , Melatonin/administration & dosage , Cell Line, Tumor , Nanoparticles/chemistry , Mice , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Tissue Distribution , Mice, Nude , Xenograft Model Antitumor Assays , Apoptosis/drug effects , Mice, Inbred BALB C , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/pharmacology
3.
Biochem Biophys Res Commun ; 729: 150372, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38981400

ABSTRACT

The development of lipid nanoparticles (LNPs) has enabled the clinical application of small interfering ribonucleic acid (siRNA)-based therapies. Accordingly, various unique ionizable lipids have been explored for efficient siRNA delivery. However, safety concerns related to the structure of ionizable lipids have been raised. Here, we developed a pH-responsive dipeptide-conjugated lipid (DPL) for efficient, high safety siRNA delivery. We synthesized a DPL library by varying the dipeptide sequence and established a strong correlation between the knockdown efficiency of the DPL-based LNPs and the dipeptide sequence. The LNPs prepared with a DPL containing arginine (R) and glutamic acid (E) (DPL-ER) exhibited the highest knockdown efficiency. In addition, the DPL-ER-based LNPs with relatively long lipid tails (DPL-ER-C22:C22) exhibited a higher knockdown efficiency than those with short ones (DPL-ER-18:C18). The zeta potential of the DPL-ER-C22:C22-based LNPs increased as the pH decreased from 7.4 (physiological condition) to 5.5 (endosomal condition). Importantly, the DPL-ER-C22:C22-based LNPs exhibited a higher knockdown efficiency than the LNPs prepared using commercially available ionizable lipids. These results suggest that the DPL-based LNPs are safe and efficient siRNA delivery carriers.

4.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000202

ABSTRACT

The nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) protein plays an essential role in the cisplatin (CDDP)-induced generation of reactive oxygen species (ROS). In this study, we evaluated the suitability of ultrasound-mediated lysozyme microbubble (USMB) cavitation to enhance NOX4 siRNA transfection in vitro and ex vivo. Lysozyme-shelled microbubbles (LyzMBs) were constructed and designed for siNOX4 loading as siNOX4/LyzMBs. We investigated different siNOX4-based cell transfection approaches, including naked siNOX4, LyzMB-mixed siNOX4, and siNOX4-loaded LyzMBs, and compared their silencing effects in CDDP-treated HEI-OC1 cells and mouse organ of Corti explants. Transfection efficiencies were evaluated by quantifying the cellular uptake of cyanine 3 (Cy3) fluorescein-labeled siRNA. In vitro experiments showed that the high transfection efficacy (48.18%) of siNOX4 to HEI-OC1 cells mediated by US and siNOX4-loaded LyzMBs significantly inhibited CDDP-induced ROS generation to almost the basal level. The ex vivo CDDP-treated organ of Corti explants of mice showed an even more robust silencing effect of the NOX4 gene in the siNOX4/LyzMB groups treated with US sonication than without US sonication, with a marked abolition of CDDP-induced ROS generation and cytotoxicity. Loading of siNOX4 on LyzMBs can stabilize siNOX4 and prevent its degradation, thereby enhancing the transfection and silencing effects when combined with US sonication. This USMB-derived therapy modality for alleviating CDDP-induced ototoxicity may be suitable for future clinical applications.


Subject(s)
Cisplatin , Hair Cells, Auditory , Microbubbles , Muramidase , NADPH Oxidase 4 , Ototoxicity , Reactive Oxygen Species , Cisplatin/pharmacology , Animals , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Mice , Hair Cells, Auditory/drug effects , Hair Cells, Auditory/metabolism , Reactive Oxygen Species/metabolism , Ototoxicity/genetics , Muramidase/genetics , RNA, Small Interfering/genetics , Ultrasonic Waves , Gene Knockdown Techniques , Cell Line
5.
Drug Discov Today ; 29(8): 104074, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950729

ABSTRACT

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), small and bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.

6.
Heart Fail Clin ; 20(3): 343-352, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38844305

ABSTRACT

Transthyretin amyloid cardiomyopathy (ATTR-CM) is a relatively prevalent cause of morbidity and mortality. Over the recent years, development of disease-modifying treatments has enabled stabilization of the circulating transthyretin tetramer and suppression of its hepatic production, resulting in a remarkable improvement in survival of patients with ATTR-CM. Second-generation drugs for silencing are currently under investigation in randomized clinical trials. In vivo gene editing of transthyretin has been achieving unanticipated suppression of hepatic production in ATTR-CM. Trials of antibodies inducing the active removal of transthyretin amyloid deposits in the heart are ongoing, and evidence has gathered for exceptional spontaneous regression of ATTR-CM.


Subject(s)
Amyloid Neuropathies, Familial , Benzoxazoles , Cardiomyopathies , Prealbumin , Humans , Amyloid Neuropathies, Familial/drug therapy , Amyloid Neuropathies, Familial/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/metabolism , Benzoxazoles/therapeutic use , Prealbumin/metabolism , Prealbumin/genetics
7.
Mol Biol Rep ; 51(1): 737, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874790

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children, presenting significant healthcare challenges for some patients, including drug resistance and the need for targeted therapies. SiRNA-based therapy is one potential solution, but problems can arise in administration and the need for a delivery system to protect siRNA during intravenous injection. Additionally, siRNA encounters instability and degradation in the reticuloendothelial system, off-target effects, and potential immune system stimulation. Despite these limitations, some promising results about siRNA therapy in ALL patients have been published in recent years, showing the potential for more effective and precise treatment, reduced side effects, and personalized approaches. While siRNA-based therapies demonstrate safety and efficacy, addressing the mentioned limitations is crucial for further optimization. Advancements in siRNA-delivery technologies and combination therapies hold promise to improve treatment effectiveness and overcome drug resistance. Ultimately, despite its challenges, siRNA therapy has the potential to revolutionize ALL treatments and improve patient outcomes.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , RNA, Small Interfering , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Genetic Therapy/methods , Animals , Drug Resistance, Neoplasm/genetics
8.
Curr Mol Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38859785

ABSTRACT

Gene silencing through RNA interference (RNAi) technology has provided forceful therapeutic modalities to specific knockdown of the genes' expression related to diseases. Small interfering RNAs (siRNAs) can start a process that specifically degrades and silences the expression of cognate mRNAs. These RNA interference processes could effectively adjust many biological processes, including immune responses. Dendritic cells (DCs) are specialist antigen-presenting cells with potent functions in regulating innate and adaptive immunity. SiRNAs performed vital roles in coordinating immune processes mediated by DCs. This review describes the findings that shed light on the significance of siRNAs in DC immune regulation and highlight their potential applications for improving DC-based immunotherapies.

9.
Article in English | MEDLINE | ID: mdl-38868940

ABSTRACT

BACKGROUND: Plasma concentration of PAI-1 (plasminogen activator inhibitor-1) correlates with arterial stiffness. Vascular smooth muscle cells (SMCs) express PAI-1, and the intrinsic stiffness of SMCs is a major determinant of total arterial stiffness. We hypothesized that PAI-1 promotes SMC stiffness by regulating the cytoskeleton and that pharmacological inhibition of PAI-1 decreases SMC and aortic stiffness. METHODS: PAI-039, a specific inhibitor of PAI-1, and small interfering RNA were used to inhibit PAI-1 expression in cultured human SMCs. Effects of PAI-1 inhibition on SMC stiffness, F-actin (filamentous actin) content, and cytoskeleton-modulating enzymes were assessed. WT (wild-type) and PAI-1-deficient murine SMCs were used to determine PAI-039 specificity. RNA sequencing was performed to determine the effects of PAI-039 on SMC gene expression. In vivo effects of PAI-039 were assessed by aortic pulse wave velocity. RESULTS: PAI-039 significantly reduced intrinsic stiffness of human SMCs, which was accompanied by a significant decrease in cytoplasmic F-actin content. PAI-1 gene knockdown also decreased cytoplasmic F-actin. PAI-1 inhibition significantly increased the activity of cofilin, an F-actin depolymerase, in WT murine SMCs, but not in PAI-1-deficient SMCs. RNA-sequencing analysis suggested that PAI-039 upregulates AMPK (AMP-activated protein kinase) signaling in SMCs, which was confirmed by Western blotting. Inhibition of AMPK prevented activation of cofilin by PAI-039. In mice, PAI-039 significantly decreased aortic stiffness and tunica media F-actin content without altering the elastin or collagen content. CONCLUSIONS: PAI-039 decreases intrinsic SMC stiffness and cytoplasmic stress fiber content. These effects are mediated by AMPK-dependent activation of cofilin. PAI-039 also decreases aortic stiffness in vivo. These findings suggest that PAI-1 is an important regulator of the SMC cytoskeleton and that pharmacological inhibition of PAI-1 has the potential to prevent and treat cardiovascular diseases involving arterial stiffening.

10.
Curr Mol Med ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38918983

ABSTRACT

Targeting genes using siRNA shows promise as an approach to alleviate symptoms of diabetic neuropathy. It focuses on neuropathies and distal symmetric polyneuropathy (DSPN) to explore the potential use of small interfering RNA (siRNA) as a treatment for diabetic neuropathy. Timely identification and management of neuropathy play a critical role in mitigating potential complications. RNAi success depends on understanding factors affecting small interfering RNA (siRNA) functionality and specificity. These include sequence space restrictions, structural and sequence features, mechanisms for nonspecific gene modulation, and chemical modifications. Addressing these factors enhances siRNA performance for efficient gene silencing and confidence in RNAi-mediated genomic studies. Diabetic retinopathy, particularly in South Asian, African, Latin American, and indigenous populations, is a significant concern due to its association with diabetes. Ethnicity plays a crucial role in its development and progression. Despite declining rates in the US, global trends remain concerning, and further research is needed to understand regional differences and reinforce ethnicity-based screening and treatment protocols. In this regard, siRNA emerges as a valuable instrument for early intervention strategies. While presenting promising therapeutic applications, siRNA utilization encounters challenges within insect pest control contexts, thereby providing insights into enhancing its delivery mechanisms for neuropathy treatment purposes. Recent advancements in delivery modalities, such as nanoparticles, allow for the controlled release of siRNA. More investigation is necessary to grasp the safety and efficacy of siRNA technology fully. It holds promise in transforming the treatment of diabetic neuropathy by honing in on particular genes and tackling issues such as inflammation and oxidative stress. Continuous advancements in delivery techniques have the potential to enhance patient results significantly. SiRNA targets genes in diabetic neuropathy, curbing nerve damage and pain and potentially preventing or delaying the condition. Customized treatments based on genetic variations hold promise for symptom management and enhancing quality of life.

11.
Ann Acad Med Singap ; 53(2): 113-116, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38920235

ABSTRACT

Ribonucleic acid (RNA) therapeutics hold great potential for the advancement of dermatological treatments due to, among other reasons, the possibility of treating previously undruggable targets, high specificity with minimal side effects, and ability to include multiple RNA targets in a single product. Although there have been research relating to RNA therapeutics for decades, there have not been many products translated for clinical use until recently. This may be because of challenges to the application of RNA therapeutics, including the dearth of effective modes of delivery to the target, and rapid degradation of RNA in the human body and environment. This article aims to provide insight on (1) the wide-ranging possibilities of RNA therapeutics in the field of dermatology as well as (2) how key challenges can be addressed, so as to encourage the development of novel dermatological treatments. We also share our experience on how RNA therapeutics have been applied in the management of hypertrophic and keloid scars.


Subject(s)
Keloid , Humans , Keloid/therapy , Cicatrix, Hypertrophic/therapy , Cicatrix, Hypertrophic/drug therapy , RNA/therapeutic use , Dermatology/methods , Skin Diseases/therapy , Skin Diseases/drug therapy , Genetic Therapy/methods
12.
Biomolecules ; 14(6)2024 May 30.
Article in English | MEDLINE | ID: mdl-38927048

ABSTRACT

Chronic myeloid leukemia (CML) is an oncological myeloproliferative disorder that accounts for 15 to 20% of all adult leukemia cases. The molecular basis of this disease lies in the formation of a chimeric oncogene BCR-ABL1. The protein product of this gene, p210 BCR-ABL1, exhibits abnormally high constitutive tyrosine kinase activity. Over recent decades, several targeted tyrosine kinase inhibitors (TKIs) directed against BCR-ABL1 have been developed and introduced into clinical practice. These inhibitors suppress BCR-ABL1 activity through various mechanisms. Furthermore, the advent of RNA interference technology has enabled the highly specific inhibition of BCR-ABL1 transcript expression using small interfering RNA (siRNA). This experimental evidence opens avenues for the development of a novel therapeutic strategy for CML, termed siRNA therapy. The review delves into molecular genetic mechanisms underlying the pathogenesis of CML, challenges in CML therapy, potential molecular targets for drug development, and the latest results from the application of siRNAs in in vitro and in vivo CML models.


Subject(s)
Fusion Proteins, bcr-abl , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Molecular Targeted Therapy , RNA, Small Interfering , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/antagonists & inhibitors , Fusion Proteins, bcr-abl/metabolism , Animals , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacology , RNA Interference
13.
J Nanobiotechnology ; 22(1): 348, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898486

ABSTRACT

Tumor-associated macrophages (TAMs) are a promising target for cancer immunotherapy, but delivering therapeutic agents to TAMs within the tumor microenvironment (TME) is challenging. In this study, a photosensitive, dual-targeting nanoparticle system (M.RGD@Cr-CTS-siYTHDF1 NPs) was developed. The structure includes a shell of DSPE-modified RGD peptides targeting integrin receptors on tumor cells and carboxymethyl mannose targeting CD206 receptors on macrophages, with a core of chitosan adsorbing m6A reading protein YTHDF1 siRNA and chromium nanoparticles (Cr NPs). The approach is specifically designed to target TAM and cancer cells, utilizing the photothermal effect of Cr NPs to disrupt the TME and deliver siYTHDF1 to TAM. In experiments with tumor-bearing mice, M.RGD@Cr-CTS-siYTHDF1 NPs, when exposed to laser irradiation, effectively killed tumor cells, disrupted the TME, delivered siYTHDF1 to TAMs, silenced the YTHDF1 gene, and shifted the STAT3-STAT1 equilibrium by reducing STAT3 and enhancing STAT1 expression. This reprogramming of TAMs towards an anti-tumor phenotype led to a pro-immunogenic TME state. The strategy also suppressed immunosuppressive IL-10 production, increased expression of immunostimulatory factors (IL-12 and IFN-γ), boosted CD8 + T cell infiltration and M1-type TAMs, and reduced Tregs and M2-type TAMs within the TME. In conclusion, the dual-targeting M.RGD@Cr-CTS-siYTHDF1 NPs, integrating dual-targeting capabilities with photothermal therapy (PTT) and RNA interference, offer a promising approach for molecular targeted cancer immunotherapy with potential for clinical application.


Subject(s)
Immunotherapy , Liver Neoplasms , RNA, Small Interfering , Animals , Mice , Immunotherapy/methods , Humans , Liver Neoplasms/therapy , Cell Line, Tumor , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , RNA-Binding Proteins/metabolism , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry
14.
Pharmaceutics ; 16(6)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931900

ABSTRACT

Insufficient endosomal escape presents a major hurdle for successful nucleic acid therapy. Here, for the first time, a chemical electron transfer (CET) system was integrated into small interfering RNA (siRNA) lipid nanoparticles (LNPs). The CET acceptor can be chemically excited using the generated energy between the donor and hydrogen peroxide, which triggers the generation of reactive oxygen species (ROS), promoting endosomal lipid membrane destabilization. Tetra-oleoyl tri-lysino succinoyl tetraethylene pentamine was included as an ionizable lipopeptide with a U-shaped topology for effective siRNA encapsulation and pH-induced endosomal escape. LNPs loaded with siRNA and CET components demonstrated a more efficient endosomal escape, as evidenced by a galectin-8-mRuby reporter; ROS significantly augmented galectin-8 recruitment by at least threefold compared with the control groups, with a p value of 0.03. Moreover, CET-enhanced LNPs achieved a 24% improvement in apoptosis level by knocking down the tumor-protective gene nuclear factor erythroid 2-related factor 2, boosting the CET-mediated ROS cell killing.

15.
Cancer Genomics Proteomics ; 21(4): 327-349, 2024.
Article in English | MEDLINE | ID: mdl-38944427

ABSTRACT

We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.


Subject(s)
Pancreatic Neoplasms , RNA, Circular , Humans , RNA, Circular/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/metabolism , Animals , Molecular Targeted Therapy/methods
16.
Front Plant Sci ; 15: 1387575, 2024.
Article in English | MEDLINE | ID: mdl-38736453

ABSTRACT

Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.

17.
Macromol Rapid Commun ; : e2400129, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778746

ABSTRACT

Biopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications. Here, periodate-oxidized nanofibrillated cellulose (OxNFC) is blended with lysozyme amyloid nanofibrils (LNFs) to prepare a self-crosslinkable patch for myocardial implantation. The OxNFC:LNFs patch shows superior wet mechanical properties (60 MPa for Young's modulus and 1.5 MPa for tensile stress at tensile strength), antioxidant activity (70% scavenging activity under 24 h), and bioresorbability ratio (80% under 91 days), when compared to the patches composed solely of NFC or OxNFC. These improvements are achieved while preserving the morphology, required thermal stability for sterilization, and biocompatibility toward rat cardiomyoblast cells. Additionally, both OxNFC and OxNFC:LNFs patches reveal the ability to act as efficient vehicles to deliver spermine modified acetalated dextran nanoparticles, loaded with small interfering RNA, with 80% of delivery after 5 days. This study highlights the value of simply blending OxNFC and LNFs, synergistically combining their key properties and functionalities, resulting in a biopolymeric patch that comprises valuable characteristics for myocardial regeneration applications.

18.
ACS Synth Biol ; 13(6): 1906-1915, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38733599

ABSTRACT

Synthetic biology constitutes a scientific domain focused on intentional redesign of organisms to confer novel functionalities or create new products through strategic engineering of their genetic makeup. Leveraging the inherent capabilities of nature, one may address challenges across diverse sectors including medicine. Inspired by this concept, we have developed an innovative bioengineering platform, enabling high-yield and large-scale production of biological small interfering RNA (BioRNA/siRNA) agents via bacterial fermentation. Herein, we show that with the use of a new tRNA fused pre-miRNA carrier, we can produce various forms of BioRNA/siRNA agents within living host cells. We report a high-level overexpression of nine target BioRNA/siRNA molecules at 100% success rate, yielding 3-10 mg of BioRNA/siRNA per 0.25 L of bacterial culture with high purity (>98%) and low endotoxin (<5 EU/µg RNA). Furthermore, we demonstrate that three representative BioRNA/siRNAs against GFP, BCL2, and PD-L1 are biologically active and can specifically and efficiently silence their respective targets with the potential to effectively produce downstream antiproliferation effects by PD-L1-siRNA. With these promising results, we aim to advance the field of synthetic biology by offering a novel platform to bioengineer functional siRNA agents for research and drug development.


Subject(s)
RNA, Small Interfering , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Humans , Synthetic Biology/methods , RNA, Transfer/genetics , RNA, Transfer/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering/methods , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
19.
Article in English | MEDLINE | ID: mdl-38693628

ABSTRACT

The therapeutic potential of small interfering RNA (siRNA) is monumental, offering a pathway to silence disease-causing genes with precision. However, the delivery of siRNA to target cells in-vivo remains a formidable challenge, owing to degradation by nucleases, poor cellular uptake and immunogenicity. This overview examines recent advancements in the design and application of nucleic acid-based integrated macromolecular complexes for the efficient delivery of siRNA. We dissect the innovative delivery vectors developed in recent years, including lipid-based nanoparticles, polymeric carriers, dendrimer complexes and hybrid systems that incorporate stimuli-responsive elements for targeted and controlled release. Advancements in bioconjugation techniques, active targeting strategies and nanotechnology-enabled delivery platforms are evaluated for their contribution to enhancing siRNA delivery. It also addresses the complex interplay between delivery system design and biological barriers, highlighting the dynamic progress and remaining hurdles in translating siRNA therapies from bench to bedside. By offering a comprehensive overview of current strategies and emerging technologies, we underscore the future directions and potential impact of siRNA delivery systems in personalized medicine.

20.
Front Plant Sci ; 15: 1385456, 2024.
Article in English | MEDLINE | ID: mdl-38779063

ABSTRACT

Most plants produce large amounts of seeds to disperse their progeny in the environment. Plant viruses have evolved to avoid plant resistance mechanisms and use seeds for their dispersal. The presence of plant pathogenic viruses in seeds and suppression of plant host defenses is a major worldwide concern for producers and seed companies because undetected viruses in the seed can represent a significant threat to yield in many economically important crops. The vertical transmission of plant viruses occurs directly through the embryo or indirectly by getting in pollen grains or ovules. Infection of plant viruses during the early development of the seed embryo can result in morphological or genetic changes that cause poor seed quality and, more importantly, low yields due to the partial or ubiquitous presence of the virus at the earliest stages of seedling development. Understanding transmission of plant viruses and the ability to avoid plant defense mechanisms during seed embryo development will help identify primary inoculum sources, reduce virus spread, decrease severity of negative effects on plant health and productivity, and facilitate the future of plant disease management during seed development in many crops. In this article, we provide an overview of the current knowledge and understanding of plant virus transmission during seed embryo development, including the context of host-virus interaction.

SELECTION OF CITATIONS
SEARCH DETAIL
...