Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Mol Divers ; 28(1): 271-307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-36609738

ABSTRACT

Over the past few years, there have been tremendous developments in the design and synthesis of organic optoelectronic materials with appealing applications in device fabrication of organic light-emitting diodes, superconductors, organic lasers, organic field-effect transistors, clean energy-producing organic solar cells, etc. There is an increasing demand for the synthesis of green, highly efficient organic optoelectronic materials to cope with the issue of efficiency roll-off in organic semiconductor-based devices. This review systematically summarized the recent progress in the design and synthesis of small organic molecules having promising optoelectronic properties for their potential applications in optoelectronic devices during the last 10-year range (2010-early 2021).

2.
ACS Nano ; 17(11): 10280-10290, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37218668

ABSTRACT

Although molecular piezoelectric materials are ideal constituents for next-generation electronic microdevices, their weak piezoelectric coefficients which restrict their practical applications need to be enhanced by some strategies. Herein, a series of d-phenylalanine derivatives are synthesized and an increased molecular piezoelectric coefficient of their assemblies is achieved by acid doping. The acid doping can increase the asymmetric distribution of charges in the molecules and in turn molecular polarizability, leading to the enhanced molecular piezoelectricity of assemblies. The effective piezoelectric coefficients can be promoted up to 38.5 pm V-1 and four times those without doping, which is also higher than those obtained by the reported methods. Moreover, the piezoelectric energy harvesters can generate voltage up to 3.4 V and current up to 80 nA. This practical strategy can enhance piezoelectric coefficients without varying the crystal structures of the assemblies, which may inspire future molecular design of organic functional materials.

3.
Nano Lett ; 22(9): 3628-3635, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35413204

ABSTRACT

Here, we demonstrate atomic-resolution scanning transmission electron microscopy (STEM) imaging of light elements in small organic molecules on graphene. We use low-dose, room-temperature, aberration-corrected STEM to image 2D monolayer and bilayer molecular crystals, followed by advanced image processing methods to create high-quality composite images from ∼102-104 individual molecules. In metalated porphyrin and phthalocyanine derivatives, these images contain an elementally sensitive contrast with up to 1.3 Å resolution─sufficient to distinguish individual carbon and nitrogen atoms. Importantly, our methods can be applied to molecules with low masses (∼0.6 kDa) and nanocrystalline domains containing just a few hundred molecules, making it possible to study systems for which large crystals cannot easily be grown. Our approach is enabled by low-background graphene substrates, which we show increase the molecules' critical dose by 2-7×. These results indicate a new route for low-dose, atomic-resolution electron microscopy imaging to solve the structures of small organic molecules.


Subject(s)
Graphite , Carbon , Electrons , Graphite/chemistry , Microscopy, Electron, Scanning Transmission/methods
4.
Molecules ; 27(3)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35164278

ABSTRACT

The primary reason behind the search for novel organic materials for application in thermoelectric devices is the toxicity of inorganic substances and the difficulties associated with their processing for the production of thin, flexible layers. When Thomas Seebeck described a new phenomenon in Berlin in 1820, nobody could have predicted the future applications of the thermoelectric effect. Now, thermoelectric generators (TEGs) are used in watches, and thermoelectric coolers (TECs) are applied in cars, computers, and various laboratory equipment. Nevertheless, the future of thermoelectric materials lies in organic compounds. This paper discusses the developments made in thermoelectric materials, including small molecules, polymers, molecular junctions, and their applications as TEGs and/or TECs.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35159788

ABSTRACT

Global energy demand is increasing; thus, emerging renewable energy sources, such as organic solar cells (OSCs), are fundamental to mitigate the negative effects of fuel consumption. Within OSC's advancements, the development of efficient and stable interface materials is essential to achieve high performance, long-term stability, low costs, and broader applicability. Inorganic and nanocarbon-based materials show a suitable work function, tunable optical/electronic properties, stability to the presence of moisture, and facile solution processing, while organic conducting polymers and small molecules have some advantages such as fast and low-cost production, solution process, low energy payback time, light weight, and less adverse environmental impact, making them attractive as hole transporting layers (HTLs) for OSCs. This review looked at the recent progress in metal oxides, metal sulfides, nanocarbon materials, conducting polymers, and small organic molecules as HTLs in OSCs over the past five years. The endeavors in research and technology have optimized the preparation and deposition methods of HTLs. Strategies of doping, composite/hybrid formation, and modifications have also tuned the optical/electrical properties of these materials as HTLs to obtain efficient and stable OSCs. We highlighted the impact of structure, composition, and processing conditions of inorganic and organic materials as HTLs in conventional and inverted OSCs.

6.
J Comput Chem ; 43(5): 308-318, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34870332

ABSTRACT

There has been tremendous advancement in machine learning (ML) applications in computational chemistry, particularly in neural network potentials (NNP). NNPs can approximate potential energy surface (PES) as a high dimensional function by learning from existing reference data, thereby circumventing the need to solve the electronic Schrödinger equation explicitly. As a result, ML accelerates chemical space exploration and property prediction compared to quantum mechanical methods. Novel ML methods have the potential to provide efficient means for predicting the properties of molecules. However, this potential has been limited by the lack of standard comparative evaluations. In this work, we compare four selected models, that is, ANI, PhysNet, SchNet, and BAND-NN, developed to represent the PES of small organic molecules. We evaluate these models for their accuracy and transferability on two different test sets (i) Small organic molecules of up to eight-heavy atoms on which ANI and SchNet achieve root mean square error (RMSE) of 0.55 and 0.60 kcal/mol, respectively. (ii) On random selection of molecules from the GDB-11 database with 10-heavy atoms, ANI achieves RMSE of 1.17 kcal/mol and SchNet achieves RMSE of 1.89 kcal/mol. We examine their ability to produce smooth meaningful surface by performing PES scans for bond stretch, angle bend, and dihedral rotations on relatively large molecules to assess their possible application in molecular dynamics simulations. We also evaluate their performance for yielding minimum energy structures via geometry optimization using various minimization algorithms. All these models were also able to accurately differentiate different isomers of the same empirical formula C10H20 . ANI and PhysNet achieve an RMSE of 0.29 and 0.52 kcal/mol, respectively, on C10H20 isomers.

7.
Molecules ; 26(9)2021 May 09.
Article in English | MEDLINE | ID: mdl-34065150

ABSTRACT

Bioanalysis is the scientific field of the quantitative determination of xenobiotics (e.g., drugs and their metabolites) and biotics (e.g., macromolecules) in biological matrices. The most common samples in bioanalysis include blood (i.e., serum, plasma and whole blood) and urine. However, the analysis of alternative biosamples, such as hair and nails are gaining more and more attention. The main limitations for the determination of small organic compounds in biological samples is their low concentration in these matrices, in combination with the sample complexity. Therefore, a sample preparation/analyte preconcentration step is typically required. Currently, the development of novel microextraction and miniaturized extraction techniques, as well as novel adsorbents for the analysis of biosamples, in compliance with the requirements of Green Analytical Chemistry, is in the forefront of research in analytical chemistry. Graphene oxide (GO) is undoubtedly a powerful adsorbent for sample preparation that has been successfully coupled with a plethora of green extraction techniques. GO is composed of carbon atoms in a sp2 single-atom layer of a hybrid connection, and it exhibits high surface area, as well as good mechanical and thermal stability. In this review, we aim to discuss the applications of GO and functionalized GO derivatives in microextraction and miniaturized extraction techniques for the determination of small organic molecules in biological samples.


Subject(s)
Graphite/chemistry , Green Chemistry Technology , Organic Chemicals/chemistry , Solid Phase Extraction/methods , Adsorption , Carbon/chemistry , Humans , Magnetics , Molecularly Imprinted Polymers , Nanomedicine , Nanostructures , Reproducibility of Results , Surface Properties
8.
ACS Nano ; 15(6): 10377-10383, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34048210

ABSTRACT

Inducing an inversion layer in organic semiconductors is a highly nontrivial, but critical, achievement for producing organic field-effect transistor (OFET) devices, which rely on the generation of inversion, accumulation, and depletion regimes for successful operation. Here, we develop a pulsed bias technique to characterize the dopant type of any organic material system, without prior knowledge or characterization of the material in question. We use this technique on a pentacene/PTCDI heterostructure and thus deduce that pentacene is exhibiting n-doped like response. The source of the additional charges in the pentacene island can be identified by charging rings in the dissipation channel of the noncontact atomic force microscopy (AFM) signal, a typical signature for localized charge transfer from the AFM tip to the sample. Additionally, through tip-induced band-bending, we generate inversion, depletion, and accumulation regimes over a 20 nm radius, three monolayer thick n-doped pentacene island. Our findings demonstrate that nanometer-scale lateral extent and thickness are sufficient for an OFET device to operate in the inversion regime.

9.
Chemistry ; 27(28): 7738-7744, 2021 May 17.
Article in English | MEDLINE | ID: mdl-33788327

ABSTRACT

Photoactive two-dimensional covalent organic frameworks (2D-COFs) have become promising heterogenous photocatalysts in visible-light-driven organic transformations. Herein, a visible-light-driven selective aerobic oxidation of various small organic molecules by using 2D-COFs as the photocatalyst was developed. In this protocol, due to the remarkable photocatalytic capability of hydrazone-based 2D-COF-1 on molecular oxygen activation, a wide range of amides, quinolones, heterocyclic compounds, and sulfoxides were obtained with high efficiency and excellent functional group tolerance under very mild reaction conditions. Furthermore, benefiting from the inherent advantage of heterogenous photocatalysis, prominent sustainability and easy photocatalyst recyclability, a drug molecule (modafinil) and an oxidized mustard gas simulant (2-chloroethyl ethyl sulfoxide) were selectively and easily obtained in scale-up reactions. Mechanistic investigations were conducted using radical quenching experiments and in situ ESR spectroscopy, all corroborating the proposed role of 2D-COF-1 in photocatalytic cycle.


Subject(s)
Metal-Organic Frameworks , Catalysis , Light , Oxidation-Reduction
10.
ACS Appl Mater Interfaces ; 12(45): 50971-50984, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33107725

ABSTRACT

Black silicon (bSi) refers to an etched silicon surface comprising arrays of microcones that effectively suppress reflection from UV to near-infrared (NIR) while simultaneously enhancing the scattering and absorption of light. This makes bSi covered with a nm-thin layer of plasmonic metal, i.e., gold, an attractive substrate material for sensing of bio-macromolecules and living cells using surface-enhanced Raman spectroscopy (SERS). The performed Raman measurements accompanied with finite element numerical simulation and density functional theory analysis revealed that at the 785 nm excitation wavelength, the SERS enhancement factor of the bSi/Au substrate is as high as 108 due to a combination of electromagnetic and chemical mechanisms. This finding makes the SERS-active bSi/Au substrate suitable for detecting trace amounts of organic molecules. We demonstrate the outstanding performance of this substrate by highly sensitive and specific detection of a small organic molecule of 4-mercaptobenzoic acid and living C6 rat glioma cell nucleic acids/proteins/lipids. Specifically, the bSi/Au SERS-active substrate offers a unique opportunity to investigate the living cells' malignant transformation using characteristic protein disulfide Raman bands as a marker. Our findings evidence that bSi/Au provides a pathway to the highly sensitive and selective, scalable, and low-cost substrate for lab-on-a-chip SERS biosensors that can be integrated into silicon-based photonics devices.


Subject(s)
Benzoates/analysis , Gold/chemistry , Silicon/chemistry , Sulfhydryl Compounds/analysis , Animals , Density Functional Theory , Particle Size , Rats , Spectrum Analysis, Raman , Surface Properties , Tumor Cells, Cultured
11.
J Mass Spectrom ; 54(12): 948-956, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31652386

ABSTRACT

The laser diode thermal desorption (LDTD) ionization source allows ultrafast and sensitive analysis of small molecules by mass spectrometry. Signal enhancement in LDTD has been observed when coating the surface of sample microwells with a solution of ethylenediaminetetraacetic acid (EDTA) or nitrilotriacetic acid. Here we present a quantitative analysis of signal enhancement using solutions of diverse commercial proteins (lysozyme, immunoglobulin G, albumin, and fibrinogen) as coatings. Results showed that compounds with polar chemical functions such as carboxylic acid, sulfonyl, and nitro had signal enhancement factors, in most cases higher than 10, when using any of the tested proteins as coating agent. Analysis of variance revealed that immunoglobulin G and fibrinogen gave the best results. However, the signal enhancement factors obtained with these proteins were not superior to those observed with EDTA. To explain the signal enhancement effect of proteins, analysis by scanning electron microscopy of dried samples on the microwell sample plates was carried out. Images showed that salicylic acid, one of the compounds with the highest observed signal enhancement, formed a thick layer when applied directly on the uncoated surface, but it formed small crystals (<1 µm) in the presence of protein or EDTA coatings. Further crystallographic studies using powder X-ray diffraction showed that the crystalline form of salicylic acid is modified in the presence of EDTA. Salicylic acid when mixed with EDTA had a higher percentage of amorphous phase (38.1%) than without EDTA (23.1%). These results appear to confirm that the diminution of crystal size of analytes and the increase of amorphous phase are implicated in signal enhancement effect observed in LDTD using microwell surface coatings. To design better coatings and completely elucidate the signal enhancement effect in LDTD, more studies are necessary to understand the effects of coatings on the ionization of analytes.

12.
Expert Opin Emerg Drugs ; 24(2): 107-119, 2019 06.
Article in English | MEDLINE | ID: mdl-30957581

ABSTRACT

Introduction: PEGylation is a well-established technology for improving the therapeutic value of drugs by attaching polyethylene glycol (PEG). The first PEGylated enzyme products appeared on the market in the early 1990s; currently, more than 18 PEGylated products have been approved by Food and Drug Administration, which encompass various classes of drug molecules, such as enzymes, interferons, granulocyte colony-stimulating factors, hormones, antibody fragments, coagulation factors, oligonucleotide aptamers, synthetic peptides, and small organic molecules. Areas covered: While PEGylated products mainly comprise biologic drugs, such as recombinant proteins and enzymes, non-biologic drugs have recently emerged as a target for PEGylation. This review focuses on the recent development of PEGylated non-biologic drugs, such as small organic molecules, synthetic peptides, and aptamers. Expert opinion: Several PEGylated versions of anti-cancer drugs, opioid agonists, glucagon-like peptide-1 receptor agonists, and oligonucleotide aptamers are in active development stage, and it is likely that they will have a dramatic impact on the market. Although some safety concerns about PEG in clinical trials have been recently issued, PEGylation is still a commercially attractive proposition as a half-life extension technology for long-acting drug development.


Subject(s)
Drug Carriers/chemistry , Drug Development , Polyethylene Glycols/chemistry , Technology, Pharmaceutical/methods , Aptamers, Nucleotide/administration & dosage , Morphinans/administration & dosage , Peptides/administration & dosage , Polyethylene Glycols/administration & dosage
13.
J Mass Spectrom ; 54(2): 167-177, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30600862

ABSTRACT

Laser-diode thermal desorption (LDTD) is an ionization source usually coupled to triple quadrupole mass spectrometry (QqQMS) and specifically designed for laboratories requiring high-throughput analysis. It has been observed that surface coatings on LDTD microwell plates can improve the sensitivity of the analysis of small polar molecules. The objective of the present study is to understand and quantify the effect of microwell surface coatings on signal intensity of small organic molecules of clinical, environmental, and forensic interest. Experiments showed that the peak areas of diclofenac, chloramphenicol, salicylic acid, and 11-nor-9-carboxy-Δ9 -tetrahydrocannabinol obtained by LDTD-QqQMS increased by up to 3 orders of magnitude when using microwells coated with ethylenediaminetetraacetic acid (EDTA). Tests with different chelating agents and polytetrafluoroethylene as microwell surface coatings showed that nitrilotriacetic acid gave significantly higher peak areas for five out of the nine compounds that showed signal enhancement using chelating agents as coatings. Scanning electron microscopy studies of EDTA-coated and uncoated microwells showed that analytes deposited in the former formed more uniform and thinner films than in the latter. The enhancement effect of surface coatings in LDTD-QqQMS was explained mainly by the formation of homogenous and thinner layers of nanocrystals of analytes that are easier to desorb thermally than the layers formed when the analytes dry in direct contact with the bare stainless-steel surface. Chemisorption of some analytes to the stainless-steel surface of the microwell plate appeared to be a minor factor. Surface coatings widen the number of compounds analyzable by LDTD-QqQMS and can also improve sensitivity and limits of detection.

14.
Molecules ; 23(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572665

ABSTRACT

Small organic molecules (SOMs) with fascinating chiroptical properties have received much attention for their potential applications in photoelectric and biological devices. As an important research tool, circularly polarized luminescence (CPL) provides information about the chiral structures of these molecules in their excited state, and has been an active area of research. With the development of the commercially available CPL instrumentation, currently, more and more research groups have attempted to enhance the CPL parameters (i.e., quantum yield and dissymmetry factor) of the chiral SOMs from all aspects. This review summarizes the latest five years progresses in research on the experimental techniques and theoretical calculations of CPL emitted from SOMs, as well as forecasting its trend of development.


Subject(s)
Luminescence , Luminescent Measurements/methods , Stereoisomerism
15.
Mikrochim Acta ; 185(9): 444, 2018 09 03.
Article in English | MEDLINE | ID: mdl-30178314

ABSTRACT

An inorganic-organic hybrid monolith incorporated with stellated mesoporous silica nanoparticles (SMSNs) was prepared. Using binary solvents, deep eutectic solvents and room temperature ionic liquids, an SMSN-incorporated poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith demonstrated uniform structure with good column permeability. A systematic investigation of preparation parameter was performed, including SMSN content, crosslinking monomer content, and the component of binary solvent. The optimized monoliths were characterized by field emission scanning electron microscopy, transmission electron microscopy, area scanning energy dispersive spectrometry, and nitrogen adsorption. Column performance was tested by separating four groups of analytes (alkylbenzenes, anilines, naphthalenes and phenols) by capillary electrochromatography (CEC). Baseline separation of all analytes was obtained with column efficiencies of up to 266,000 plates m-1. The performance of the resulting monolith was further investigated in detail by separating mixtures of polycyclic aromatic hydrocarbons (PAHs), nonsteroidal antiinflammatory drugs (NSAIDs), and hydroxybenzoic acid isomers. Compared with the corresponding SMSN-free monolith, the CEC performance was improved by about six times. Successful extraction of PAHs and quinolones (QNs) were also performed using this capillary. Improved extraction efficiency (20.2%) for complex samples, lake water, was also found when the material was applied to solid phase microextraction of fluoranthene. Graphical abstract A poly(butyl methacrylate-co-ethylene glycol dimethacrylate) monolith incorporated with stellated mesoporous silica nanoparticles was prepared. It demonstrated column efficiency up to 266,000 plates m-1 in capillary electrochromatography and ability as solid phase microextraction for organic small molecules with good column permeability.

16.
Adv Protein Chem Struct Biol ; 111: 223-242, 2018.
Article in English | MEDLINE | ID: mdl-29459033

ABSTRACT

Viruses are obligate parasites that depend on cellular factors for replication. Pharmacological inhibition of essential viral proteins, mostly enzymes, is an effective therapeutic alternative in the absence of effective vaccines. However, this strategy commonly encounters drug resistance mechanisms that allow these pathogens to evade control. Due to the dependency on host factors for viral replication, pharmacological disruption of the host-pathogen protein-protein interactions (PPIs) is an important therapeutic alternative to block viral replication. In this review we discuss salient aspects of PPIs implicated in viral replication and advances in the development of small molecules that inhibit viral replication through antagonism of these interactions.


Subject(s)
Antiviral Agents/pharmacology , Host Microbial Interactions/drug effects , Small Molecule Libraries/pharmacology , Viral Proteins/drug effects , Viruses/drug effects , Antiviral Agents/chemistry , Humans , Small Molecule Libraries/chemistry , Viral Proteins/chemistry , Viruses/chemistry
17.
Molecules ; 23(2)2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29385678

ABSTRACT

Four low molecular weight compounds-three of them new, two of them with carbazole (Cz) as functional group and the other two with thienopyrroledione (TPD) group-were used as emitting materials in organic light emitting diodes (OLEDs). Devices were fabricated with the configuration ITO/PEDOT:PSS/emitting material/LiF/Al. The hole injector layer (HIL) and the emitting sheet were deposited by spin coating; LiF and Al were thermally evaporated. OLEDs based on carbazole derivatives show luminances up to 4130 cd/m², large current efficiencies about 20 cd/A and, cautiously, a very impressive External Quantum Efficiency (EQE) up to 9.5%, with electroluminescence peaks located around 490 nm (greenish blue region). Whereas, devices manufactured with TPD derivatives, present luminance up to 1729 cd/m², current efficiencies about 4.5 cd/A and EQE of 1.5%. These results are very competitive regarding previous reported materials/devices.


Subject(s)
Carbazoles/chemistry , Semiconductors , Thienopyridines/chemistry
18.
Chemistry ; 23(32): 7653-7656, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28382647

ABSTRACT

Residual dipolar couplings (RDC) emerged to be an important structural parameter for organic and biomolecules. Herein, a new helical polyisocyanopeptide (l,l-PIAF-OBn) that forms lyotropic liquid crystals (LLC) in CDCl3 is proposed as a novel weakly orienting medium for acquiring residual dipolar couplings (RDCs) of organic molecules. We demonstrate its application for the structural elucidation of strychnine and triptolide.


Subject(s)
Liquid Crystals/chemistry , Peptides/chemistry , Diterpenes/chemistry , Epoxy Compounds/chemistry , Magnetic Resonance Spectroscopy , Molecular Conformation , Phenanthrenes/chemistry , Strychnine/chemistry
19.
J Comput Aided Mol Des ; 31(4): 379-391, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28281211

ABSTRACT

The aim of computational molecular design is the identification of promising hypothetical molecules with a predefined set of desired properties. We address the issue of accelerating the material discovery with state-of-the-art machine learning techniques. The method involves two different types of prediction; the forward and backward predictions. The objective of the forward prediction is to create a set of machine learning models on various properties of a given molecule. Inverting the trained forward models through Bayes' law, we derive a posterior distribution for the backward prediction, which is conditioned by a desired property requirement. Exploring high-probability regions of the posterior with a sequential Monte Carlo technique, molecules that exhibit the desired properties can computationally be created. One major difficulty in the computational creation of molecules is the exclusion of the occurrence of chemically unfavorable structures. To circumvent this issue, we derive a chemical language model that acquires commonly occurring patterns of chemical fragments through natural language processing of ASCII strings of existing compounds, which follow the SMILES chemical language notation. In the backward prediction, the trained language model is used to refine chemical strings such that the properties of the resulting structures fall within the desired property region while chemically unfavorable structures are successfully removed. The present method is demonstrated through the design of small organic molecules with the property requirements on HOMO-LUMO gap and internal energy. The R package iqspr is available at the CRAN repository.


Subject(s)
Computer-Aided Design , Machine Learning , Small Molecule Libraries/chemistry , Bayes Theorem , Computer Simulation , Drug Design , Models, Chemical , Molecular Structure , Monte Carlo Method , Pharmaceutical Preparations/chemistry , Software
20.
Int J Biol Macromol ; 93(Pt A): 1253-1260, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27651278

ABSTRACT

Renilla luciferase is a sensitive enzyme and has wide applications in biotechnology such as drug screening. Previous studies have tried to show the catalytic residues, nevertheless, the accurate architecture and molecular behavior of its emitter site remains uncharacterized. In this study, the activity of Renilla luciferase, in the presence of two small organic molecules including dimethyl sulfoxide (DMSO) and isopropanol was considered and the structure was studied by circular dichroism (CD) and fluorescence spectroscopy. Moreover, the interaction of small organic molecules with the Renilla luciferase was studied using molecular dynamics simulations. Kinetics studies showed that at low concentration of DMSO (16.6-66mM) and isopropanol (19.3-76mM) the Km changed and a competitive inhibition pattern was observed. Moreover, spectroscopy studies reveled that the changes of activity of Renilla luciferase in the presence of low concentrations of small organic molecules was not associated with structural collapse or severe changes in the enzyme conformation. Molecular dynamics simulations indicated that DMSO and isopropanol, as probing molecules, were both able to bind to the emitter site and remained with the residues of the emitter site. Based on the probing data, the architecture of the emitter site in the "non-binding" model was proposed.


Subject(s)
2-Propanol/pharmacology , Dimethyl Sulfoxide/pharmacology , Luciferases, Renilla/chemistry , Luciferases, Renilla/metabolism , Kinetics , Molecular Dynamics Simulation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...