Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.881
Filter
1.
J Environ Sci (China) ; 147: 165-178, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003037

ABSTRACT

In this study, two wheat-derived cadmium (Cd)-immobilizing endophytic Pseudomonas paralactis M14 and Priestia megaterium R27 were evaluated for their effects on wheat tissue Cd uptake under hydroponic conditions. Then, the impacts of the biochar (BC), M14+R27 (MR), and BC+MR treatments on wheat Cd uptake and the mechanisms involved were investigated at the jointing, heading, and mature stages of wheat plants under field-plot conditions. A hydroponic experiment showed that the MR treatment significantly decreased the above-ground tissue Cd content compared with the M14 or R27 treatment. The BC+MR treatment reduced the grain Cd content by 51.5%-67.7% and Cd translocation factor at the mature stage of wheat plants and increased the organic matter-bound Cd content by 31%-75% in the rhizosphere soils compared with the BC or MR treatment. Compared with the BC or MR treatment, the relative abundances of the biomarkers associated with Gemmatimonas, Altererythrobacter, Gammaproteobacteria, Xanthomonadaceae, Phenylobacterium, and Nocardioides in the BC+MR-treated rhizosphere microbiome decreased and negatively correlated with the organic matter-bound Cd contents. In the BC+MR-treated root interior microbiome, the relative abundance of the biomarker belonging to Exiguobacterium increased and negatively correlated with the Cd translocation factor, while the relative abundance of the biomarker belonging to Pseudonocardiaceae decreased and positively correlated with the Cd translocation factor. Our findings suggested that the BC+MR treatment reduced Cd availability and Cd transfer through affecting the abundances of these specific biomarkers in the rhizosphere soil and root interior microbiomes, leading to decreased wheat grain Cd uptake in the contaminated soil.


Subject(s)
Cadmium , Charcoal , Soil Microbiology , Soil Pollutants , Triticum , Triticum/metabolism , Triticum/microbiology , Cadmium/metabolism , Soil Pollutants/metabolism , Endophytes/physiology , Rhizosphere , Soil/chemistry , Biodegradation, Environmental , Microbiota/drug effects
2.
J Environ Sci (China) ; 147: 230-243, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003043

ABSTRACT

Enhancing soil organic matter characteristics, ameliorating physical structure, mitigating heavy metal toxicity, and hastening mineral weathering processes are crucial approaches to accomplish the transition of tailings substrate to a soil-like substrate. The incorporation of biomass co-pyrolysis and plant colonization has been established to be a significant factor in soil substrate formation and soil pollutant remediation. Despite this, there is presently an absence of research efforts aimed at synergistically utilizing these two technologies to expedite the process of mining tailings soil substrate formation. The current study aimed to investigate the underlying mechanism of geochemical changes and rapid mineral weathering during the process of transforming tailings substrate into a soil-like substrate, under the combined effects of biomass co-smoldering pyrolysis and plant colonization. The findings of this study suggest that the incorporation of smoldering pyrolysis and plant colonization induces a high-temperature effect and biological effects, which enhance the physical and chemical properties of tailings, while simultaneously accelerating the rate of mineral weathering. Notable improvements include the amelioration of extreme pH levels, nutrient enrichment, the formation of aggregates, and an increase in enzyme activity, all of which collectively demonstrate the successful attainment of tailings substrate reconstruction. Evidence of the accelerated weathering was verified by phase and surface morphology analysis using X-ray diffraction and scanning electron microscopy. Discovered corrosion and fragmentation on the surface of minerals. The weathering resulted in corrosion and fragmentation of the surface of the treated mineral. This study confirms that co-smoldering pyrolysis of biomass, combined with plant colonization, can effectively promote the transformation of tailings into soil-like substrates. This method has can effectively address the key challenges that have previously hindered sustainable development of the mining industry and provides a novel approach for ecological restoration of tailings deposits.


Subject(s)
Biomass , Mining , Soil Pollutants , Soil , Soil/chemistry , Pyrolysis , Plants , Biodegradation, Environmental
3.
J Environ Sci (China) ; 147: 282-293, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003047

ABSTRACT

There have been reports of potential health risks for people from hydrophobic organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated hydrocarbons (PCHs), and organophosphate flame retardants (OPFRs). When a contaminated site is used for residential housing or public utility and recreation areas, the soil-bound organic pollutants might pose a threat to human health. In this study, we investigated the contamination profiles and potential risks to human health of 15 PAHs, 6 PCHs, and 12 OPFRs in soils from four contaminated sites in China. We used an in vitro method to determine the oral bioaccessibility of soil pollutants. Total PAHs were found at concentrations ranging from 26.4 ng/g to 987 ng/g. PCHs (0.27‒14.3 ng/g) and OPFRs (6.30‒310 ng/g) were detected, but at low levels compared to earlier reports. The levels of PAHs, PCHs, and OPFRs released from contaminated soils into simulated gastrointestinal fluids ranged from 1.74% to 91.0%, 2.51% to 39.6%, and 1.37% to 96.9%, respectively. Based on both spiked and unspiked samples, we found that the oral bioaccessibility of pollutants was correlated with their logKow and molecular weight, and the total organic carbon content and pH of soils. PAHs in 13 out of 38 contaminated soil samples posed potential high risks to children. When considering oral bioaccessibility, nine soils still posed potential risks, while the risks in the remaining soils became negligible. The contribution of this paper is that it corrects the health risk of soil-bound organic pollutants by detecting bioaccessibility in actual soils from different contaminated sites.


Subject(s)
Environmental Monitoring , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil , Soil Pollutants/analysis , China , Risk Assessment , Polycyclic Aromatic Hydrocarbons/analysis , Humans , Soil/chemistry , Hydrophobic and Hydrophilic Interactions , Flame Retardants/analysis , Hydrocarbons, Chlorinated/analysis
4.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003042

ABSTRACT

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Subject(s)
Clay , Environmental Restoration and Remediation , Soil Pollutants , Soil , Clay/chemistry , Soil/chemistry , Catalysis , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Hot Temperature
5.
J Environ Sci (China) ; 147: 259-267, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003045

ABSTRACT

Arsenic (As) pollution in soils is a pervasive environmental issue. Biochar immobilization offers a promising solution for addressing soil As contamination. The efficiency of biochar in immobilizing As in soils primarily hinges on the characteristics of both the soil and the biochar. However, the influence of a specific property on As immobilization varies among different studies, and the development and application of arsenic passivation materials based on biochar often rely on empirical knowledge. To enhance immobilization efficiency and reduce labor and time costs, a machine learning (ML) model was employed to predict As immobilization efficiency before biochar application. In this study, we collected a dataset comprising 182 data points on As immobilization efficiency from 17 publications to construct three ML models. The results demonstrated that the random forest (RF) model outperformed gradient boost regression tree and support vector regression models in predictive performance. Relative importance analysis and partial dependence plots based on the RF model were conducted to identify the most crucial factors influencing As immobilization. These findings highlighted the significant roles of biochar application time and biochar pH in As immobilization efficiency in soils. Furthermore, the study revealed that Fe-modified biochar exhibited a substantial improvement in As immobilization. These insights can facilitate targeted biochar property design and optimization of biochar application conditions to enhance As immobilization efficiency.


Subject(s)
Arsenic , Charcoal , Machine Learning , Soil Pollutants , Soil , Charcoal/chemistry , Arsenic/chemistry , Soil Pollutants/chemistry , Soil Pollutants/analysis , Soil/chemistry , Models, Chemical
6.
J Environ Sci (China) ; 147: 424-450, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003060

ABSTRACT

The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Soil , Soil Pollutants/chemistry , Environmental Restoration and Remediation/methods , Soil/chemistry , Biodegradation, Environmental
7.
J Environ Sci (China) ; 147: 652-664, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003080

ABSTRACT

Ball milling is an environmentally friendly technology for the remediation of petroleum-contaminated soil (PCS), but the cleanup of organic pollutants requires a long time, and the post-remediation soil needs an economically viable disposal/reuse strategy due to its vast volume. The present paper develops a ball milling process under oxygen atmosphere to enhance PCS remediation and reuse the obtained carbonized soil (BCS-O) as wastewater treatment materials. The total petroleum hydrocarbon removal rates by ball milling under vacuum, air, and oxygen atmospheres are 39.83%, 55.21%, and 93.84%, respectively. The Langmuir and pseudo second-order models satisfactorily describe the adsorption capacity and behavior of BCS-O for transition metals. The Cu2+, Ni2+, and Mn2+ adsorbed onto BCS-O were mainly bound to metal carbonates and metal oxides. Furthermore, BCS-O can effectively activate persulfate (PDS) oxidation to degrade aniline, while BCS-O loaded with transition metal (BCS-O-Me) shows better activation efficiency and reusability. BCS-O and BCS-O-Me activated PDS oxidation systems are dominated by 1O2 oxidation and electron transfer. The main active sites are oxygen-containing functional groups, vacancy defects, and graphitized carbon. The oxygen-containing functional groups and vacancy defects primarily activate PDS to generate 1O2 and attack aniline. Graphitized carbon promotes aniline degradation by accelerating electron transfer. The paper develops an innovative strategy to simultaneously realize efficient remediation of PCS and sequential reuse of the post-remediation soil.


Subject(s)
Environmental Restoration and Remediation , Oxygen , Petroleum , Soil Pollutants , Waste Disposal, Fluid , Wastewater , Soil Pollutants/chemistry , Soil Pollutants/analysis , Adsorption , Wastewater/chemistry , Oxygen/chemistry , Oxygen/analysis , Waste Disposal, Fluid/methods , Environmental Restoration and Remediation/methods , Soil/chemistry , Catalysis
8.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003069

ABSTRACT

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Subject(s)
Waste Disposal, Fluid , Waste Disposal, Fluid/methods , Nitrification , Nitrogen/metabolism , Soil/chemistry , Denitrification , Wastewater/chemistry , Sewage/microbiology , Soil Microbiology , Zeolites/chemistry , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism
9.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003087

ABSTRACT

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Subject(s)
Colloids , Flame Retardants , Groundwater , Halogenated Diphenyl Ethers , Soil Pollutants , Soil , Water Pollutants, Chemical , Halogenated Diphenyl Ethers/analysis , Colloids/chemistry , Groundwater/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Soil/chemistry , Water Pollutants, Chemical/analysis , China , Flame Retardants/analysis , Environmental Monitoring , Models, Chemical
10.
Environ Int ; 190: 108917, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39089094

ABSTRACT

Antibiotic resistance crisis dictates the need for resistance monitoring and the search for new antibiotics. The development of monitoring protocols is hindered by the great diversity of resistance factors, while the "streetlight effect" denies the possibility of discovering novel drugs based on existing databases. In this study, we address these challenges using high-throughput environmental screening viewed from a trait-based ecological perspective. Through an in-depth analysis of the metagenomes of 658 topsoil samples spanning Europe, we explored the distribution of 241 prokaryotic and fungal genes responsible for producing metabolites with antibiotic properties and 485 antibiotic resistance genes. We analyzed the diversity of these gene collections at different levels and modeled the distribution of each gene across environmental gradients. Our analyses revealed several nonparallel distribution patterns of the genes encoding sequential steps of enzymatic pathways synthesizing large antibiotic groups, pointing to gaps in existing databases and suggesting potential for discovering new analogues of known antibiotics. We show that agricultural activity caused a continental-scale homogenization of microbial antibiotic-related machinery, emphasizing the importance of maintaining indigenous ecosystems within the landscape mosaic. Based on the relationships between the proportion of the genes in the metagenomes with the main predictors (soil pH, land cover type, climate temperature and humidity), we illustrate how the properties of chemical structures dictate the distribution of the genes responsible for their synthesis across environments. With this understanding, we propose general principles to facilitate the discovery of antibiotics, including principally new ones, establish abundance baselines for antibiotic resistance genes, and predict their dissemination.

11.
Chemosphere ; : 142981, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089341

ABSTRACT

The quantification of pesticide dissipation in agricultural soil is challenging. In this study, we investigated atrazine biodegradation in both liquid and soil experiments bioaugmented with distinct atrazine-degrading bacterial isolates. This was achieved by combining 14C-mineralisation assays and compound-specific isotope analysis of atrazine. In liquid experiments, the three bacterial isolates mineralised over 40% of atrazine, demonstrating their potential for extensive degradation. However, the kinetics of mineralisation and degradation varied among the isolates. Carbon stable isotope fractionation was similar for Pseudomonas isolates ADPT34 and ADP2T0, but slightly higher for Chelatobacter SR27. In soil experiments, atrazine primarily degraded into atrazine-desethyl, while atrazine-hydroxy was mainly observed in experiments with SR27. Atrazine mineralisation in soil by ADPT34 and SR27 exceeded 40%, whereas ADP2T0 exhibited a mineralisation rate of 10%. In experiments with ADPT34 and SR27, atrazine 14C-residues were predominantly found in the non-extractable fraction, whereas they accumulated in the extractable fraction in the experiment with ADP2T0. Compound-specific isotope analysis (CSIA) relies on changes of stable isotope ratios and holds potential to evaluate herbicide transformation in soil. CSIA of atrazine indicated atrazine biodegradation in water and solvent extractable soil fractions and varied between 29% and 52%, depending on the bacterial isolate. Despite atrazine degradation in both soil fractions, a significant portion of atrazine residues persisted, depending on the bacterial degrader, initial cell concentration, and mineralisation and degradation rates. Overall, our approach can aid in quantifying atrazine persistence and degradation in soil, and in optimizing bioaugmentation strategies for remediating soils contaminated with persistent herbicides.

12.
Sci Total Environ ; : 175145, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39089382

ABSTRACT

Deep soil drying is a physical soil phenomenon that has become increasingly characteristic to artificial afforestation on China's Loess Plateau. Current research is largely short of conclusive reports on soil moisture recovery following deep soil drying in afforested lands. In this study, a 10-m deep underground column was constructed at Pengyang Experimental Station in Ningxia. The CS650-CR1000 automatic soil moisture monitoring system and BLJW-4 small meteorological observation stations were used to respectively monitor soil moisture and meteorological conditions in the study area for the period 2014-2019. The local rainfall was classified and the characteristics of soil infiltration analyzed at both monthly and annual scales. The results showed that: i) Deep soil moisture recovery in the semi-arid Loess Plateau region depended mainly on 25-49.9 mm and >50 mm types of rainfall; together accounting for 35.44 % of the precipitation. ii) Deep soil moisture replenishment occurred mainly for the period from April to October. While this accounted for 30.13 % of the precipitation, evaporation loss accounted for 69.87 % of it. With increasing monthly rainfall (Pm), the variation in monthly infiltration depth (Zm) was quadratic in shape - where Zm = -0.0094 Pm2 + 3.7702 Pm (R2 = 0.9577). iii) At the annual scale, deep soil moisture replenishment was mainly driven by year-on-year infiltration water accumulation. This is because a single year precipitation infiltration was not enough to replenish deep soil moisture. The cumulative infiltration depth for 2014-2019 was 180, 260, 400, 700, 1000 > 1000 cm. It suggested that soil water infiltration and deep dry soil recovery occurred at different times under rainfed conditions in the semi-arid loess hills in China. This is key for in-depth studies of the hydrological process in dry soil regions.

13.
Environ Sci Technol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090056

ABSTRACT

Migration of microplastics (MPs) in soil-groundwater systems plays a pivotal role in determining its concentration in aquifers and future threats to the terrestrial environment, including human health. However, existing models employing an advection-dispersion equation are insufficient to incorporate the holistic mechanism of MP migration. Therefore, to bridge the gap associated with MP migration in soil-groundwater systems, a dispersion-drag force coupled model incorporating a drag force on MPs along with dispersion is developed and validated through existing laboratory and field-scale experiments. The inclusion of the MP dispersion notably increased the global maximum particle velocity (vmaxp) of MPs, resulting in a higher concentration of MPs in the aquifer, which is also established by sensitivity analysis of MP dispersion. Additionally, increasing irrigation flux and irrigation areas significantly accelerates MP migration downward from soil to deep saturated aquifers. Intriguingly, vmaxp of MPs exhibited a nonlinear relationship with MPs' sizes smaller than 20 µm reaching the highest value (=1.64 × 10-5 m/s) at a particle size of 8 µm, while a decreasing trend was identified for particle sizes ranging from 20 to 100 µm because of the hindered effect by porous media and the weaker effect of the drag force. Moreover, distinct behaviors were observed among different plastic types, with poly(vinyl chloride), characterized by the highest density, displaying the lowest vmaxp and minimal flux entering groundwater. Furthermore, the presence of a heterogeneous structure with lower hydraulic conductivity facilitated MP dispersion and promoted their migration in saturated aquifers. The findings shed light on effective strategies to mitigate the impact of MPs in aquifers, contributing valuable insights to the broader scientific fraternity.

14.
Sci Rep ; 14(1): 17774, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090171

ABSTRACT

This study investigates the efficacy of Trichoderma spp. and Bacillus spp., as well as their gamma radiation-induced mutants, as potential biological control agents against Meloidogyne javanica (Mj) in tomato plants. The research encompasses in vitro assays, greenhouse trials, and molecular identification methodologies to comprehensively evaluate the biocontrol potential of these agents. In vitro assessments reveal significant nematicidal activity, with Bacillus spp. demonstrating notable effectiveness in inhibiting nematode egg hatching (16-45%) and inducing second-stage juvenile (J2) mortality (30-46%). Greenhouse trials further confirm the efficacy of mutant isolates, particularly when combined with chitosan, in reducing nematode-induced damage to tomato plants. The combination of mutant isolates with chitosan reduces the reproduction factor (RF) of root-knot nematodes by 94%. By optimizing soil infection conditions with nematodes and modifying the application of the effective compound, the RF of nematodes decreases by 65-76%. Molecular identification identifies B. velezensis and T. harzianum as promising candidates, exhibiting significant nematicidal activity. Overall, the study underscores the potential of combined biocontrol approaches for nematode management in agricultural settings. However, further research is essential to evaluate practical applications and long-term efficacy. These findings contribute to the development of sustainable alternatives to chemical nematicides, with potential implications for agricultural practices and crop protection strategies.


Subject(s)
Bacillus , Gamma Rays , Pest Control, Biological , Plant Diseases , Solanum lycopersicum , Tylenchoidea , Animals , Tylenchoidea/physiology , Bacillus/genetics , Bacillus/physiology , Solanum lycopersicum/parasitology , Solanum lycopersicum/microbiology , Plant Diseases/parasitology , Plant Diseases/prevention & control , Plant Diseases/microbiology , Pest Control, Biological/methods , Mutation , Hypocreales/genetics , Antinematodal Agents/pharmacology , Biological Control Agents/pharmacology , Chitosan/pharmacology
15.
BMC Microbiol ; 24(1): 285, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090559

ABSTRACT

BACKGROUND: The global over-reliance on non-renewable fossil fuels has led to the emission of greenhouse gases, creating a critical global environmental challenge. There is an urgent need for alternative solutions like biofuels. Advanced biofuel is a renewable sustainable energy generated from lignocellulosic plant materials, which can significantly contribute to mitigating CO2 emissions. Microbial Carbohydrate Active Enzymes (CAZymes) are the most crucial enzymes for the generation of sustainable biofuel energy. The present study designed shotgun metagenomics approaches to assemble, predict, and annotate, aiming to gain an insight into the taxonomic diversity, annotate CAZymes, and identify carbohydrate hydrolyzing CAZymes from microbiomes in Menagesha suba forest soil for the first time. RESULTS: The microbial diversity based on small subunit (SSU) rRNA analysis revealed the dominance of the bacterial domain representing 81.82% and 92.31% in the studied samples. Furthermore, the phylum composition result indicated the dominance of the phyla Proteobacteria (23.08%, 27.27%), Actinobacteria (11.36%, 20.51%), and Acidobacteria (10.26%, 15.91%). The study also identified unassigned bacteria which might have a unique potential for biopolymer hydrolysis. The metagenomic study revealed that 100,244 and 65,356 genes were predicted from the two distinct samples. A total number of 1806 CAZyme genes were identified, among annotated CAZymes, 758 had a known enzyme assigned to CAZymes. Glycoside hydrolases (GHs) CAZyme family contained most of the CAZyme genes with known enzymes such as ß-glucosidase, endo-ß-1,4-mannanase, exo-ß-1,4-glucanase, α-L-arabinofuranosidase and oligoxyloglucan reducing end-specific cellobiohydrolase. On the other hand, 1048 of the identified CAZyme genes were putative CAZyme genes with unknown enzymatical activity and the majority of which belong to the GHs family. CONCLUSIONS: In general, the identified putative CAZymes genes open up an opportunity for the discovery of new enzymes responsible for hydrolyzing biopolymers utilized for biofuel energy generation. This finding is used as a first-hand piece of evidence to serve as a benchmark for further and comprehensive studies to unveil novel classes of bio-economically valuable genes and their encoded products.


Subject(s)
Bacteria , Forests , Metagenomics , Phylogeny , Soil Microbiology , Metagenomics/methods , Bacteria/genetics , Bacteria/enzymology , Bacteria/classification , Bacteria/isolation & purification , Ethiopia , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Microbiota/genetics , Biodiversity , Soil/chemistry , Metagenome , Biofuels , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Carbohydrate Metabolism
16.
J Microbiol Biotechnol ; 34(8): 1-6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-39086223

ABSTRACT

A Gram-stain-positive, aerobic, white-coloured, rod-shaped bacteria, designated as a strain dW9T , was isolated from soil. Strain dW9T was catalase-positive and oxidase-negative. Strain dW9T grew at temperature of 20-37°C and at pH of 5.0-7.0. Phylogenetic and 16S rRNA gene analysis indicated that strain dW9T belonged to the genus Paenibacillus with its closest relative being Paenibacillus filicis S4T (97.4% sequence similarity). The genome size of dW9T was 7,787,916 bp with DNA G+C content of 51.3%. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values of dW9T with its closest relatives were found to be <22.0% and <74.0%, respectively. The only respiratory quinone was MK-7, and the major fatty acids were antiso-C15:0 and iso-C16:0. Overall, the comprehensive taxonomic analysis revealed that strain dW9T met all the fundamental criteria to be classified as a novel species within the genus Paenibacillus. Accordingly, we propose the name Paenibacillus gyeongsangnamensis sp. nov., with the type strain dW9T (=KCTC 43431T =NBRC 116022T ).

17.
Article in English | MEDLINE | ID: mdl-39087586

ABSTRACT

The wide variation of nanomaterial (NM) characters (size, shape, and properties) and the related impacts on living organisms make it virtually impossible to assess their safety; the need for modeling has been urged for long. We here investigate the custom-designed 1-10% Fe-doped CuO NM library. Effects were assessed using the soil ecotoxicology model Enchytraeus crypticus (Oligochaeta) in the standard 21 days plus its extension (49 days). Results showed that 10%Fe-CuO was the most toxic (21 days reproduction EC50 = 650 mg NM/kg soil) and Fe3O4 NM was the least toxic (no effects up to 3200 mg NM/kg soil). All other NMs caused similar effects to E. crypticus (21 days reproduction EC50 ranging from 875 to 1923 mg NM/kg soil, with overlapping confidence intervals). Aiming to identify the key NM characteristics responsible for the toxicity, machine learning (ML) modeling was used to analyze the large data set [9 NMs, 68 descriptors, 6 concentrations, 2 exposure times (21 and 49 days), 2 endpoints (survival and reproduction)]. ML allowed us to separate experimental related parameters (e.g., zeta potential) from particle-specific descriptors (e.g., force vectors) for the best identification of important descriptors. We observed that concentration-dependent descriptors (environmental parameters, e.g., zeta potential) were the most important under standard test duration (21 day) but not for longer exposure (closer representation of real-world conditions). In the longer exposure (49 days), the particle-specific descriptors were more important than the concentration-dependent parameters. The longer-term exposure showed that the steepness of the concentration-response decreased with an increased Fe content in the NMs. Longer-term exposure should be a requirement in the hazard assessment of NMs in addition to the standard in OECD guidelines for chemicals. The progress toward ML analysis is desirable given its need for such large data sets and significant power to link NM descriptors to effects in animals. This is beyond the current univariate and concentration-response modeling analysis.

18.
Curr Genet ; 70(1): 12, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093429

ABSTRACT

Insoluble phosphorous compounds solubilization by soil bacteria is of great relevance since it puts available the phosphorus to be used by plants. The production of organic acids is the main microbiological mechanism by which insoluble inorganic phosphorus compounds are solubilized. In Gram negative bacteria, gluconic acid is synthesized by the activity of the holoenzyme glucose dehydrogenase-pyrroloquinoline quinine named GDH-PQQ. The use of marker genes is a very useful tool to evaluate the persistence of the introduced bacteria and allow to follow-up the effect of biotic and abiotic factors on these beneficial microorganisms in the soil. In previous studies we detected the presence of the pqqE gene in a great percentage of both non-culturable and culturable native soil bacteria. The objective of this study was to analyze the phylogeny of the sequence of pqqE gene and its potential for the study of phosphate solubilizing bacteria from pure and mixed bacterial cultures and rhizospheric soil samples. For this, the presence of the pqqE gene in the genome of phosphate solubilizing bacteria that belong to several bacteria was determined by PCR. Also, this gene was analyzed from mixed bacterial cultures and rhizospheric soil associated to peanut plants inoculated or not with phosphate solubilizing bacteria. For this, degenerate primers designed from several bacterial genera and specific primers for the genus Pseudomonas spp., designed in this study, were used. DNA template used from simple or mixed bacterial cultures and from rhizospheric soil samples was obtained using two different DNA extraction techniques. Results indicated that pqqE gene amplification product was found in the genome of all Gram negative phosphate solubilizing bacteria analyzed. It was possible to detect this gene in the DNA obtained from mixed cultures where these bacteria grew in interaction with other microorganisms and in that obtained from rhizospheric soil samples inoculated or not with these bacteria. The phylogenetic analysis indicated that pqqE gene is a conserved gene within related genera. In conclusion, pqqE gene could be a potential marker for the study of phosphate solubilizing bacterial populations.


Subject(s)
Phosphates , Phylogeny , Soil Microbiology , Phosphates/metabolism , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/classification , Solubility , Genetic Markers , Rhizosphere , Plants/microbiology
19.
Microb Ecol ; 87(1): 103, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088119

ABSTRACT

Plants thrive in diverse environments, where root-microbe interactions play a pivotal role. Date palm (Phoenix dactylifera L.), with its genetic diversity and resilience, is an ideal model for studying microbial adaptation to different genotypes and stresses. This study aimed to analyze the bacterial and fungal communities associated with traditional date palm cultivars and the widely cultivated "Deglet Nour" were explored using metabarcoding approaches. The microbial diversity analysis identified a rich community with 13,189 bacterial and 6442 fungal Amplicon Sequence Variants (ASVs). Actinobacteriota, Proteobacteria, and Bacteroidota dominated bacterial communities, while Ascomycota dominated fungal communities. Analysis of the microbial community revealed the emergence of two distinct clusters correlating with specific date palm cultivars, but fungal communities showed higher sensitivity to date palm genotype variations compared to bacterial communities. The commercial cultivar "Deglet Nour" exhibited a unique microbial composition enriched in pathogenic fungal taxa, which was correlated with its genetic distance. Overall, our study contributes to understanding the complex interactions between date palm genotypes and soil microbiota, highlighting the genotype role in microbial community structure, particularly among fungi. These findings suggest correlations between date palm genotype, stress tolerance, and microbial assembly, with implications for plant health and resilience. Further research is needed to elucidate genotype-specific microbial interactions and their role in enhancing plant resilience to environmental stresses.


Subject(s)
Bacteria , Fungi , Microbiota , Phoeniceae , Soil Microbiology , Phoeniceae/microbiology , Phoeniceae/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/physiology , Genotype , Plant Roots/microbiology , Soil/chemistry
20.
Exp Appl Acarol ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39088132

ABSTRACT

Vegetation cover has been consistently reported to be a factor influencing soil biota. Massive spreading of invasive plants may transform native plant communities, changing the quality of habitats as a result of modification of soil properties, most often having a directional effect on soil microorganisms and soil fauna. One of the most numerous microarthropods in the litter and soil is Acari. It has been shown that invasive plants usually have a negative effect on mites. We hypothesized that invasive Spiraea tomentosa affects the structure of the Uropodina community and that the abundance and species richness of Uropodina are lower in stands monodominated by S. tomentosa than in wet meadows free of this alien species. The research was carried out in wet meadows, where permanent plots were established in an invaded and uninvaded area of each meadow, soil samples were collected, soil moisture was determined and the mites were extracted. We found that Uropodina mite communities differed in the abundance of individual species but that the abundance and richness of species in their communities were similar. S. tomentosa invasion led primarily to changes in the quality of Uropodina communities, due to an increase in the shares of species from forest and hygrophilous habitats. Our results suggest that alien plant invasion does not always induce directional changes in mite assemblages, and conclude that the impact of an alien species on Uropodina may cause significant changes in the abundance and richness of individual species without causing significant changes in the abundance and diversity of their community.

SELECTION OF CITATIONS
SEARCH DETAIL
...