ABSTRACT
Soil metal contamination associated with productive activities is a global issue. Metals are not biodegradable and tend to accumulate in soils, posing potential risks to surrounding ecosystems and human health. Plant-based techniques (phytotechnologies) for the in situ remediation of metal-polluted soils have been developed, but these have some limitations. Phytotechnologies are a group of technologies that take advantage of the ability of certain plants to remediate soil, water, and air resources to rehabilitate ecosystem services in managed landscapes. Regarding soil metal pollution, the main objectives are in situ stabilization (phytostabilization) and the removal of contaminants (phytoextraction). Genetic engineering strategies such as gene editing, stacking genes, and transformation, among others, may improve the phytoextraction potential of plants by enhancing their ability to accumulate and tolerate metals and metalloids. This review discusses proven strategies to enhance phytoextraction efficiency and future perspectives on phytotechnologies.
ABSTRACT
Soil mercury concentrations at a typical small-scale mine site in the Bolivian Andes were elevated (28-737 mg/kg or ppm) in localized areas where mercury amalgams were either formed or vaporized to release gold, but was not detectable beyond approximately 10 m from its sources. Arsenic was measurable, exceeding known background levels throughout the mine site (77-137,022 ppm), and was also measurable through the local village of Ingenio (36-1803 ppm). Although arsenic levels were high at all surveyed locations, its spatial pattern followed mercury, being highest where mercury was high.