Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.227
Filter
1.
J Magn Reson ; 365: 107724, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38991266

ABSTRACT

Magic-angle spinning (MAS) solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a powerful and versatile technique for probing structure and dynamics in large, insoluble biological systems at atomic resolution. With many recent advances in instrumentation and polarization methods, technology development in SSNMR remains an active area of research and presents opportunities to further improve data collection, processing, and analysis of samples with low sensitivity and complex tertiary and quaternary structures. SSNMR spectra are often collected as multidimensional data, requiring stable experimental conditions to minimize signal fluctuations (t1 noise). In this work, we examine the factors adversely affecting signal stability as well as strategies used to mitigate them, considering laboratory environmental requirements, configuration of amplifiers, and pulse sequence parameter selection. We show that Thermopad® temperature variable attenuators (TVAs) can partially compensate for the changes in amplifier output power as a function of temperature and thereby ameliorate one significant source of instability for some spectrometers and pulse sequences. We also consider the selection of tangent ramped cross polarization (CP) waveform shapes, to balance the requirements of sensitivity and instrumental stability. These findings collectively enable improved stability and overall performance for CP-based multidimensional spectra of microcrystalline, membrane, and fibrous proteins performed at multiple magnetic field strengths.

2.
J Magn Reson ; 365: 107726, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38991267

ABSTRACT

Improving the spectral sensitivity and resolution of biological solids is one of the long-standing problems in nuclear magnetic resonance (NMR) spectroscopy. In this report, we introduce low-power supercycled variants of two-pulse phase-modulated (TPPM) sequence for heteronuclear decoupling. The utility of the sequence is shown by improvements in the transverse relaxation time of observed nuclei (with 1H decoupling) with its application to different samples (uniformly 13C, 15N, 2H-labeled GB1 back-exchanged with 25% H2O and 75% D2O, uniformly 13C, 15N, 2H-labeled human derived Asyn fibril back-exchanged with 100% H2O and uniformly 13C, 15N -labeled human derived Asyn fibril) at fast MAS using low radiofrequency (RF) fields. To understand the effect of spinning speed, the transverse relaxation time is monitored under different spinning frequencies. In comparison to existing heteronuclear decoupling sequences, the supercycled TPPM (sTPPM) sequence significantly improves the spectral sensitivity and resolution and is robust towards B1 inhomogeneity and decoupler offset.

3.
Article in English | MEDLINE | ID: mdl-38993015

ABSTRACT

All-solid-state lithium-ion batteries (ASSLIBs) using sulfide electrolytes and high-capacity alloy-type anodes have attracted sizable interest due to their potential excellent safety and high energy density. Encapsulating insulating red phosphorus (P) inside nanopores of a carbon matrix can adequately activate its electrochemical alloying reaction with lithium. Therefore, the porosity of the carbon matrix plays a crucial role in the electrochemical performance of the resulting red P/carbon composites. Here, we use zeolite-templated carbon (ZTC) with monodisperse micropores and mesoporous carbon (CMK-3) with uniform mesopores as the model hosts of red P. Our results reveal that micropores enable more effective pore utilization for the red P loading, and the P@ZTC material can achieve a record-high content (65.0 wt %) of red P confined within pores. When used as an anode of ASSLIBs, the P@ZTC electrode delivers an ultrahigh capacity of 1823 mA h g-1 and a high initial Coulombic efficiency of 87.44%. After 400 deep discharge-charge cycles (running over 250 days) at 0.2 A g-1, the P@ZTC electrode still holds a reversible capacity of 1260 mA h g-1 (99.92% capacity retention per cycle). Moreover, a P@ZTC||LiNi0.8Co0.1Mn0.1O2 full cell can deliver a reversible areal capacity of over 3 mA h cm-2 at 0.1C after 100 cycles.

4.
ACS Nano ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965054

ABSTRACT

Polyanionic cathodes have attracted extensive research interest for Na-ion batteries (NIBs) due to their moderate energy density and desirable cycling stability. However, these compounds suffer from visible capacity fading and significant voltage decay upon the rapid sodium storage process, even if modified through nanoengineering or carbon-coating routes, leading to limited applications in NIBs. Herein, the Na3(VOPO4)2F cathode material with dominantly exposed {001} active facets is demonstrated by a topochemical synthesis route. Owing to the rational geometrical structure design and thereby directly shortening Na diffusion distance, the electrode delivers a reversible capacity of ∼129 mA h g-1 even at a high rate of 10 C, which is very close to the theoretical capacity of 132 mA h g-1, achieving a high energy density of ∼452 W h kg-1 coupled with a high-power density of 4660 W kg-1. When further served as a cathode for nonaqueous, aqueous-based, and solid-state full NIBs, respectively, our designed Na3(VOPO4)2F always enables superior electrochemical performance due to favorable kinetics.

5.
Adv Sci (Weinh) ; : e2402385, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38965931

ABSTRACT

Polymerization in the solid state is generally infeasible due to restrictions on mobility. However, in this work, the solid-state photopolymerization of crystalline dicyclopentadiene is demonstrated via photoinitiated ring-opening metathesis polymerization. The source of mobility in the solid state is attributed to the plastic crystal nature of dicyclopentadiene, which yields local short-range mobility due to orientational degrees of freedom. Polymerization in the solid state enables photopatterning, volumetric additive manufacturing of free-standing structures, and fabrication with embedded components. Solid-state photopolymerization of dicyclopentadiene offers a new paradigm for advanced and freeform fabrication of high-performance thermosets.

6.
Int J Pharm ; : 124438, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972518

ABSTRACT

Drug-polymer intermolecular interactions, and H-bonds specifically, play an important role in the stabilization process of a compound in an amorphous solid dispersion (ASD). However, it is still difficult to predict whether or not interactions will form and what the strength of those interactions would be, based on the structure of drug and polymer. Therefore, in this study, structural analogues of diflunisal (DIF) were synthesized and incorporated in ASDs with poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) as a stabilizing polymer. The respective DIF derivatives contained different types and numbers of H-bond donor groups, which allowed to assess the influence of these structural differences on the phase behavior and the actual interactions formed in the ASDs. The highest possible drug loading of these derivatives in PVPVA were evaluated through film casting. Subsequently, a lower drug loading of each compound was spray dried. These spray dried ASDs were subjected to an in-depth solid-state nuclear magnetic resonance (ssNMR) study, including 1D spectroscopy and relaxometry, as well as 2D dipolar HETCOR experiments. The drug loading study revealed the highest possible loading of 50 wt% for the native DIF in PVPVA. The methoxy DIF derivative reached the second highest drug loading of 35 wt%, while methylation of the carboxyl group of DIF led to a sharp decrease in the maximum loading, to around 10 wt% only. Unexpectedly, the maximum loading increased again when both the COOH and OH groups of diflunisal were methylated in the dimethyl DIF derivative, to around 30 wt%. The ssNMR study on the spray dried ASD samples confirmed intermolecular H-bonding with PVPVA for native DIF and methoxy DIF. Studies of the proton relaxation decay times and 2D 1H-13C dipolar HETCOR experiments indicated that the ASDs with native DIF and methoxy DIF were homogenously mixed, while the ASDs containing DIF methyl ester and dimethyl DIF were phase separated at the nm level. It was established that, for these systems, the availability of the carboxyl group was imperative in the formation of intermolecular H-bonds with PVPVA and in the generation of homogenously mixed ASDs.

7.
Adv Mater ; : e2406386, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973220

ABSTRACT

A majority of flexible and wearable electronics require high operational voltage that is conventionally achieved by serial connection of battery unit cells using external wires. However, this inevitably decreases the energy density of the battery module and may cause additional safety hazards. Herein, a bipolar textile composite electrode (BTCE) that enables internal tandem-stacking configuration to yield high-voltage (6 to 12 V class) solid-state lithium metal batteries (SSLMBs) is reported. BTCE is comprised of a nickel-coated poly(ethylene terephthalate) fabric (NiPET) core layer, a cathode coated on one side of the NiPET, and a Li metal anode coated on the other side of the NiPET. Stacking BTCEs with solid-state electrolytes alternatively leads to the extension of output voltage and decreased usage of inert package materials, which in turn significantly boosts the energy density of the battery. More importantly, the BTCE-based SSLMB possesses remarkable capacity retention per cycle of over 99.98% over cycling. The composite structure of BTCE also enables outstanding flexibility; the battery keeps stable charge/discharge characteristics over thousands of bending and folding. BTCE shows great promise for future safe, high-energy-density, and flexible SSLMBs for a wide range of flexible and wearable electronics.

8.
Adv Sci (Weinh) ; : e2403208, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973301

ABSTRACT

Thanks to superionic conductivity and compatibility with >4 V cathodes, halide solid electrolytes (SEs) have elicited tremendous interest for application in all-solid-state lithium batteries (ASSLBs). Many compositions based on groups 3, 13, and divalent metals, and substituted stoichiometries have been explored, some displaying requisite properties, but the Li+ conductivity still falls short of theoretical predictions and appealing sulfide-type SEs. While controlling microstructural characteristics, namely grain boundary effects and microstrain, can boost ionic conductivity, they have rarely been considered. Moving away from the standard solid-state route, here a scalable and facile wet chemical approach for obtaining highly conductive (>2 mS cm-1) Li3InCl6 is presented, and it is shown that aprotic solvents can reduce grain boundaries and microstrain, leading to very high ionic conductivity of over 4 mS cm-1 (at 22 °C). Minimized grain boundary area renders improved moisture stability and enhances solid-solid interfacial contact, leading to excellent LiNi0.6Mn0.2Co0.2O2-based full-cell performance, exemplified by stable room temperature (22 °C) cycling at a 0.2 C rate with 155 mAh g-1 capacity and 85% retention after 1000 cycles at 60 °C with a high 99.75% Coulombic efficiency. The findings showcase the viability of the aprotic solvent-mediated route for producing high-quality Li3InCl6 for all-solid-state batteries.

9.
Adv Sci (Weinh) ; : e2402528, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973316

ABSTRACT

The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO3 in order to stabilize charge-discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO3 coating layer. This study has investigated the degradation of amorphous-LiNbO3 coating layer directly during the high-voltage charging of SBs. O2 generation via Li extraction from the amorphous-LiNbO3 coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O2 leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNbxP1- xO3) reduces O2 release, leading to stable high-voltage charge-discharge reactions of SBs. The results have emphasized that the suppression of O2 generation is a key factor in improving the energy density of SBs.

10.
Article in English | MEDLINE | ID: mdl-38949968

ABSTRACT

Superionic halides have attracted widespread attention as solid electrolytes due to their excellent ionic conductivity, soft texture, and stability toward high-voltage electrode materials. Among them, Li3InCl6 has aroused interest since it can be easily synthesized in water or ethanol. However, investigations into the influence of solvents on both the crystal structure and properties remain unexplored. In this work, Li3InCl6 is synthesized by three different solvents: water, ethanol, and water-ethanol mixture, and the difference in properties has been studied. The results show that the product obtained by the ethanol solvent demonstrates the largest unit cell parameters with more vacancies, which tend to crystallize on the (131) plane and provide the 3D isotropic network migration for lithium-ions. Thus, it exhibits the highest ionic conductivity (1.06 mS cm-1) at room temperature and the lowest binding energy (0.272 eV). The assembled all-solid-state lithium metal batteries (ASSLMBs) employing Li3InCl6 electrolytes demonstrate a high initial discharge capacity of 153.9 mA h g-1 at 0.1 C (1 C = 170 mA h g-1) and the reversible capacity retention rate can reach 82.83% after 50 cycles. This work studies the difference in ionic conductivity between Li3InCl6 electrolytes synthesized by different solvents, which can provide a reference for the future synthesis of halide electrolytes and enable their practical application in halide-based ASSLMBs with a high energy density.

11.
Macromol Rapid Commun ; : e2400363, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38950314

ABSTRACT

Herein, fluorescent conducting tautomeric polymers (FCTPs) are developed by polymerizing 2-methylprop-2-enoic acid (MPEA), methyl-2-methylpropenoate (MMP), N-(propan-2-yl)prop-2-enamide (PPE), and in situ-anchored 3-(N-(propan-2-yl)prop-2-enamido)-2-methylpropanoic acid (PPEMPA). Among as-synthesized FCTPs, the most promising characteristics in FCTP3 are confirmed by NMR and Fourier transform infrared (FTIR) spectroscopies, luminescence enhancements, and computational studies. In FCTP3, ─C(═O)NH─, -C(═O)N<, ─C(═O)OH, and ─C(═O)OCH3 subluminophores are identified by theoretical calculations and experimental analyses. These subluminophores facilitate redox characteristics, solid state emissions, aggregation-enhanced emissions (AEEs), excited-state intramolecular proton transfer (ESIPT), and conductivities in FCTP3. The ESIPT-associated dual emission/AEEs of FCTP3 are elucidated by time correlated single photon counting (TCSPC) investigation, solvent polarity effects, concentration-dependent emissions, dynamic light scattering (DLS) measurements, field emission scanning electron microscopy images, and computational calculations. The cyclic voltammetry measurements of FCTP3 indicate cumulative redox efficacy of ─C(═O)OH, ─C(═O)NH─/-C(═O)N<, ─C(─O─)═NH+─/─C(─O─)═N+, and ─C(═N)OH functionalities. In FCTP3, ESIPT-associated dual-emission enable in the selective detection of Cr(III)/Cu(II) at λem1/λem2 with the limit of detection of 0.0343/0.079 ppb. The preferential interaction of Cr(III)/Cu(II) with FCTP3 (amide)/FCTP3 (imidol) and oxidation/reduction of Cr(III)/Cu(II) to Cr(VI)/Cu(I) are further supported by NMR-titration; FTIR and X-ray photoelectron spectroscopy analyses; TCSPC/electrochemical/DLS measurement; alongside theoretical calculations. The proton conductivity of FCTP3 is explored by electrochemical impedance spectroscopy and I-V measurements.

12.
Biomol NMR Assign ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951472

ABSTRACT

The α-synuclein (α-syn) amyloid fibrils are involved in various neurogenerative diseases. Solid-state NMR (ssNMR) has been showed as a powerful tool to study α-syn aggregates. Here, we report the 1H, 13C and 15N back-bone chemical shifts of a new α-syn polymorph obtained using proton-detected ssNMR spectroscopy under fast (95 kHz) magic-angle spinning conditions. The manual chemical shift assignments were cross-validated using FLYA algorithm. The secondary structural elements of α-syn fibrils were calculated using 13C chemical shift differences and TALOS software.

13.
AAPS PharmSciTech ; 25(6): 154, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961012

ABSTRACT

Berberine is used in the treatment of metabolic syndrome and its low solubility and very poor oral bioavailability of berberine was one of the primary hurdles for its market approval. This study aimed to improve the solubility and bioavailability of berberine by preparing pellet formulations containing drug-excipient complex (obtained by solid dispersion). Berberine-excipient solid dispersion complexes were obtained with different ratios by the solvent evaporation method. The maximum saturation solubility test was performed as a key factor for choosing the optimal complex for the drug-excipient. The properties of these complexes were investigated by FTIR, DSC, XRD and dissolution tests. The obtained pellets were evaluated and compared in terms of pelletization efficiency, particle size, mechanical strength, sphericity and drug release profile in simulated media of gastric and intestine. Solid-state analysis showed complex formation between the drug and excipients used in solid dispersion. The optimal berberine-phospholipid complex showed a 2-fold increase and the optimal berberine-gelucire and berberine-citric acid complexes showed more than a 3-fold increase in the solubility of berberine compared to pure berberine powder. The evaluation of pellets from each of the optimal complexes showed that the rate and amount of drug released from all pellet formulations in the simulated gastric medium were significantly lower than in the intestine medium. The results of this study showed that the use of berberine-citric acid or berberine-gelucire complex could be considered a promising technique to increase the saturation solubility and improve the release characteristics of berberine from the pellet formulation.


Subject(s)
Berberine , Chemistry, Pharmaceutical , Drug Compounding , Drug Liberation , Excipients , Particle Size , Solubility , Berberine/chemistry , Berberine/administration & dosage , Berberine/pharmacokinetics , Excipients/chemistry , Drug Compounding/methods , Chemistry, Pharmaceutical/methods , Biological Availability , Spectroscopy, Fourier Transform Infrared/methods , Powders/chemistry , X-Ray Diffraction/methods , Calorimetry, Differential Scanning/methods
14.
Biomol NMR Assign ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963588

ABSTRACT

Synucleinopathies are neurodegenerative diseases characterized by the accumulation of α-synuclein protein aggregates in the neurons and glial cells. Both ex vivo and in vitro α-synuclein fibrils tend to show polymorphism. Polymorphism results in structure variations among fibrils originating from a single polypeptide/protein. The polymorphs usually have different biophysical, biochemical and pathogenic properties. The various pathologies of a single disease might be associated with distinct polymorphs. Similarly, in the case of different synucleinopathies, each condition might be associated with a different polymorph. Fibril formation is a nucleation-dependent process involving the formation of transient and heterogeneous intermediates from monomers. Polymorphs are believed to arise from heterogeneous oligomer populations because of distinct selection mechanisms in different conditions. To test this hypothesis, we isolated and incubated different intermediates during in vitro fibrillization of α-synuclein to form different polymorphs. Here, we report 13C and 15N chemical shifts and the secondary structure of fibrils prepared from the helical intermediate using solid-state nuclear magnetic spectroscopy.

15.
J Agric Food Chem ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963614

ABSTRACT

The eggshell is a composite and highly ordered structure formed by biomineralization. Besides other functions, it has a vital and intricate role in the protection of an embryo from various potentially harsh environmental conditions. Solid-state nuclear magnetic resonance (SSNMR) has been used for detailed structural investigations of the chicken, tinamou, and flamingo eggshell materials. 31P NMR spectra reveal that hydroxyapatite and ß-tricalcium phosphate in the ratio 3:2 represent major constituents of phosphate species in the eggshells. All three eggshells exhibit similar spectra, except for the line widths, which implies different structural order of phosphate species in the chicken, tinamou, and flamingo eggshells. 1H NMR spectra for these materials are comparable, differentiating overlapped peaks in three spectral regions at around 7, 4-5, and 1-2 ppm. These spectral regions have been attributed to protons from NH or CaHCO3, water, and possibly isolated monomeric water molecules or hydroxyl groups in calcium-deficient hydroxyapatite. 1H-13C CP MAS NMR revealed the presence of organic matter in the form of lipids and proteins. Two overlapped resonances in the carbonyl region at around 173 and 169 ppm are assigned to the carbonyls of the peptide bonds and the bicarbonate unit in calcite, respectively. Fourier-transform infrared spectroscopy (FTIR) spectra confirmed the presence of structural units detected in the NMR spectra.

16.
ACS Nano ; 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38970500

ABSTRACT

All-solid-state batteries (ASSBs) have garnered considerable attention as promising candidates for next-generation energy storage systems due to their potentially simultaneously enhanced safety capacities and improved energy densities. However, the solid future still calls for materials with high ionic conductivity, electrochemical stability, and favorable interfacial compatibility. In this study, we present a series of halide solid-state electrolytes (SSEs) utilizing a doping strategy with highly valent elements, demonstrating an outstanding combination of enhanced ionic conductivity and oxidation stability. Among these, Li2.6In0.8Ta0.2Cl6 emerges as the standout performer, displaying a superionic conductivity of up to 4.47 mS cm-1 at 30 °C, along with a low activation energy barrier of 0.321 eV for Li+ migration. Additionally, it showcases an extensive oxidation onset of up to 5.13 V (vs Li+/Li), enabling high-voltage ASSBs with promising cycling performance. Particularly noteworthy are the ASSBs employing LiCoO2 cathode materials, which exhibit an extended cyclability of over 1400 cycles, with 70% capacity retention under 4.6 V (vs Li+/Li), and a capacity of up to 135 mA h g-1 at a 4 C rate, with the loading of active materials at 7.52 mg cm-2. This study demonstrates a feasible approach to designing desirable SSEs for energy-dense, highly stable ASSBs.

17.
Chimia (Aarau) ; 78(6): 403-414, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38946413

ABSTRACT

This review article delves into the growing field of solid-state batteries as a compelling alternative to conventional lithium-ion batteries. The article surveys ongoing research efforts at renowned Swiss institutions such as ETH Zurich, Empa, Paul Scherrer Institute, and Berner Fachhochschule covering various aspects, from a fundamental understanding of battery interfaces to practical issues of solid-state battery fabrication, their design, and production. The article then outlines the prospects of solid-state batteries, emphasizing the imperative practical challenges that remain to be overcome and highlighting Swiss research groups' efforts and research directions in this field.

18.
Small ; : e2402001, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38966882

ABSTRACT

The implementation of polymer-based Li-metal batteries is hindered by their low coulombic efficiency and poor cycling stability attributed to continuous electrolyte decomposition. Enhancement of the solid electrolyte interface (SEI) stability is key to mitigating electrolyte decomposition. This study proposes surface-functionalized silica mesoball fillers to fabricate a composite polymer electrolyte (MSBM-CPE). As a result of surface modification, the polyethylene oxide matrix benefits from the uniform distribution of the filler, which provides a large surface area and Lewis acid sites. Molecular dynamics simulations reveal that the dissociation energy of lithium bis(trifluoromethanesulfonyl)imide in the filler is fourfold higher (-1.95 eV) than that of the filler-free electrolyte. Consequently, the MSMB-CPE diffusivity is 30 times higher than its filler-free counterpart. The MSMB-CPE of ionic conductivity of 1.16 × 10-2 S cm-1 @60 °C and a venerable Li-ion transference number of 0.81. The excellent compatibility of MSMB-CPE with the Li anode is demonstrated by its stable symmetric cell performance under high current density (200 µA cm-2 @60 °C) for over 5000 h. Approximately 85.60% retention capacity of the [Li/MSMB-CPE/LiFePO4] full cell after 700 cycles. Furthermore, compositional analysis reveals that the SEI layer in MSMB-CPE is smooth with fewer by-products at the electrolyte/Li interface.

19.
Proc Natl Acad Sci U S A ; 121(29): e2400898121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38980900

ABSTRACT

Precise electrochemical synthesis of commodity chemicals and fuels from CO2 building blocks provides a promising route to close the anthropogenic carbon cycle, in which renewable but intermittent electricity could be stored within the greenhouse gas molecules. Here, we report state-of-the-art CO2-to-HCOOH valorization performance over a multiscale optimized Cu-Bi cathodic architecture, delivering a formate Faradaic efficiency exceeding 95% within an aqueous electrolyzer, a C-basis HCOOH purity above 99.8% within a solid-state electrolyzer operated at 100 mA cm-2 for 200 h and an energy efficiency of 39.2%, as well as a tunable aqueous HCOOH concentration ranging from 2.7 to 92.1 wt%. Via a combined two-dimensional reaction phase diagram and finite element analysis, we highlight the role of local geometries of Cu and Bi in branching the adsorption strength for key intermediates like *COOH and *OCHO for CO2 reduction, while the crystal orbital Hamiltonian population analysis rationalizes the vital contribution from moderate binding strength of η2(O,O)-OCHO on Cu-doped Bi surface in promoting HCOOH electrosynthesis. The findings of this study not only shed light on the tuning knobs for precise CO2 valorization, but also provide a different research paradigm for advancing the activity and selectivity optimization in a broad range of electrosynthetic systems.

20.
Adv Sci (Weinh) ; : e2404213, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38981036

ABSTRACT

Recently emerging lithium ternary chlorides have attracted increasing attention for solid-state electrolytes (SSEs) due to their favorable combination between ionic conductivity and electrochemical stability. However, a noticeable discrepancy in Li-ion conductivity persists between chloride SSEs and organic liquid electrolytes, underscoring the need for designing novel chloride SSEs with enhanced Li-ion conductivity. Herein, an intriguing trigonal structure (i.e., Li3SmCl6 with space group P3112) is identified using the global structure searching method in conjunction with first-principles calculations, and its potential for SSEs is systematically evaluated. Importantly, the structure of Li3SmCl6 exhibits a high ionic conductivity of 15.46 mS cm-1 at room temperature due to the 3D lithium percolation framework distinct from previous proposals, associated with the unique in-plane cation ordering and stacking sequences. Furthermore, it is unveiled that Li3SmCl6 possesses a wide electrochemical window of 0.73-4.30 V vs Li+/Li and excellent chemical interface stability with high-voltage cathodes. Several other Li3MCl6 (M = Er, and In) materials with isomorphic structures to Li3SmCl6 are also found to be potential chloride SSEs, suggesting the broader applicability of this structure. This work reveals a new class of ternary chloride SSEs and sheds light on strategy for structure searching in the design of high-performance SSEs.

SELECTION OF CITATIONS
SEARCH DETAIL
...