Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38767866

ABSTRACT

Host-microbe interactions underlie the development and fitness of many macroorganisms, including bees. Whereas many social bees benefit from vertically transmitted gut bacteria, current data suggests that solitary bees, which comprise the vast majority of species diversity within bees, lack a highly specialized gut microbiome. Here, we examine the composition and abundance of bacteria and fungi throughout the complete life cycle of the ground-nesting solitary bee Anthophora bomboides standfordiana. In contrast to expectations, immature bee stages maintain a distinct core microbiome consisting of Actinobacterial genera (Streptomyces, Nocardiodes) and the fungus Moniliella spathulata. Dormant (diapausing) larval bees hosted the most abundant and distinctive bacteria and fungi, attaining 33 and 52 times their initial copy number, respectively. We tested two adaptive hypotheses regarding microbial functions for diapausing bees. First, using isolated bacteria and fungi, we found that Streptomyces from brood cells inhibited the growth of multiple pathogenic filamentous fungi, suggesting a role in pathogen protection during overwintering, when bees face high pathogen pressure. Second, sugar alcohol composition changed in tandem with major changes in fungal abundance, suggesting links with bee cold tolerance or overwintering biology. We find that A. bomboides hosts a conserved core microbiome that may provide key fitness advantages through larval development and diapause, which raises the question of how this microbiome is maintained and faithfully transmitted between generations. Our results suggest that focus on microbiomes of mature or active insect developmental stages may overlook stage-specific symbionts and microbial fitness contributions during host dormancy.


Subject(s)
Bacteria , Fungi , Symbiosis , Animals , Bees/microbiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Bacteria/growth & development , Fungi/physiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Fungi/growth & development , Larva/microbiology , Gastrointestinal Microbiome , Seasons , Host Microbial Interactions , Diapause/physiology
2.
Viruses ; 16(4)2024 04 13.
Article in English | MEDLINE | ID: mdl-38675943

ABSTRACT

Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.


Subject(s)
Geminiviridae , Genome, Viral , Phylogeny , Animals , Bees/virology , Geminiviridae/genetics , Geminiviridae/classification , Geminiviridae/isolation & purification , Metagenomics , DNA, Viral/genetics
3.
Insects ; 15(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38392503

ABSTRACT

The reproductive success of flowering plants relates to flower-visitor communities and plant-pollinator interactions. These traits are species- and region-specific and vary across regions, pollinator groups, and plant species. However, little literature exists on the spatiotemporal variation in visitor activity, especially in India. Here, we aimed to depict the spatial and temporal variation in visitor activity on the curry plants (Bergera koenigii). Data were collected at different daytime slots from three vegetation zones (confirmed by field surveys and normalized difference vegetation index values in remote sensing)-dense, medium-density, and low-density vegetation in West Bengal, India. The visitors' richness, diversity, and abundance were higher in the area with dense vegetation. Considering daytime patterns, higher values for these parameters were obtained during 10.00-14.00 h. For most visitors, the flower handling time was shorter, and the visitation rate was higher in dense vegetation areas (at 10.00-14.00 h) than in medium- and low-density vegetation areas. The proportions of different foraging categories varied over time. Vital pollinators were Apis cerana, Apis dorsata, Appias libythea, Halictus acrocephalus, Nomia iridescens, and Tetragonula iridipennis. However, the effectiveness of pollinators remained region-specific. Therefore, it can be concluded that floral visitors' richness, diversity, abundance, and plant-visitor interactions varied spatially with their surrounding vegetation types and also changed daytime-wise.

4.
Sci Total Environ ; 912: 169494, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142004

ABSTRACT

Floral resource loss and pesticide exposure are major threats to bees in intensively managed agroecosystems, but interactions among these drivers remain poorly understood. Altered composition and lowered diversity of pollen nutrition may reinforce negative pesticide impacts on bees. Here we investigated the development and survival of the solitary bee Osmia bicornis provisioned with three different pollen types, as well as a mixture of these types representing a higher pollen diversity. We exposed bees of each nutritional treatment to five pesticides at different concentrations in the laboratory. Two field-realistic concentrations of three nicotinic acetylcholine receptor (nAChR) modulating insecticides (thiacloprid, sulfoxaflor and flupyradifurone), as well as of two fungicides (azoxystrobin and tebuconazole) were examined. We further measured the expression of two detoxification genes (CYP9BU1, CYP9BU2) under exposure to thiacloprid across different nutrition treatments as a potential mechanistic pathway driving pesticide-nutrition interactions. We found that more diverse pollen nutrition reduced development time, enhanced pollen efficacy (cocoon weight divided by consumed pollen weight) and pollen consumption, and increased weight of O. bicornis after larval development (cocoon weight). Contrary to fungicides, high field-realistic concentrations of all three insecticides negatively affected O. bicornis by extending development times. Moreover, sulfoxaflor and flupyradifurone also reduced pollen efficacy and cocoon weight, and sulfoxaflor reduced pollen consumption and increased mortality. The expression of detoxification genes differed across pollen nutrition types, but was not enhanced after exposure to thiacloprid. Our findings highlight that lowered diversity of pollen nutrition and high field-realistic exposure to nAChR modulating insecticides negatively affected the development of O. bicornis, but we found no mitigation of negative pesticide impacts through increased pollen diversity. These results have important implications for risk assessment for bee pollinators, indicating that negative effects of nAChR modulating insecticides to developing solitary bees are currently underestimated.


Subject(s)
4-Butyrolactone/analogs & derivatives , Fungicides, Industrial , Insecticides , Neonicotinoids , Pesticides , Pyridines , Sulfur Compounds , Thiazines , Bees , Animals , Pesticides/toxicity , Insecticides/toxicity , Fungicides, Industrial/toxicity , Pollen
5.
Animals (Basel) ; 13(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37958099

ABSTRACT

Osmia bicornis syn. O. rufa is a univoltine bee species in which adults fly in spring and the offspring overwinter as cocooned imagoes. The flight period of solitary bees is short, so methods of control for development and emergence time are needed to synchronize the activity of managed pollinators with blooming. In our study, we tested the effectiveness of a juvenile hormone analog for the prevention of winter diapause. Bees developed in settled nests outdoors or in the laboratory (22 °C) until the end of the pre-pupa stage, then cocoons were removed from the nest cells and treated with a JH analog-methoprene-during the pupa and young imago stages. Then, bees were activated at 25 °C until the adults left the cocoons. Topical application of methoprene to the cocoon at the pupa or imago stage induced the emergence of some adult bees in the pre-diapause period, while no adults emerged when the bees were not treated with methoprene. Most adults emerged (about 50%) when treated with methoprene on 3-week-old cocooned imagoes. Bees treated in the pupal stage had a lower emergence rate (20-30%), but adult bees emerged earlier. The emergence time of adults for the laboratory group was, on average, from 70 to 91 days, and that for outdoor groups was from 57 to 72 days.

6.
BMC Biol ; 21(1): 229, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37867198

ABSTRACT

BACKGROUND: Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS: Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS: Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.


Subject(s)
Bee Venoms , Bees/genetics , Animals , Gene Expression Profiling , Transcriptome , Genomics , Gene Duplication
7.
Microb Ecol ; 86(4): 3013-3026, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37794084

ABSTRACT

We characterized the microbial communities of the crop, midgut, hindgut, and ovaries of the wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta through 16S rRNA gene and ITS2 amplicon sequencing and a large-scale isolation campaign. The bacterial communities of these bees were dominated by endosymbionts of the genera Wolbachia and Spiroplasma. Bacterial and yeast genera representing the remaining predominant taxa were linked to an environmental origin. While only a single sampling site was examined for Andrena vaga, Anthophora plumipes, and Colletes cunicularius, and two sampling sites for Osmia cornuta, the microbiota appeared to be host specific: bacterial, but not fungal, communities generally differed between the analyzed bee species, gut compartments and ovaries. This may suggest a selective process determined by floral and host traits. Many of the gut symbionts identified in the present study are characterized by metabolic versatility. Whether they exert similar functionalities within the bee gut and thus functional redundancy remains to be elucidated.


Subject(s)
Microbiota , Mycobiome , Spiroplasma , Bees , Animals , RNA, Ribosomal, 16S/genetics , Bacteria
8.
Rev. peru. biol. (Impr.) ; 30(3)jul. 2023.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1530327

ABSTRACT

Se presenta el primer reporte de la abeja colectora de óleo Centris (Odontoxys) melanochlaena Smith, 1874 en Nicaragua. Esta especie se distribuye en varios países de Centroamérica y México, siendo este el primer reporte en el occidente de Nicaragua. Este registro contribuye al conocimiento del rango de distribución de esta especie, así como también incrementa la lista de especies de abejas nativas de Nicaragua.


The first report of the oil-collecting bee Centris (Odontoxys) melanochlaena Smith, 1874 in Nicaragua is presented. This species occurs in several Central American countries and Mexico, being this the first record from western Nicaragua. This record contributes to the knowledge of the distribution range of this species, as well as increases the list of native bees occurring in Nicaragua.

9.
Neotrop Entomol ; 52(5): 814-825, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37369980

ABSTRACT

Megachile amparo (González, Revista Colombiana De Entomología 32(1):93-96, 2006) is the only high Andean leaf-cutter bee reported in Colombia and is possibly endemic to the Colombian Andes. Although it is frequently observed, even in urban areas, its biology and ecology remain unknown. The present study aimed to describe detailed aspects of its bionomy. Trap-nests were installed on the Campus of the Nueva Granada University (Cajicá, Colombia) from June/2018 to March/2020. The trap-nests were wooden blocks (25 × 15 × 14 cm) with 30 cavities of Ø = 1 cm and different lengths (50 mm, 75 mm, and 100 mm) lined with waxed paper straws. During the observations, an increasing number of trap-nests were installed, increasing from 250 to 720 cavities. The trap-nests were monitored three times a week, recording both the date the start and end building by female. Most of the nest were maintained in the field to estimate the sex ratio, cell survival, and total development time under natural conditions. Thirty-two nests were removed at different times of the observation period to establish number of cells per nest, and cells built per female per day. We incubated 20 cells from different nests at 18 °C, 22 °C, 26 °C, and 32 °C to estimate the base temperature, thermal constant k (developmental time in degree days), and cell survival. Young cells of different positions were dissected and weighed to characterize food provision and brood cells. Computerized tomography-CT scans were performed in 30 brood cells to determine if diapause occurred during prepupal stage. Females nested 7- and 10-cm-long cavities and the number of cells per nest varied with cavity length. The brood cells had a length of 1.23 ± 0.12 cm and a diameter of 0.92 ± 0.05 cm. The female spends 1.17 ± 0.29 days to build a brood cell. Food provision varied according to the position of the brood cell in the nest. The adults of M. amparo present a marked seasonality being more active during dry months. Base temperature and thermal constant k were different for males and females. The sex ratio is female biased (1.9:1), and cell survival in the field was 89% with no cleptoparasites or predators recorded.


Subject(s)
Diapause , Nesting Behavior , Humans , Male , Bees , Female , Animals , Ecology , Food , Sex Ratio
10.
Environ Toxicol Chem ; 42(7): 1564-1574, 2023 07.
Article in English | MEDLINE | ID: mdl-37083249

ABSTRACT

Declines in bee populations, in part due to pesticides, especially insecticides, are of global concern. Although most studies have investigated insecticide residues in honeybees and bumblebees, few have focused on non-Apis solitary bees, which are considered essential pollinators in the field. Most non-Apis bees are solitary and build their nests in the ground or in tree holes, therefore insecticide exposure pathways would differ from those of honeybees and bumblebees. We analyzed the residues of 20 insecticides in Osmia cornifrons bees and their pollen-provisions and nesting materials, along with adult honeybees, soil, and wildflowers collected in four apple orchards in two regions in Japan. Few insecticides were common among adult bees, pollen-provisions, and wildflowers. Insecticides applied in orchards were detected at high frequency: chlorantraniliprole, flubendiamide, and diazinon were detected in almost all samples. Insecticides without a known history of application were detected from various samples at frequencies ranging from 0% to 100%. Even in orchards without a known history of insecticide application, clothianidin was detected in many sample types and at high concentration. A purple deadnettle sample had the highest concentration at 17.5 mg/kg. These results highlight the complexity of pathways of insecticide exposure to O. cornifrons in the environment because insecticides may remain in the environment for long periods and wild bees may forage farther than previously known distances. Furthermore, each sample type contained different insecticides, so wild bees may have been exposed to different insecticides at different life stages. Future research should prioritize wide-scale measurements of insecticide residues in field conditions and toxicity testing with multiple exposures at different life stages of target species. Environ Toxicol Chem 2023;42:1564-1574. © 2023 SETAC.


Subject(s)
Insecticides , Malus , Pesticide Residues , Pesticides , Bees , Animals , Insecticides/toxicity , Insecticides/analysis , Neonicotinoids , Diazinon
11.
Bull Entomol Res ; 113(3): 299-305, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36883790

ABSTRACT

The success of agriculture relies on healthy bees to pollinate crops. Commercially managed pollinators are often kept under temperature-controlled conditions to better control development and optimize field performance. One such pollinator, the alfalfa leafcutting bee, Megachile rotundata, is the most widely used solitary bee in agriculture. Problematically, very little is known about the thermal physiology of M. rotundata or the consequences of artificial thermal regimes used in commercial management practices. Therefore, we took a broad look at the thermal performance of M. rotundata across development and the effects of commonly used commercial thermal regimes on adult bee physiology. After the termination of diapause, we hypothesized thermal sensitivity would vary across pupal metamorphosis. Our data show that bees in the post-diapause quiescent stage were more tolerant of low temperatures compared to bees in active development. We found that commercial practices applied during development decrease the likelihood of a bee recovering from another bout of thermal stress in adulthood, thereby decreasing their resilience. Lastly, commercial regimes applied during development affected the number of days to adult emergence, but the time of day that adults emerged was unaffected. Our data demonstrate the complex interactions between bee development and thermal regimes used in management. This knowledge can help improve the commercial management of these bees by optimizing the thermal regimes used and the timing of their application to alleviate negative downstream effects on adult performance.


Subject(s)
Cold Temperature , Medicago sativa , Bees , Animals , Temperature , Pupa , Metamorphosis, Biological
12.
Biol Lett ; 19(2): 20220411, 2023 02.
Article in English | MEDLINE | ID: mdl-36789529

ABSTRACT

Change in land configuration is an important driver of pollinator decline. Understanding patch selection by bees in fragmented landscapes has therefore become imperative to guide the design of habitats that support pollinators and ensure their conservation. This is especially true for solitary bees that make up most bee species in the world. To elucidate the decision-making process of a solitary bee when selecting patches, we tested four models of patch attractiveness that differed in the role of patch size and isolation distance in the selection process. In these models, bees used both patch size and patch distance, only patch distance, or chose randomly among patches. When patch size was included, bees could estimate patch resources fully or partially. An experiment with a centre patch, surrounded by four peripheral patches of different sizes and distances from the centre, provided observed transition data to test against predictions derived from each of the models. The alfalfa leafcutting bee, Megachile rotundata, does not move randomly among patches. This bee uses both patch size and isolation distance when selecting a patch but can only evaluate patch resources partially. This knowledge can guide the design of habitats in fragmented landscapes to facilitate solitary bee conservation.


Subject(s)
Ecosystem , Pollination , Bees , Animals
13.
Ecol Appl ; 33(1): e2743, 2023 01.
Article in English | MEDLINE | ID: mdl-36107148

ABSTRACT

There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.


Subject(s)
Malus , Pollination , Bees , Animals , Ecosystem , Insecta , Fruit , Crops, Agricultural , Flowers
14.
Insect Mol Biol ; 31(6): 686-700, 2022 12.
Article in English | MEDLINE | ID: mdl-35716016

ABSTRACT

Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.


Subject(s)
Ecosystem , Insecticides , Female , Male , Bees , Animals , Neonicotinoids , Genomics
15.
Front Physiol ; 13: 844820, 2022.
Article in English | MEDLINE | ID: mdl-35350686

ABSTRACT

Within the United States and Canada, the primary pollinator of alfalfa is the alfalfa leafcutting bee (ALCB), Megachile rotundata. Our previous findings showed that overwintering conditions impacted gene expression profile in ALCB prepupae that entered diapause early in the season. However, ALCB are a bivoltine species, which begs the question of whether bees entering diapause later in the season also show this trend. To better understand the effects of the timing of diapause initiation, we analyzed mRNA copy number of genes known to be involved in diapause regulation in early and late season diapausing ALCB that were overwintered in field conditions or using current agricultural management conditions. We hypothesized that overwintering conditions for late diapausing bees also affects gene expression profiles. Our results showed that expression profiles were altered by both overwintering condition and timing of diapause initiation, with bees that entered diapause earlier in the season showing different expression patterns than those that entered diapause later in the season. This trend was seen in expression of members of the cyclin family and several targets of the insulin signaling pathway, including forkhead box protein O (FOXO), which is known to be important for diapause regulation and stress responses. But, of the genes screened, the proto-oncogene, Myc, was the most impacted by the timing of diapause initiation. Under field conditions, there were significant differences in Myc expression between the early and late season samples in all months except for November and February. This same general trend in Myc expression was also seen in the laboratory-maintained bees with significant difference in expression in all months except for November, February, and May. These results support previous conclusions from our research showing that the molecular regulation of diapause development in ALCB is not a simple singular cascade of gene expression but a highly plastic response that varies between bees depending upon their environmental history.

16.
Insects ; 13(3)2022 Feb 27.
Article in English | MEDLINE | ID: mdl-35323533

ABSTRACT

(1) Background: Many insects have evolved different strategies to adapt to subzero temperatures and parasites, but the supercooling response of pollinator populations under the brood parasitism pressure has not been sufficiently investigated. (2) Methods: This study assessed the supercooling traits (supercooling points, fresh weight and fat content) of the solitary bee Osmia excavata Alfken and its brood parasite, Sapyga coma Yasumatsu & Sugihara. We measured 4035 samples (3025 O. excavata and 1010 S. coma, one individual as one sample) and discovered the supercooling traits relations between solitary bee and brood parasite. (3) Results: Significant differences in the supercooling points were found between O. excavata (females: −24.18 (−26.02~−20.07) vs. males: −23.21 (−25.15~−18.65) °C) and S. coma (females: −22.19 (−25.46~−18.38) vs. males: −20.65 (−23.85~−16.15) °C, p < 0.0001) in the same sex, and also between sexes of same species. The two species' supercooling traits (supercooling points, fresh weight, and fat content) were significantly positively correlated. The supercooling points of the solitary bee varies regularly under brood parasitism pressure. (4) Conclusions: Our study indicates the supercooling traits relationships between a solitary bee and its brood parasite and suggests that the supercooling points of the solitary bee increase under the biological stress of its brood parasite in a certain level.

17.
Sci Total Environ ; 809: 151142, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-34688758

ABSTRACT

Agricultural landscapes have changed substantially in recent decades, shifting from the dominance of small fields (S) with diverse cropping systems toward large-scale monoculture (L), where landscape heterogeneity disappears. In this study, artificial nests of the red mason bee, Osmia bicornis, were placed in S and L landscape types on the perimeter of oilseed rape fields representing different oilseed rape coverages (ORC, % land cover). The local landscape structure around each nest was characterised within a 100, 200, 500, and 1000 m radius using ORC and 14 landscape characteristics, which were then reduced by non-metric multidimensional scaling (nMDS) to two axes: nMDS1 characterised the dataset primarily according to land fragmentation and the main crop, whereas nMDS2 captured the prevalence of more natural areas in the landscape. Pollen diversity and insecticide risk levels in the pollen provisions collected by the bees were analysed, and their dependence on the landscape structure was tested. Thereafter, the effects of pollen diversity, insecticide risk, and landscape structure on the life-history traits of bees and their sensitivity to topically applied Dursban 480 EC were determined. Pollen taxa richness in a single nest ranged from 3 to 12, and 34 pesticides were detected in the pollen at concentrations of up to 320 ng/g for desmedipham. The O. bicornis foraging range was relatively large, indicating that the landscape structure within a radius of ~1000 m around the nest is important for this species. Pollen diversity in the studied areas was of minor importance for bee performance, but the ORC or landscape structure significantly affected the life-history traits of the bees. Contamination of pollen with insecticides affected the bees by decreasing the mass of newly emerged adults but their sensitivity to Dursban 480 EC was not related to environmental variables.


Subject(s)
Brassica napus , Insecticides , Pesticide Residues , Agriculture , Animals , Bees , Insecticides/toxicity , Pollen , Pollination
18.
Environ Entomol ; 51(1): 240-251, 2022 02 16.
Article in English | MEDLINE | ID: mdl-34718488

ABSTRACT

Wild and managed bee populations are in decline, and one of many environmental causes is the impact of pesticides on developing bees. For solitary bees, delayed larval development could lead to asynchronous adult emergence, unhealthy and inefficient adult pollinators, and decreased brood production and survival. We examined a methodology for testing Osmia lignaria Say (Hymenoptera: Megachilidae) larval responses to pesticide exposure using a laboratory bioassay. We created two provision types: a homogenized blend of O. lignaria provisions from an apple orchard and homogenized almond pollen pellets collected by honey bees plus sugar water. Pesticides were administered to the provisions to compare toxic effects. We recorded larval developmental durations for second-fifth instar and for fifth instar to cocoon initiation for larvae fed provisions treated with water (control) or doses of three pesticides and a representative spray-tank mixture (acetamiprid, boscalid/pyraclostrobin, dimethoate, and acetamiprid plus boscalid/pyraclostrobin). All larvae survived to cocoon initiation when only water was added to provisions. Impacts of pesticide treatments significantly differed between the apple and almond homogenates. The greatest treatment effects occurred when the homogenized almond provision was mixed with acetamiprid alone and when combined with boscalid/pyraclostrobin. Optimizing bioassays through the use of appropriate larval food for exposing solitary bee larvae to agrochemicals is crucial for assessing risks for pollinators.


Subject(s)
Hymenoptera , Pesticides , Prunus dulcis , Animals , Bees , Hymenoptera/physiology , Larva , Pesticides/toxicity , Pollen
19.
Biodivers Data J ; 9: e75997, 2021.
Article in English | MEDLINE | ID: mdl-34916869

ABSTRACT

The paper presents the first record of Lithurguscornutus (Fabricius, 1787) in Poland. Until recently, bees of the genus Lithurgus have not been recorded in Poland. Five females and one male of L.cornutus were caught in Lublin Region, SE Poland. The localities are beyond the range of this species, being the northernmost known records from Central Europe. The following information is provided: short diagnosis, ecology, distribution, recent records and threat status of L.cornutus in Central Europe.

20.
PeerJ ; 9: e12344, 2021.
Article in English | MEDLINE | ID: mdl-34760367

ABSTRACT

Metrics to assess relative adult bee body size have included both mass and morphometrics, but these metrics may not equally or reliably estimate body size for all bee species and in all situations, due to bee age, diet, and/or environment. Understanding the relationships between different metrics and possible redundancies in the information they afford is important but not always known. Body size measurements provide valuable data for interpreting research outcomes for managed solitary bees, including Osmia lignaria Say and Megachile rotundata F. (Hymenoptera: Megachilidae). Applied studies of these important and readily available U.S. crop pollinators focus on refining commercial management practices, and basic empirical studies in various scientific disciplines (from genomics to ecology) employ them as model systems to study solitary bees. To examine common metrics of body size, we measured head capsule width (HCW), intertegular distance (ITD), and fresh and dry weights of newly emerged adults of both species. Using linear and exponential models, we determined relationships between these body size metrics. For M. rotundata, linear models best described relationships between ITD and all other metrics, and between HCW and fresh and dry weights. For O. lignaria, linear models best fit relationships between all metrics except for fresh weight with both ITD and HCW, which were fitted better with exponential models. For both species, model fits were strongest when males and females were pooled. Depending on the study question, knowing that only one metric may reliably measure body size can simplify evaluations of O. lignaria and M. rotundata responses to artificial or environmental variables.

SELECTION OF CITATIONS
SEARCH DETAIL
...