Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 156
Filter
1.
Plant Physiol Biochem ; 213: 108837, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878389

ABSTRACT

One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains. The environmental risks of nanoparticle proliferation are unclear. At the same time, certain nanoparticles act as adaptogens, improving plant tolerance to unfavorable stress factors. It is quite realistic to choose such experimental conditions, under which the effect on plant stress tolerance will be obvious and the accumulation of nanoparticles in tissues will be minimal. In this case, the main relevant factors are the type of nanoparticles, their concentration and their way of penetration into plants. We chose to study gold nanoparticles (Au-NPs), widely used in biomedical research. The concentration of Au-NPs was 20 µg/mL, which is considered safe for living organisms. The influence of Au-NPs on some physiological, biochemical and molecular characteristics of wheat plants during low temperature hardening was examined. The study of the photosynthetic apparatus and antioxidant system was the primary focus. The stimulating effect of Au-NPs on cold tolerance of wheat plants was shown. The results expand our knowledge of the processes by which nanoparticles impact plants and the potential applications of nanoparticles as adaptogens in science and agriculture.


Subject(s)
Cold Temperature , Gold , Metal Nanoparticles , Triticum , Triticum/metabolism , Triticum/drug effects , Gold/chemistry , Metal Nanoparticles/chemistry , Photosynthesis/drug effects , Antioxidants/metabolism
2.
Plants (Basel) ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38931122

ABSTRACT

The increasing use of photoselective nets (PNs) raises the question of their influence on pollen traits. We aimed to evaluate the effect of PNs (yellow, pearl, and grey) on the pollen of 'Matua' and 'Tomuri' Actinidia deliciosa cultivars. The pollen size and the exine were studied with a light microscopy and a scanning electron microscopy, and the fertility was analysed by a viability assay and in vitro germination. The total soluble proteins (TSPs) and sugars (TSSs) were quantified by colorimetric assays. The molecular structure of the pollen grain's wall was analysed by a Raman spectroscopy. The pollen from the plants under the PNs had a larger width and area and a lower germination rate. No significant changes were observed in the exine's microperforations. The TSP and TSS contents were influenced by the cultivar and PNs (particularly the pearl PN). The Raman spectra of the pollen from the plants grown under the nets presented some bands that significantly shifted from their original position, indicating differences in the vibration modes of the molecules, but no overall changes at their structural or organisation level were found. Our study showed that the PNs could influence several pollen traits, with the pearl PN inducing greater modifications. Our results also support the idea that cultivars affect the outcome of some characteristics.

3.
Plants (Basel) ; 13(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38611567

ABSTRACT

Chitosan is a derivative of chitin that is one of the most abundant biopolymers in nature, found in crustacean shells as well as in fungi cell walls. Most of the commercially available chitosans are produced from the exoskeletons of crustaceans. The extraction process involves harsh chemicals, has limited potential due to the seasonal and limited supply and could cause allergic reactions. However, chitosan has been shown to alleviate the negative effect of environmental stressors in plants, but there is sparse evidence of how chitosan source affects this bioactivity. The aim of this study was to investigate the ability of chitosan from mushroom in comparison to crustacean chitosan in enhancing drought stress tolerance in tomato plants (cv. MicroTom). Chitosan treatment was applied through foliar application and plants were exposed to two 14-day drought stress periods at vegetative and fruit set growth stages. Phenotypic (e.g., fruit number and weight), physiological (RWC) and biochemical-stress-related markers (osmolytes, photosynthetic pigments and malondialdehyde) were analyzed at different time points during the crop growth cycle. Our hypothesis was that this drought stress model will negatively impact tomato plants while the foliar application of chitosan extracted from either crustacean or mushroom will alleviate this effect. Our findings indicate that drought stress markedly decreased the leaf relative water content (RWC) and chlorophyll content, increased lipid peroxidation, and significantly reduced the average fruit number. Chitosan application, regardless of the source, improved these parameters and enhanced plant tolerance to drought stress. It provides a comparative study of the biostimulant activity of chitosan from diverse sources and suggests that chitosan sourced from fungi could serve as a more sustainable and environmentally friendly alternative to the current chitosan from crustaceans.

4.
Plants (Basel) ; 13(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674576

ABSTRACT

In recent years, recurrent droughts have significantly affected spring barley production, reducing the quantity and quality of grain. This study aims to identify genotype-specific traits and the drought resilience of six different Hordeum vulgare L. (spring barley) genotypes, while also examining the potential of potassium application and fungal endophyte Serendipita indica inoculation to mitigate the negative effects of dry periods during the growing season. Field experiments were conducted over a three-year period from 2020 to 2022, measuring physiological, growth, and yield parameters. To get insight into the physiological state of the plants, we measured the soluble sugars content and the ratio of stable carbon isotopes in the flag leaf tissue, which reflects conditions during its formation. The dominant factors that influenced the measured parameters were the genotypes and seasons, as well as their interaction, rather than other experimental factors. The results showed that the Spitfire and Accordine varieties were the best performing in both the 2020 and 2021 seasons, as indicated by their yield. However, in the drier 2022 season, the yield of these two varieties decreased significantly (to 55% for Spitfire and to 69% for Accordine of their yield in 2021), while for the arid-region genotypes, it remained at the same level as the previous year. This study sheds light on the potential of various genotypes to withstand periods of drought and the effectiveness of using potassium application and S. indica inoculation as mitigation approaches.

5.
Plants (Basel) ; 13(5)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38475559

ABSTRACT

Common vetch (Vicia sativa L.) is an important annual diploid leguminous forage. In the present study, transcriptomic profiling in common vetch in response to salt stress was conducted using a salt-tolerant line (460) and a salt-sensitive line (429). The common responses in common vetch and the specific responses associated with salt tolerance in 460 were analyzed. Several KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways, including plant hormone and MAPK (mitogen-activated protein kinase) signaling, galactose metabolism, and phenylpropanoid phenylpropane biosynthesis, were enriched in both lines, though some differentially expressed genes (DEGs) showed distinct expression patterns. The roots in 460 showed higher levels of lignin than in 429. α-linolenic acid metabolism, carotenoid biosynthesis, the photosynthesis-antenna pathway, and starch and sucrose metabolism pathways were specifically enriched in salt-tolerant line 460, with higher levels of accumulated soluble sugars in the leaves. In addition, higher transcript levels of genes involved in ion homeostasis and reactive oxygen species (ROS) scavenging were observed in 460 than in 429 in response to salt stress. The transcriptomic analysis in common vetch in response to salt stress provides useful clues for further investigations on salt tolerance mechanism in the future.

6.
Foods ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38540929

ABSTRACT

The growing interest in functional foods is driven by the exploration of new foods with positive health effects. Pleasant sensory features are essential for consumer acceptance. In this work, we investigated the composition of the bioactive compounds, antioxidant activity, and aroma profiles of four edible flowers: Cucurbita moschata Duchesne, Dianthus chinensis L., Fuchsia regia (Vand. ex Vell.) Munz., and Viola cornuta L. For the first time, we quantified the water-soluble group of B vitamins. Significant variations in the content of soluble sugars, vitamins, and secondary metabolites were observed. V. cornuta showed the highest concentration of vitamin C and carotenoids, while C. moschata had the highest content of vitamin B and flavonoids. F. regia stood out for its exceptionally high content of total phenolics, while D. chinensis surpassed the other flowers in soluble sugar content. The aroma profile analysis revealed a diverse array of volatile organic compounds, with each species having its own unique composition. C. moschata was characterized by p-dimethoxybenzene and D. chinensis by non-terpene compounds; F. regia displayed high amounts of decanal and nonanal, while V. cornuta was rich in myrcene and α-farnesene. These findings provide valuable insights into the secondary metabolites and aroma profiles of these flowers, enhancing our understanding of their bioactive compounds and potential health benefits.

7.
BMC Plant Biol ; 24(1): 146, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38413850

ABSTRACT

BACKGROUND: Titanium dioxide nanoparticles (TiO2 NPs) have been reported to have contrasting effects on plant physiology, while their effects on sugar, protein, and amino acid metabolism are poorly understood. In this work, we evaluated the effects of TiO2 NPs on physiological and agronomical traits of tomato (Solanum lycopersicum L.) seedlings. Tomato seeds were treated with TiO2 NPs (1000 and 2000 mg L- 1), TiO2 microparticles (µPs, 2000 mg L- 1) as the size control, and ultrapure water as negative control. RESULTS: The dry matter of stems (DMs), leaves (DMl) and total dry matter (DMt) decreased as particle concentration increased. This trend was also observed in the maximum quantum yield of light-adapted photosystem II (PSII) (Fv´/Fm´), the effective quantum yield of PSII (ΦPSII), and net photosynthesis (Pn). The concentrations of sugars, total soluble proteins, and total free amino acids were unaffected, but there were differences in the daily dynamics of these compounds among the treatments. CONCLUSION: Our results suggest that treating tomato seeds with TiO2 might affect PSII performance, net photosynthesis and decrease biomass production, associated with a concentration- and size-related effect of TiO2 particles.


Subject(s)
Nanoparticles , Solanum lycopersicum , Titanium , Seedlings/metabolism , Chlorophyll/metabolism , Photosynthesis/physiology , Plant Leaves/metabolism , Photosystem II Protein Complex/metabolism
8.
Food Chem X ; 21: 101238, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38420506

ABSTRACT

Durian contains rich flavor components that undergo complex changes during drying. In this study, durian was subjected to integrated freeze-drying (IFD), conventional freeze-drying (CFD), and hot air drying (AD). Compared with the fresh samples, those dried by IFD, CFD, and AD lost 11, 9, and 7 original volatile compounds, respectively, and generated 7, 6, and 8 new volatile compounds, respectively, and showed a rapid and then slow decreasing trend in the total content during drying. However, the types of amino acids and soluble sugars remained unchanged during each of the drying methods. Furthermore, volatile compounds showed a significant negative correlation with the majority of amino acids and a significant positive correlation with soluble sugars. The IFD samples had the highest content of volatile compounds, amino acids, and soluble sugars. Therefore, IFD is recommended as a preferable drying method for durian.

9.
Food Chem X ; 21: 101077, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38226324

ABSTRACT

Blister blight, as one of the most threatening and damaging disease worldwide, mainly infects young organs and tissues seriously affecting tea growth and quality. In this study, the spread of pathogen on tea leaves were examined by toluidine blue staining, scanning electron microscope and transmission electron microscope analysis. The composition and abundance of fungal community on leaf tissues were firstly analyzed. Sensory evaluation and metabolites analysis indicated that diseased tea leaves had strong sweet taste and soluble sugars contributed significantly to the taste, while metabolites showing bitter and astringent taste (caffeine, catechins) were significantly decreased. According to the biological functions of differential metabolites, sugars including 7 monosaccharides (d-xylose, d-arabinose, d-mannose, d-glucuronic acid, glucose, d-galactose and d-fructose), 2 disaccharide (sucrose and maltose) and 1 trisaccharide (raffinose) were the main differential sugars increased in content (>2 fold change), which was of great significance to sweet taste of diseased tea.

10.
BMC Plant Biol ; 24(1): 7, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38163887

ABSTRACT

Heavy metal cadmium (Cd) naturally occurs in soil and is a hazardous trace contaminant for humans, animals, and plants. The main sources of Cd pollution in soil include overuse of phosphatic fertilizers, manure, sewage sludge, and aerial deposition. That's why an experiment was conducted to analyze the effect of Cd toxicity in Capsicum annuum L. by selecting its seven varieties: Hybrid, Desi, Sathra, G-916, BR-763, BG-912, and F1-9226. Cadmium was spiked in soil with four levels, i.e., (0, 3, 4, and 5 mg Cd kg- 1 of soil) for a week for homogeneous dispersion of heavy metal. Chili seeds were sown in compost-filled loamy soil, and 25-day-old seedlings were transplanted into Cd-spiked soil. Cadmium increasing concentration in soil decreased chili growth characteristics, total soluble sugars, total proteins, and amino acids. On the other hand, the activities of antioxidant enzymes were increased with the increasing concentration of Cd in almost all the varieties. Treatment 5 mg Cd/kg application caused - 197.39%, -138.78%, -60.77%, -17.84%, -16.34%, -11.82% and - 10.37% decrease of carotenoids level in chili V2 (Desi) followed by V4 (G-916), V1 (Hy7brid), V7 (F1-9226), V6 (BG-912), V5 (BR-763) and V3 (Sathra) as compared to their controls. The maximum flavonoids among varieties were in V5 (BR-763), followed by V6 (BG-912), V7 (F1-9226), V3 (Sathra) and V1 (Hybrid). Flavonoids content was decreased with - 37.63% (Sathra), -34.78% (Hybrid), -33.85% (G-916), -31.96% (F1-9226), -31.44% (Desi), -30.58% (BR-763), -22.88% (BG-912) as compared to their control at 5 mg Cd/kg soil stress. The maximum decrease in POD, SOD, and CAT was - 31.81%, -25.98%, -16.39% in chili variety V7 (F1-9226) at 5 mg Cd/kg stress compared to its control. At the same time, maximum APX content decrease was - 82.91%, followed by -80.16%, -65.19%, -40.31%, -30.14%, -10.34% and - 6.45% in V4 (G-916), V2 (Desi), V3 (Sathra), V6 (BG-912), V1 (Hybrid), V7 (F1-9226) and V5 (BR-763) at 5 mg Cd/kg treatment as compared to control chili plants. The highest CAT was found in 5 chili varieties except Desi and G-916. Desi and G-916 varieties. V5 (BR-763) and V6 (BG-912) were susceptible, while V1 (Hybrid), V3 (Sathra), and V7 (F1-9226) were with intermediate growth attributes against Cd stress. Our results suggest that Desi and G-916 chili varieties are Cd tolerant and can be grown on a large scale to mitigate Cd stress naturally.


Subject(s)
Cadmium , Soil Pollutants , Humans , Animals , Cadmium/metabolism , Antioxidants/metabolism , Carotenoids , Soil/chemistry , Flavonoids , Soil Pollutants/toxicity
11.
Plant Physiol Biochem ; 206: 108227, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043254

ABSTRACT

For fleshy fruits, the content and ratio of organic acids and soluble sugars are key factors for their flavor. Therefore, a better understanding of soluble sugar and organic acid accumulation in vacuoles is essential to the improvement of fruit quality. Vacuolar-type inorganic pyrophosphatase (V-PPase) has been found in various plants with crucial functions based on the hydrolysis of PPi. However, the effects of V-PPase on the soluble sugar and organic acid accumulation in apple fruit remain unclear. In this study, MdVHP1-2, a V-PPase protein in the vacuolar membrane, was identified. The results showed a positive correlation between the expression of MdVHP1-2 and the sugar/acid ratio during ripening of apple fruits. A series of transgenic analyses showed that overexpression of MdVHP1-2 significantly elevated the contents of soluble sugars and organic acids as well as the sugar/acid ratio in apple fruits and calli. Additionally, transient interference induced by MdVHP1-2 expression inhibited the accumulation of soluble sugars and organic acids in apple fruits. In summary, this study provides insight into the mechanisms by which MdVHP1-2 modulates fruit flavor through mediation of soluble sugar and organic acid accumulation, thereby facilitating improvement of the overall quality of apple and other fruits.


Subject(s)
Fruit , Malus , Fruit/genetics , Malus/genetics , Sugars , Carbohydrates
12.
Food Chem X ; 20: 100953, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37929267

ABSTRACT

Chinese cherry is an economically important fruit crop native to China. Flavor quality is greatly influenced by compositions of soluble sugars and organic acids. To better understand the flavor quality of Chinese cherry, we determined sugar and acid components in thirty-eight landrace and cultivar collections, and two wild resources using the HPLC method. Glucose and fructose were the main components, accounting for 85.91% of soluble sugars. Malic acid was the predominant organic acid, with an average proportion of 65.73% of total acids. Correlation and PCA analysis revealed seven key indicators for evaluating fruit flavor. Compared with wild Chinese cherry, the cultivated collections exhibited higher levels of soluble sugars, especially fructose, and lower levels of organic acid, particularly malic acid in fruits. Finally, we have established grading criteria for seven flavor indicators in Chinese cherry. Our study provides valuable references for identifying flavor compounds and improving flavor quality of Chinese cherry.

13.
Heliyon ; 9(11): e22144, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034643

ABSTRACT

Titanium dioxide nanoparticles (TiO2NPs) are widely used in agriculture in order to increase the yield and growth characteristics of plants. This study investigated the effects of TiO2NPs on photosynthetic pigments and several biochemical activities and antioxidant enzymes of the Vitex plant. Different concentrations of nanoparticles (0, 200, 400, 600 and 800 ppm) at five levels were sprayed on Vitex plants on the 30th day of the experiment. TiO2NPs at different concentrations had positive effects on root and shoot dry weight and a negative effect on leaf dry weight. The amount of chlorophyll increased with the concentration of TiO2NPs; however, the amount of chlorophyll b showed a decreasing trend while the total chlorophyll had a constant trend. The highest amount of soluble sugar was obtained in the treatment of 200 ppm nanoparticles. The application of TiO2NPs did not have any effect on the content of proline and soluble proteins of Vitex plant. The effects of foliar TiO2NPs, compared to the control, showed a significant increase in the activity of antioxidant enzymes. In general, TiO2NPs had a favorable effect on dry matter production and some antioxidant and biochemical properties of the Vitex plant.

14.
J Plant Res ; 136(6): 907-930, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37702838

ABSTRACT

Salinity is among the harshest environmental stress conditions that negatively affects productivity of salt-sensitive rice. Since, germination is the most crucial phase in the life-cycle of plants, the present study was carried out to study the morpho-physiological traits associated with salinity stress. Evaluation of tolerance in four contrasting rice genotypes was assessed on the basis of specific morpho-physiological parameters including radicle emergence, seedling vigour index, germination index, mean germination time, radicle and plumule growth and seedling water uptake. Largely, our findings revealed that mean germination time (MGT) and seedling vigour index (SVI) are fast-screening procedures to test seedling performance in salt stress conditions. Salt sensitive genotypes showed higher MGT and lower SVI, confirming that these indices are good indicators of poor germination response. Salt-tolerant genotypes were shown to be inhibited to a lesser extent in alpha-amylase activity in spite of high concentrations of imposed NaCl stress, that correlated with better regulation of water-uptake and increased accumulation of total soluble sugar content. Exogenous supplementation of soluble sugars improved the germination rate in a salt sensitive genotype, Jyothi, confirming the importance of soluble sugars in signaling under NaCl stress conditions. Increased total phenols and flavonoids were observed to be relative to higher Total Antioxidant Capacity in salt tolerant genotypes underlying the significance of seed phenolic compounds in early germination response in NaCl stress conditions. Kagga, a landrace grown in coastal Karnataka performed comparably with that of salt tolerant rice, Pokkali. In conclusion, the determination of early seedling response may be utilized as a useful strategy to uncover genetic variation in rice germplasm to salinity stress.


Subject(s)
Germination , Oryza , Germination/physiology , Oryza/physiology , Sodium Chloride , India , Salt Stress , Seedlings , Genotype , Salinity , Sugars , Water
15.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762208

ABSTRACT

Plant growth and the process of yield formation in crops are moderated by surrounding conditions, as well as the interaction of the genetic background of plants and the environment. In the last two decades, significant climatic changes have been observed, generating unfavorable and harmful impacts on plant development. Drought stress can be considered one of the most dangerous environmental factors affecting the life cycle of plants, reducing biomass production and, finally, the yield. Plants can respond to water deficit in a wide range, which depends on the species, genetic variability within the species, the plant's ontogenesis stage, the intensity of the stress, and other potential stress factors. In plants, it is possible to observe hybrids between different taxa that certain traits adopted to tolerate stress conditions better than the parent plants. Oat × maize addition (OMA) plants are good examples of hybrids generated via wide crossing. They can exhibit morphological, physiological, and biochemical variations implemented by the occurrence of extra chromosomes of maize, as well as the interaction of maize and oat chromatin. The initial goal of the study was to identify OMA lines among plants produced by wide crossing with maize. The main goal was to investigate differences in OMA lines according to the Excised Leaf Water Loss (ELWL) test and to identify specific biochemical changes and agronomic traits under optimal water conditions and soil drought. Additionally, detection of any potential alterations that are stable in F2 and F3 generations. The aforementioned outcomes were the basis for the selection of OMA lines that tolerate growth in an environment with limited water availability. The molecular analysis indicated 12.5% OMA lines among all tested descendants of wide oat-maize crossing. The OMA lines significantly differ according to ELWL test results, which implies some anatomical and physiological adaptation to water loss from tissues. On the first day of drought, plants possessed 34% more soluble sugars compared to control plants. On the fourteen day of drought, the amount of soluble sugars was reduced by 41.2%. A significant increase of phenolic compounds was observed in the fourteen day of drought, an average of 6%, even up to 57% in line 9. Soil drought substantially reduced stem biomass, grains number, and mass per plant. Lower water loss revealed by results of the ELWL test correlated with the high yield of OMA lines. Phenolic compound content might be used as a biochemical indicator of plant drought tolerance since there was a significant correlation with the high yield of plants subjected to soil drought.


Subject(s)
Droughts , Soil , Zea mays/genetics , Avena/genetics , Crops, Agricultural , Phenols
16.
Front Plant Sci ; 14: 1239010, 2023.
Article in English | MEDLINE | ID: mdl-37662150

ABSTRACT

Sweet basil is a popular culinary herb used in many cuisines around the world and is widely grown commercially for retail as a live potted plant. However, basil is easily damaged by temperatures below 12 °C meaning plants must be transported from the grower to the retailer in a warm transport chain, adding considerable commercial cost in temperate countries. Improvement of chilling tolerance has been demonstrated in post-harvest crops such as tomato fruits and, indeed, fresh cut basil, by manipulation of the red:far red ratio of light provided to plants throughout the photoperiod and for a significant duration of the growing process in controlled environment chambers. We tested the effectiveness of periodic short-duration end-of-production supplementary far red light treatments designed for use with basil plants grown in a large scale commercial glasshouse for the live potted basil market. Four days of periodic, midday supplementary far red light given at end of production induced robust tolerance to 24 h of 4 °C cold treatment, resulting in greatly reduced visual damage, and reduced physiological markers of chilling injury including electrolyte leakage and reactive oxygen species accumulation. Antioxidant levels were also maintained at higher levels in live potted basil following this cold treatment. RNAseq-based analysis of gene expression changes associated with this response pointed to increased conversion of starch to soluble raffinose family oligosaccharide sugars; increased biosynthesis of anthocyanins and selected amino acids; inactivation of gibberellin signaling; and reduced expression of fatty acid desaturases, all previously associated with increased chilling tolerance in plants. Our findings offer an efficient, non-invasive approach to induce chilling tolerance in potted basil which is suitable for application in a large-scale commercial glasshouse.

17.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628947

ABSTRACT

Aside from its importance in human and animal health, low levels of foliar-applied selenate (SeO4) can be advantageous in the presence of sulfur (S), contributing to improved growth, nutrient uptake, and crop quality. A hydroponic experiment in a growth chamber explored the interactive influence of Se and S on micronutrients and several quality indices, such as soluble sugars, organic acids, and total protein concentrations in spinach (Spinacia oleracea L.). Three levels of S (deprivation, adequate, and excessive) with varying quantities of Se (deficient, moderate, and higher) were examined in combination. Under S starvation and along with S nourishment in plant parts, Se treatments were found to cause noticeable variations in plant biomass and the concentrations of the examined elements and other quality parameters. Both Se levels promoted S accumulation in S-treated plants. Although the Se treatment had the opposite effect in shoots, it had a favorable impact on minerals (apart from Mn) in roots grown under S-limiting conditions. The S and Se relationship highlighted beneficial and/or synergistic effects for Mn and Fe in edible spinach portions. Reducing sugars were synergistically boosted by adequate S and moderate Se levels in roots, while in shoots, they were accumulated under moderate-or-higher Se and excessive S. Furthermore, the concentration of the quantified organic acids under S-deficient conditions was aided by various Se levels. In roots, moderate Se under high S application enhanced both malic acid and citric acid, while in the edible parts, higher Se under both adequate and elevated S levels were found to be advantageous in malic acid accumulation. Moreover, by elevating S levels in plant tissues, total protein concentration increased, whereas both moderate and high Se levels (Se1 and Se2) did not alter total protein accumulation in high S-applied roots and shoots. Our findings show that the high S and medium Se dose together benefit nutrient uptake; additionally, their combinations support soluble sugars and organic acids accumulation, contributing ultimately to the nutritional quality of spinach plants. Moreover, consuming 100 g of fresh red spinach shoot enriched with different Se and S levels can contribute to humans' daily micronutrients intake.


Subject(s)
Selenium , Trace Elements , Animals , Humans , Micronutrients , Spinacia oleracea , Sulfur
18.
Sci Total Environ ; 900: 166484, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37611709

ABSTRACT

The growing interest in bioplastics and bio-based crop management products in agriculture is driven by the Sustainable Development Goals of the 2030 Agenda. However, recent research has raised concerns about the sustainability of bioplastics due to their potential negative impact on crop growth and yield, with implications for the environment and human health. In this study, wood distillate (WD) was evaluated as a natural enhancer of plant growth and defence system to mitigate the negative impact of a starch-based bioplastic on basil (Ocimum basilicum L.) plants. The study analyzed physiological and biochemical changes in basil plants subjected for 35 days to single or combined treatments of WD and bioplastic by measuring biomarkers of healthy growth, such as soluble proteins, sugars, vitamin C, and malondialdehyde (MDA). The results showed that WD promoted basil development, whereas the presence of bioplastic hindered it. Interestingly, WD did not affect sugars but increased vitamin C by 12 %, which is considered a positive effect as changes in sugar levels could indicate plant stress. In contrast, bioplastic resulted in reduced sugars (-41 %) and increased (+17 %) MDA level, while vitamin C content remained unchanged. However, when WD was added to plants grown with bioplastic, it elevated the levels of all examined parameters, except for sugars and vitamin C, which experienced reductions (-66 % and 33 %, respectively). Intriguingly, despite this reduction, the observed direct correlation between sugar and vitamin C contents was maintained, indicating that the decrease in sugar content may have reached a critical threshold. This study suggests that the use of WD has the potential to alleviate the adverse effects of bioplastic on basil growth and development and highlights the importance of adopting sustainable practices in agriculture, as well as the need for a critical assessment of the environmental impact of new technologies and products.


Subject(s)
Ocimum basilicum , Humans , Wood , Ascorbic Acid , Starch , Sugars
19.
Tree Physiol ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37584458

ABSTRACT

Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material.

20.
Molecules ; 28(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37570644

ABSTRACT

Almonds are one of the most produced nuts worldwide and numerous studies have shown that they have nutritional and medicinal characteristics, which gives them the possibility of being applied in various products. However, several by-products are generated during their production, which have characteristics of interest but remain underutilised, namely, the almond skins. This work aimed to study samples of waffles supplemented with almond skins. The waffles were evaluated for their total polyphenol content, antioxidant capacity, total flavonoids, ortho-diphenols, soluble sugars, starch, texture, and colour. They were also sensorially evaluated using a panel of tasters specialised in this type of evaluation and a quantitative descriptive analysis test (QDA) sensory test. The results showed that the waffles with the highest levels of phenolic compounds as well as the highest antioxidant activity (by the ABTS, DPPH, and FRAP methods) were the waffles supplemented with 10% almond skin. The total phenol contents obtained for the prepared extracts varied between 0.127 mg GAE/g and 0.415 mg GAE/g, the flavonoid contents ranged from 0.067 mg CAE/g to 0.339 mg CAE/g and the ortho-diphenol contents varied between 0.163 mg ACE /g and 0.303 mg ACE/g. Regarding the quantification of soluble sugars, the values were presented in percentage of fresh weight, and ranged from 30.148 to 38.054%; regarding the quantification of starch, the percentages varied from 14.488 to 21.982%. Sensorially, we verified that the samples were statistically different in terms of the descriptors "colour", "roasted aroma", and "dissolubility", with a higher score in these descriptors for the waffles with 10% of almond skin. This process of obtaining waffles, which can be industrialised, is interesting from both a nutritional point of view and for the possibility of creating new, differentiated, and innovative products.

SELECTION OF CITATIONS
SEARCH DETAIL
...