Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.149
Filter
1.
J Dairy Sci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969000

ABSTRACT

This study was conducted to determine if the decreased MP supply predicted by the NRC (2001) when canola meal (CM) substitutes soybean meal (SBM) was supported by direct measurement of net portal absorption of AA or energy-yielding nutrients, plus the impact of the type of forage in CM-based rations. Nine Holstein cows with indwelling catheters in splanchnic blood vessels, 8 also with a ruminal cannula were used to examine the effects of protein source in corn silage-based diets, comparing SBM versus CM, and forage source in CM-based diets, comparing corn versus grass silage. The cows were allocated to a triple 3 × 3 Latin square design with 21-d periods. The 3 experimental diets, formulated to be isoenergetic and isonitrogenous, were based on: 1) SBM and corn silage (SoyCorn); 2) CM and corn silage (CanCorn) and 3) CM and cool-season grass silage (CanGrass). Averages of intake, milk yield and milk composition of the last 3 d of each period were used for statistical analyses. On d 21 of each period, 6 sets of arterial, portal, hepatic and mammary blood samples and 2 ruminal fluid samples were collected. On d 12 of period 2, the protein sources were incubated in nylon bags to determine 16h-ruminal disappearance of DM and N and to obtain 16-h residues. Finally, 5 d after the completion of the Latin square design, the mobile bag technique was used to determine DM and N intestinal disappearance of the 16-h residues of SBM and CM. Pre-planned contrasts were used to compare the effect of the protein source in cows fed corn silage, i.e., SoyCorn versus CanCorn, and the effect of forage in cows fed CM, i.e., CanCorn versus CanGrass. Data of the cow without a rumen canula could not be used because of health problem. In corn silage-based diets, substitution of SBM by CM tended to increase milk (6%) and milk fat (7%) yields. The 8% higher ruminal N disappearance and the 19% decreased MP supply from RUP predicted by NRC (2001) were not supported by the 25% decrease in ruminal ammonia concentration, similar net portal absorption of AA (except 22% higher for Met), and the 14% decrease in urea hepatic removal when CM substituted SBM. Ruminal incubation of CM in nylon bags does not appear suitable for adequate determination of the rumen by-pass of a protein source like CM. Inclusion of grass silage rather than corn silage in CM-based diets tended to increase milk (6%) and increased milk lactose (8%) yields. Neither protein nor forage source resulted in variations of metabolism of energy-yielding nutrients that could explain observed increments in cow performance. The present study indicates no decreased AA availability when CM substitutes SBM. Therefore, substitution of SBM by CM in diets based on corn silage and CM in corn- or grass silage-diets can be used successfully in high producing dairy cows.

2.
Sci China Life Sci ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38965141

ABSTRACT

Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.

3.
Int J Biol Macromol ; : 133555, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960240

ABSTRACT

Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.

4.
Plant Cell Environ ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963088

ABSTRACT

The regulation of legume-rhizobia symbiosis by microorganisms has obtained considerable interest in recent research, particularly in the common rhizobacteria Bacillus. However, few studies have provided detailed explanations regarding the regulatory mechanisms involved. Here, we investigated the effects of Bacillus (Bac.B) on Bradyrhizobium-soybean (Glycine max) symbiosis and elucidated the underlying ecological mechanisms. We found that two Bradyrhizobium strains (i.e. Bra.Q2 and Bra.D) isolated from nodules significantly promoted nitrogen (N) efficiency of soybean via facilitating nodule formation, thereby enhanced plant growth and yield. However, the intrusion of Bac.B caused a reverse shift in the synergistic efficiency of N2 fixation in the soybean-Bradyrhizobium symbiosis. Biofilm formation and naringenin may be importantin suppression of Bra.Q2 growth regulated by Bac.B. In addition, transcriptome and microbiome analyses revealed that Bra.Q2 and Bac.B might interact to regulateN transport and assimilation, thus influence the bacterial composition related to plant N nutrition in nodules. Also, the metabolisms of secondary metabolites and hormones associated with plant-microbe interaction and growth regulation were modulated by Bra.Q2 and Bac.B coinoculation. Collectively, we demonstrate that Bacillus negatively affects Bradyrhizobium-soybean symbiosis and modulate microbial interactions in the nodule. Our findings highlight a novel Bacillus-based regulation to improve N efficiency and sustainable agricultural development.

5.
J Biomed Mater Res A ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963322

ABSTRACT

Corneal blindness affects over 10 million patients worldwide. Due to the limited supply of donor corneas and frequent graft failure, bioengineered alternatives are crucial. To overcome drawbacks associated with corneal substitutes from synthetic biomaterials, fabrication from plant-derived biomaterials is a potential alternative. Herein, soy protein and glutenin in combination with different crosslinkers were evaluated for fabrication of corneal substitutes. Optical, mechanical, and biochemical properties of fabricated constructs and control rabbit corneas were evaluated in vitro. Soy protein crosslinked with peroxidase/H202 possessed transparency and mechanical properties comparable to controls, although their water content and biocompatibility were inferior. In contrast, soy protein crosslinked with tannic acid showed similar water content, tensile strength, and biocompatibility as rabbit corneas; however, these constructs displayed significantly lower transparency and higher strain to failure. Finally, glutenin cross-linked using formaldehyde showed excellent transparency, strain to failure, and biocompatibility, however; they exhibited significantly lower water content and tensile strength than controls. This study is the first to establish CIELAB color values for the rabbit cornea, allowing quantitative optical evaluation of tissue-engineered substitutes. Thus, a crosslinking strategy utilizing plant-derived proteins for fabrication of constructs with properties comparable to rabbit corneas is a promising direction for development of tissue-engineered corneal substitutes.

6.
Front Plant Sci ; 15: 1367781, 2024.
Article in English | MEDLINE | ID: mdl-38952844

ABSTRACT

The large water demand, insufficient deposition on the back of the leaf and the uneven distribution of droplets are the problems of traditional agricultural ground plant protection machinery, which leads to low agricultural control efficiency. Combined with the advantages of electrostatic spray technology and the characteristics of high working efficiency and low probability of droplets drift of ground sprayer, an inductive electrostatic boom spray system based on embedded electrode structure is designed and mounted on a large self-propelled boom sprayer for field testing. Based on the working characteristics of the fan nozzle and the analysis of the theory of charge, the inductive electrostatic spray device is designed. The performance of the device is tested and the rationality of the system design is verified by COMSOL numerical simulations, charge-to-mass ratio, and particle size distribution measurements. The spray deposition scanning software and the Box-Behnken experimental design method are used to analyze the spray droplet deposition rate and coverage density of the sprayer on the front and back of the target leaves. The results show that the embedded closed electrode structure designed in this paper can avoid the problem of electrode wetting, and the electric field generated by it is mainly concentrated in the spray liquid film area, and the intensity reaches 6~7 V/m. At the conventional application height (500 mm), the maximum charge-to-mass ratio is 2.91 mC/kg, and the average particle size is 168.22 µm, which is 12.87% lower than that of ordinary spray, when the spray pressure is 0.3 MPa and the electrostatic voltage is 12 kV. The results of field experiments show that the optimum combination of the working parameters with the spray speed is 8.40 m/s, the spray pressure is 0.35 MPa, the charging voltage is 11.50 kV, the amount of droplet deposition in the lower dorsal area of the blade is 1.44 µL·cm-2. This study can provide a certain basis for the application of electrostatic spray technology in ground sprayers.

7.
Plant Physiol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954501

ABSTRACT

The final phase in root nodule development is nodule senescence. The mechanism underlying the initiation of nodule senescence requires further elucidation. Here, we investigated the intrinsic signals governing soybean (Glycine max L. Merr.) nodule senescence, uncovering ethylene as a key signal in this intricate mechanism. Two AP2/ERF transcription factor genes, GmENS1 and GmENS2 (Ethylene-responsive transcription factors required for Nodule Senescence), exhibit heightened expression levels in both aged nodules and nodules treated with ethylene. Overexpression of either GmENS1 or GmENS2 accelerated senescence in soybean nodules, whereas the knockout or knockdown of both genes delayed senescence and enhanced nitrogenase activity. Furthermore, our findings indicated that GmENS1 and GmENS2 directly bind to the promoters of GmNAC039, GmNAC018, and GmNAC030, encoding three NAC transcription factors essential for activating soybean nodule senescence. Notably, the nodule senescence process mediated by GmENS1 or GmENS2 overexpression was suppressed in the soybean nac039/018/030 triple mutant compared with the wild-type control. These data indicate GmENS1 and GmENS2 as pivotal transcription factors mediating ethylene-induced nodule senescence through the direct activation of GmNAC039/GmNAC018/GmNAC030 expression in soybean.

8.
Mar Biotechnol (NY) ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958822

ABSTRACT

Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.

9.
aBIOTECH ; 5(2): 169-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974857

ABSTRACT

Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00173-5.

10.
aBIOTECH ; 5(2): 196-201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974864

ABSTRACT

Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two multi-drug-resistant protein 5 (MRP5) and three inositol pentose-phosphate kinases (IPK1). We characterized a variety of lines containing mutations on multiple IPK and MRP5 genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified  two lines carrying single mutations in ipk1b and ipk1c, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single GmIPK1 genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00158-4.

11.
aBIOTECH ; 5(2): 209-213, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974868

ABSTRACT

Current systems to screen for transgenic soybeans (Glycine max) involve laborious molecular assays or the expression of fluorescent markers that are difficult to see in soybean plants. Therefore, a visual system for early screening of transgenic plants would increase the efficiency of crop improvement by genome editing. The RUBY reporter system, which consists of three genes encoding betalain biosynthetic enzymes, leading to the accumulation of purple pigment in transgenic tissue, has been employed in some plants and dikaryon fungi. Here, we assessed the RUBY reporter for visual verification during soybean transformation. We show that RUBY can be expressed in soybean, allowing for visual confirmation of transgenic events without the need for specialized equipment. Plants with visible accumulation of purple pigment in any tissue were successfully transformed, confirming the accuracy of the RUBY system as a visual indicator. We also assessed the genetic stability of the transgene across generations, which can be performed very early, using the cotyledons of the progeny. Transgene-free seedlings have a distinct green color, facilitating the selection of genome-edited but transgene-free soybean seedlings for harvest. Using the RUBY system, we quickly identified a transgene-free Gmwaxy mutant in the T1 generation. This system thus provides an efficient and convenient tool for soybean genome editing.

12.
Front Plant Sci ; 15: 1274964, 2024.
Article in English | MEDLINE | ID: mdl-38974978

ABSTRACT

The role of melatonin and plant growth-promoting rhizobacteria (PGPR) in enhancing abiotic stress tolerance has been widely investigated. However, the mechanism underlying the interaction between melatonin and PGPR in drought stress tolerance is poorly understood. In this study, we investigated the role of Bacillus sp. strain IPR-4 co-inoculated with melatonin (IPR-4/MET) to ameliorate drought stress response in soybean. Initially, 16 random isolates were selected from a previously pooled collection of isolates from soil at plant physiology lab, and were screesn for plant growth promoting (PGP) traits and their survival rate polyethylene glycol (PEG6000) (5%, 10%, and 15%). Among these isolate Bacillus sp. strain IPR-4 were selected on base of its significant PGP traits such as the survival rate gradient concentrations of PEG6000 (5%, 10%, and 15%) compared to other isolates, and produced high levels of indole-3-acetic acid and organic acids, coupled with exopolysaccharide, siderophores, and phosphate solubilization under drought stress. The Bacillus sp. strain IPR-4 were then validated using 16S rRNA sequencing. To further investigate the growth-promoting ability of the Bacillus sp. IPR-4 and its potential interaction with MET, the bacterial inoculum (40 mL of 4.5 × 10-8 cells/mL) was applied alone or in combination with MET to soybean plants for 5 days. Then, pre-inoculated soybean plants were subjected to drought stress conditions for 9 days by withholding water under greenhouse conditions. Furthermore, when IPR-4/MET was applied to plants subjected to drought stress, a significant increase in plant height (33.3%) and biomass (fresh weight) was observed. Similarly, total chlorophyll content increased by 37.1%, whereas the activity of peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, and glutathione reductase increased by 38.4%, 34.14%, 76.8%, 69.8%, and 31.6%, respectively. Moreover, the hydrogen peroxide content and malondialdehyde decreased by 37.3% and 30% in drought-stressed plants treated with IPR-4 and melatonin. Regarding the 2,2-diphenyl-1-picrylhydrazyl activity and total phenolic content, shows 38% and 49.6% increase, respectively. Likewise, Bacillus-melatonin-treated plants enhanced the uptake of magnesium, calcium, and potassium by 31.2%, 50.7%, and 30.5%, respectively. Under the same conditions, the salicylic acid content increased by 29.1%, whereas a decreasing abscisic acid content (25.5%) was observed. The expression levels of GmNCED3, GmDREB2, and GmbZIP1 were recorded as the lowest. However, Bacillus-melatonin-treated plants recorded the highest expression levels (upregulated) of GmCYP707A1 and GmCYP707A2, GmPAL2.1, and GmERD1 in response to drought stress. In a nutshell, these data confirm that Bacillus sp. IPR-4 and melatonin co-inoculation has the highest plant growth-promoting efficiency under both normal and drought stress conditions. Bacillus sp. IPR-4/melatonin is therefore proposed as an effective plant growth regulator that optimizes nutrient uptake, modulates redox homeostasis, and enhances drought tolerance in soybean plants.

13.
Plant Cell Physiol ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978103

ABSTRACT

The HKT transporter plays an important role for plants in response to salt stress, but the transport property of the soybean HKT transporters at the molecular level is still unclear. Here, using Xenopus oocyte as a heterologous expression system and two-electrode voltage-clamp technique, we identified four HKT transporters, GmHKT1;1, GmHKT1;2, GmHKT1;3, and GmHKT1;4, which all belong to type I subfamily, but having distinct ion transport properties. While GmHKT1;1, GmHKT1;2 and GmHKT1;3 function as Na+ transporters, GmHKT1;1 is less selective against K+ than the two other transporters. Astonishingly, GmHKT1;4, which lacks transmembrane segments and has no ion permeability, is significantly expressed, and its gene expression pattern is different from the other three GmHKTs under salt stress. Interestingly, GmHKT1;4 reduced the Na+/K+ currents mediated by GmHKT1;1. Further study showed that the transport ability of GmHKT1;1 regulated by GmHKT1;4 was related to the structural differences in the first intracellular domain and the fourth repeat domain. Overall, we have identified one unique GmHKT member, GmHKT1;4, which modulates the Na+ and K+ transport ability of GmHKT1;1 via direct interaction. Thus, we have revealed a new type of HKTs interaction model for altering their ion transport properties.

14.
Meat Sci ; 216: 109589, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970934

ABSTRACT

High internal phase emulsions (HIPEs) are promising techniques that can replace saturated fat in food without reducing the product's texture, sensory attributes, water-holding capacity, and cooking loss. In the current investigation, 100% pork back fat was replaced by HIPEs formed with lentil protein isolate (LPI) in Bologna sausages. HIPEs were prepared by 25% LPI dispersion (2, 4, 6, and 8%, w/w) and 75% (w/w) soybean oil. HIPEs with higher LPI concentration (4, 6, and 8%, w/w) showed lower droplet size, firmer appearance, and better rheology behavior than 2% LPI. The concentrations LPI (2%, 4%, 6%, and 8%, w/w) led to increased moisture in sausages (FH2, FH4, FH6, and FH8, respectively) compared to the FC. These LPI levels resulted in sausage values for pressed juice similar to the FC and lower energy values than sausages with soybean oil (FO) and pork back fat (FC). Besides, these LPI concentrations (4%, 6%, and 8%, w/w) resulted in a lower oil oxidation level in sausages with HIPEs (FH4, FH6, and FH8, respectively) compared to the control sausage formulation with pork back fat (FC). Bologna sausages elaborated with HIPEs showed emulsion stability values higher than 97%, without significance difference between them. The texture and sensory properties of sausages made with HIPEs were comparable to those made with pork back fat. HIPEs may improve the oxidation stability of the Bologna sausages. These results highlight the effectiveness of HIPEs structured with lentil protein in successfully substituting pork back fat in Bologna sausages with a better nutritional appeal.

15.
Int J Biol Macromol ; 275(Pt 1): 133576, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950802

ABSTRACT

To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 µm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.

16.
Ultrason Sonochem ; 108: 106981, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38981339

ABSTRACT

This study examined the impacts of ultrasonic power (0, 150, 300, 450, 600, and 750 W) and ultrasonic durations (3, 6, 9, 12, and 15 min) on the physicochemical properties and microstructure of diacylglycerol (DAG)-loaded emulsions stabilized with soybean protein isolate (SPI) and sodium alginate (SA). The findings indicated that the smallest particle size, zeta potential, and contact angle for SPI-SA-DAG emulsions were respectively 5.58 µm, -49.85 mV, and 48.65°, achieved at an ultrasonic power of 450 W. The emulsification properties, loss modulus, storage modulus, and apparent viscosity of the emulsions were optimal at this power setting and at a duration of 9 min. Analytical techniques, including confocal laser scanning-, scanning electron-, and atomic force microscopy, revealed that ultrasonication significantly altered emulsion aggregation state, with the surface roughness (Rq) being minimized at 450 W. These results demonstrated that the stability of SPI-SA-DAG emulsions can be effectively enhanced by an appropriate ultrasonic treatment at 450 W for 9 min. This research provides theoretical support for the broad application of sonication techniques in the food industry.

17.
Plant Dis ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982674

ABSTRACT

A survey of Diaporthe/Phomopsis Complex (DPC) species was carried out on 479 asymptomatic soybean (Glycine max (L.) Merrill) seed samples collected from commercial soybean fields in the states of Santa Catarina (20 counties) and Rio Grande do Sul (41 counties), in the 2020/21 (n=186), 2021/22 (n=138) and 2022/23 (n=155) seasons from 120 cultivars. The seeds were provided by seed producers who collected according to the sampling standard of the Ministry of Agriculture, Livestock and Food Supply. From each sample received, 200 symptomless seeds were randomly sorted out. The seeds were surface disinfected by immersion in a sodium hypochlorite solution (1%) for two minutes and placed on Potato Dextrose Agar (PDA). The plates were incubated for 7 days at 23°C with a photoperiod of 12-h. The average prevalence of 73.7% of DPC-infected seeds. Colonies were isolated by transferring mycelial tips to PDA and incubating for 14 days at 25ºC in a 12-h photoperiod. One colony (isolate MEMR0500) had morphological characteristics similar to those reported in Lopez-Cardona (2021). This isolate had a floccose, dense colony ranging from grayish beige to brown with greenish regions and black globose pycnidia (3 to 4 pycnidia/cm²). Alpha-conidia, 5.1 to 7.0 µm x 1.5 to 2.8 µm, were observed after 30 days and were hyaline, aseptate and fusiform (Figure S1). No beta-conidia were observed. Soybean plants of cultivars BMX Cromo IPRO, BMX Zeus IPRO, BRS 5804 RR, FPS 1867 IPRO and NEO 750 IPRO were tested for pathogenicity using the toothpick inoculation method (Siviero and Menten 1995). Non-colonized toothpicks served as a negative control. Plants were incubated for four days at 25°C and 90% relative humidity. Elongated 1.0 to 2.5 cm x 0.5 to 0.9 cm lesions gray-brown/reddish-brown with a depressed center were observed in all inoculated cultivars. The fungus was reisolated and the characteristics of the colonies were identical to those previously isolated. For molecular characterization, DNA was extracted from the mycelia using the CTAB method (Doyle and Doyle 1990). End-point PCR was performed using GoTaq® Flexi DNA Polymerase (Promega, USA) and primer pairs, ITS-4F/ITS-5, T2/Bt2b and EF1-728F/EF1-986R to amplify the internal transcribed spacer (ITS) (Costamilan et al. 2008), ß-tubulin (TUB2) (Glass and Donaldson 1995), and translation elongation factor 1-α (TEF1) (Carbone and Kohn 1999) genes, respectively. The amplified fragments were sequenced and submitted to blast search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) with the sequences available in GenBank. The fragment from ITS (accession number OR912979) showed 99.8% (549/582 bp) identity with Diaporthe ueckeri Udayanga & Castl. [as 'ueckerae'] [syn. D. miriciae R.G. Shivas, S.M. Thomps. & Y.P. Tan] isolate FAU656 (Ac. N. KJ590726). The sequence of TEF (Ac. N. PP372869) showed 99.7% (339/355 bp) identity with D. ueckeri FAU656 (Ac. N. KJ590747), and of TUB (Ac. N. PP372870) showed 98.9% (436/536 bp) identity with D. ueckeri FAU656 (Ac. N. KJ610881). A phylogenetic tree with amplified sequences of each gene and the corresponding representative sequences from the DPC was constructed in MEGA X (Kumar et al. 2018). The MEMR0500 isolate was clustered only with the D. ueckeri clade, confirming the identity of the fungus (Figure S2). In Brazil, this is the first report of the association of this pathogen with soybean seeds. In other countries, this pathogen has been identified as the causal agent of stem canker (Mena et al. 2020; Lopez-Cardona et al. 2021). Further research is needed to analyze the risk of this seed-associated pathogen.

18.
Food Chem ; 458: 140187, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38950510

ABSTRACT

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.

19.
Data Brief ; 55: 110545, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38952954

ABSTRACT

This dataset involves a collection of soybean market news through web scraping from a Brazilian website. The news articles gathered span from January 2015 to June 2023 and have undergone a labeling process to categorize them as relevant or non-relevant. The news labeling process was conducted under the guidance of an agricultural economics expert, who collaborated with a group of nine individuals. Ten parameters were considered to assist participants in the labeling process. The dataset comprises approximately 11,000 news articles and serves as a valuable resource for researchers interested in exploring trends in the soybean market. Importantly, this dataset can be utilized for tasks such as classification and natural language processing. It provides insights into labeled soybean market news and supports open science initiatives, facilitating further analysis within the research community.

20.
Front Plant Sci ; 15: 1375194, 2024.
Article in English | MEDLINE | ID: mdl-38947945

ABSTRACT

Introduction: Maize/soybean intercropping is a common cropping practice in Chinese agriculture, known to boost crop yield and enhance soil fertility. However, the role of below-ground interactions, particularly root exudates, in maintaining intercropping advantages in soybean/maize intercropping systems remains unclear. Methods: This study aimed to investigate the differences in root exudates between intercropping and monocropping systems through two pot experiments using metabolomics methods. Multiple omics analyses were conducted to explore correlations between differential metabolites and the community of Arbuscular Mycorrhizal Fungi (AMF), shedding light on the mechanisms underlying the dominance of intercropping from the perspective of root exudates-soil microorganism interactions. Results and discussion: The study revealed that intercropping significantly increased the types and contents of root exudates, lowered soil pH, increased the availability of nutrients like available nitrogen (AN) and available phosphorus (AP), and enhanced AMF colonization, resulting in improving the community composition of AMF. Besides, root exudates in intercropping systems differed significantly from those in monocropping, with 41 and 39 differential metabolites identified in the root exudates of soybean/maize, predominantly amino acids and organic acids. The total amount of amino acids in the root exudates of soybean intercropping was 3.61 times higher than in monocropping. Additionally, the addition of root exudates significantly improved the growth of soybean/maize and AMF colonization, with the mycorrhizal colonization rate in intercropping increased by 105.99% and 111.18% compared to monocropping, respectively. The identified metabolic pathways associated with root exudates were closely linked to plant growth, soil fertility improvement, and the formation of AMF. Correlation analysis revealed a significant relationship (P < 0.05) between certain metabolites such as tartaric acid, oxalic acid, malic acid, aspartic acid, alanine, and the AMF community. Notably, the photosynthetic carbon fixation pathway involving aspartic acid showed a strong association with the function of Glomus_f_Glomerace, the dominant genus of AMF. A combined analysis of metabolomics and high throughput sequencing revealed that the root exudates of soybean/maize intercropping have direct or indirect connections with AMF and soil nutrients. Conclusion: This suggests that the increased root exudates of the soybean/maize intercropping system mediate an improvement in AMF community composition, thereby influencing soil fertility and maintaining the advantage of intercropping.

SELECTION OF CITATIONS
SEARCH DETAIL
...