Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 551
Filter
1.
Int J Biol Macromol ; 275(Pt 1): 133576, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38950802

ABSTRACT

To optimize the stability of oil-based inks and ensure their wide application in freshness indication, new natural indicator inks were prepared using a stable oil-in-water structure. This study selected natural Lycium ruthenicum anthocyanin as the dye and glucose as the pigment carrier. Soybean oil was introduced as a linker and xanthan gum as a thickener, and an oil-in-water ink with the function of freshness indication was successfully developed. In ensuring the safety of ink labels for use on food packaging, particular attention is paid to the origin and properties of the materials used. All ingredients are of food-grade or bio-friendly provenance, thereby ensuring the safety of the product when in direct contact with food. We measured the viscosity, particle size and fineness of the ink for micro characterization and evaluated its macro printing performance by its printing effect on A4 paper. According to the experimental results, when the water-oil ratio of the ink is 10:5, the average particle size of the emulsion system is 822.83 nm, and the fineness reaches 5 µm. These values are relatively low, which indicates that the stability of the ink system is high at this time, and the ink shows excellent rheological and printing characteristics. With this water-to-oil ratio, the ink can show the best results when printed on A4 paper, clearly displaying image details. In addition, in fresh pork applications, inks with a 10: 5 water-to-oil ratio provide an accurate and highly sensitive indication of the freshness of pork. When the freshness of the pork changes, the ink color responds promptly. This high sensitivity makes the ink ideal for use as a food freshness indication tool, providing consumers with an intuitive and reliable reference for pork freshness. As a further innovation, combining this ink-printed label with a WeChat app not only allows consumers to know the freshness of the food in real-time but also tracks the supply chain information of the food, providing a more comprehensive application prospect for freshness-indicating products.

2.
Food Chem ; 458: 140187, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38950510

ABSTRACT

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.

3.
Int J Biol Macromol ; : 133555, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38960240

ABSTRACT

Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.

4.
Meat Sci ; 216: 109589, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38970934

ABSTRACT

High internal phase emulsions (HIPEs) are promising techniques that can replace saturated fat in food without reducing the product's texture, sensory attributes, water-holding capacity, and cooking loss. In the current investigation, 100% pork back fat was replaced by HIPEs formed with lentil protein isolate (LPI) in Bologna sausages. HIPEs were prepared by 25% LPI dispersion (2, 4, 6, and 8%, w/w) and 75% (w/w) soybean oil. HIPEs with higher LPI concentration (4, 6, and 8%, w/w) showed lower droplet size, firmer appearance, and better rheology behavior than 2% LPI. The concentrations LPI (2%, 4%, 6%, and 8%, w/w) led to increased moisture in sausages (FH2, FH4, FH6, and FH8, respectively) compared to the FC. These LPI levels resulted in sausage values for pressed juice similar to the FC and lower energy values than sausages with soybean oil (FO) and pork back fat (FC). Besides, these LPI concentrations (4%, 6%, and 8%, w/w) resulted in a lower oil oxidation level in sausages with HIPEs (FH4, FH6, and FH8, respectively) compared to the control sausage formulation with pork back fat (FC). Bologna sausages elaborated with HIPEs showed emulsion stability values higher than 97%, without significance difference between them. The texture and sensory properties of sausages made with HIPEs were comparable to those made with pork back fat. HIPEs may improve the oxidation stability of the Bologna sausages. These results highlight the effectiveness of HIPEs structured with lentil protein in successfully substituting pork back fat in Bologna sausages with a better nutritional appeal.

5.
Polymers (Basel) ; 16(11)2024 May 27.
Article in English | MEDLINE | ID: mdl-38891461

ABSTRACT

Only 0.1% of polyurethanes available on the market are from renewable sources. With increasing concern about climate change, the substitution of monomers derived from petrochemical sources and the application of eco-friendly synthesis processes is crucial for the development of biomaterials. Therefore, polyhydroxyurethanes have been utilized, as their synthesis route allows for the carbonation of vegetable oils with carbon dioxide and the substitution of isocyanates known for their high toxicity, carcinogenicity, and petrochemical origin. In this study, polyhydroxyurethanes were obtained from carbonated soybean oil in combination with two diamines, one that is aliphatic (1,4-butadiamine (putrescine)) and another that is cycloaliphatic (1,3-cyclohexanobis(methylamine)). Four polyhydroxyurethanes were obtained, showing stability in hydrolytic and oxidative media, thermal stability above 200 °C, tensile strength between 0.9 and 1.1 MPa, an elongation at break between 81 and 222%, a water absorption rate up 102%, and contact angles between 63.70 and 101.39. New formulations of bio-based NIPHUs can be developed with the inclusion of a cycloaliphatic diamine (CHM) for the improvement of mechanical properties, which represents a more sustainable process for obtaining NIPHUs with the physicochemical, mechanical, and thermal properties required for the preparation of wound dressings.

6.
Molecules ; 29(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38893416

ABSTRACT

Being a bio-sourced and biodegradable polymer, polylactic acid (PLA) has been considered as one of the most promising substitutes for petroleum-based plastics. However, its wide application is greatly limited by its very poor ductility, which has driven PLA-toughening modifications to be a topic of increasing research interest in the past decade. Toughening enhancement is achieved often at the cost of a large sacrifice in strength, with the toughness-strength trade-off having remained as one of the main bottlenecks of PLA modification. In the present study, a bio-elastomeric material of epoxidized soybean oil (ESO) crosslinked with sebacic acid (SA) and enhanced by graphene oxide (GO) nanoparticles (NPs) was employed to toughen PLA with the purpose of simultaneously preserving strength and achieving additional functions. The even dispersion of GO NPs in ESO was aided by ultrasonication and guaranteed during the following ESO-SA crosslinking with GO participating in the carboxyl-epoxy reaction with both ESO and SA, resulting in a nanoparticle-enhanced and dynamically crosslinked elastomer (GESO) via a ß-hydroxy ester. GESO was then melt-blended with PLA, with the interfacial reaction between ESO and PLA offering good compatibility. The blend morphology, and thermal and mechanical properties, etc., were evaluated and GESO was found to significantly toughen PLA while preserving its strength, with the GO loading optimized at ~0.67 wt%, which gave an elongation at break of ~274.5% and impact strength of ~10.2 kJ/m2, being 31 times and 2.5 times higher than pure PLA, respectively. Moreover, thanks to the presence of dynamic crosslinks and GO NPs, the PLA-GESO blends exhibited excellent shape memory effect and antistatic properties.

7.
J Dairy Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876219

ABSTRACT

Nutrition and physiological state affect hepatic metabolism. Our objective was to determine if feeding flaxseed oil (∼50% C18:3n-3 cis), high oleic soybean oil (∼70% C18:1 cis-9), or milk fat (∼50% C16:0) alters hepatic expression of PC, PCK1, and PCK2 and the flow of carbons from propionate and pyruvate into the TCA cycle in preruminating calves. Male Holstein calves (n = 40) were assigned to a diet of skim milk with either: 3% milk fat (MF; n = 8), 3% flaxseed oil (Flax; n = 8), 3% high oleic soybean oil (HOSO; n = 8), 1.5% MF + 1.5% high oleic soybean oil (MF-HOSO; n = 8), or 1.5% MF + 1.5% flaxseed oil (MF-Flax; n = 8) from d 14 to d 21 postnatal. At d 21 postnatal, a liver biopsy was taken for gene expression and metabolic flux analysis. Liver explants were incubated in [U-13C] propionate and [U-13C] pyruvate to trace carbon flux through TCA cycle intermediates or with [U-14C] lactate, [1-14C] palmitic acid, or [2-14C] propionate to quantify substrate oxidation to CO2 and acid soluble products. Compared with other treatments, plasma C18:3n-3 cis was 10 times higher and C18:1 cis-9 was 3 times lower in both flax (Flax and MF-Flax) treatments. PC, PCK1, and PCK2 expression and flux of [U-13C] pyruvate as well as [U-13C] propionate were not different between treatments. PC expression was negatively correlated with the enrichment of citrate M+5 and malate M+3, and PCK2 was negatively correlated with citrate M+5, suggesting that when expression of these enzymes is increased, carbon from pyruvate enters the TCA cycle via PC mediated carboxylation, and then OAA is converted to phosphoenolpyruvate via PCK2. Acid soluble product formation and PC expression were reduced in HOSO (MF-HOSO and HOSO) treatments compared with flax (MF-Flax and Flax), indicating that fatty acids regulate PC expression and carbon flux, but that fatty acid flux control points are not connected to PC, PCK1, or PCK2. In conclusion, fatty acids regulate hepatic expression of PC, PCK1, and PCK2, and carbon flux, but the point of control is distinct.

8.
Polymers (Basel) ; 16(12)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38931966

ABSTRACT

The development of eco-friendly, mechanically stable, and biocompatible materials for medical packaging has gained significant attention in recent years. Halloysite nanotubes (HNTs) have emerged as a promising nanomaterial due to their unique tubular structure, high aspect ratio, and biocompatibility. We aim to develop a novel soybean oil-based thermoset bio-resin incorporating HNTs and to characterize its physical and functional properties for medical packaging. Soybean oil was epoxidized using an eco-friendly method and used as a precursor for preparing the thermoset resin (ESOR). Different amounts of HNTs (0.25, 0.50, and 1.0 wt.%) were used to prepare the ESOR/HNTs blends. Various characteristics such as transparency, tensile strength, thermal resistance, and water absorption were investigated. While incorporating HNTs improved the tensile strength and thermal properties of the ESOR, it noticeably reduced its transparency at the 1.0 wt.% level. Therefore, HNTs were modified using sodium hydroxide and (3-Aminopropyl) triethoxysilane (APTES) and ESOR/HNTs blends were made using 1.0 wt.% of modified HNTs. It was shown that modifying HNTs using NaOH improved the transparency and mechanical properties of prepared blends compared to those with the same amount of unmodified HNTs. However, modifying using (3-Aminopropyl) triethoxysilane (APTES) decreased the transparency but improved the water absorption of prepared resins. This study provides valuable insights into the design of HNT-based ESOR blends as a sustainable material for medical packaging, contributing to the advancement of eco-friendly packaging solutions in the healthcare industry.

9.
Food Chem ; 458: 140219, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38943966

ABSTRACT

Diacylglycerol (DAG) has garnered attention for its safe and nutritious qualities, and its utilization in emulsion systems to encapsulate hydrophobic bioactives is anticipated to enhance their bioaccessibility. Thus, this study aimed to evaluate the influence of DAG oil as a carrier on the stability and digestive characteristics of nanostructured lipid carriers (NLCs) containing lycopene (LYC). The results indicated that DAG oil demonstrated superior storage and heating stability in comparison to triacylglycerol (TAG) oil. Furthermore, NLCs formulated with DAG oil exhibited a faster rate of lipolysis (>76.3%) and higher loading capacity (1.48%), resulting in an approximate 11% enhancement in the bioaccessibility of LYC (reaching up to 31.4%). DAG oils show considerable potential for enhancing and prolonging the properties and bioactivity of NLC carriers, thereby boosting bioaccessibility. The incorporation of DAG oil in food systems holds promise for enriching their functionality over traditional TAG oil.

10.
Br Poult Sci ; : 1-6, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828538

ABSTRACT

1. An experiment was conducted to determine the effect of the source of fat (soybean oil or tallow) on the ileal endogenous amino acid (EAA) losses in broilers.2. Three nitrogen (N)-free diets; a control diet with no added fat and test diets with 60 g/kg of either soybean oil or tallow were formulated. Titanium dioxide (5 g/kg) was added to all diets as an indigestible marker. Each diet was assigned to six replicate cages (eight birds per cage) from d 18 to 21 post-hatch. On d 21, the digesta were collected from the lower half of the ileum.3. The endogenous losses of nitrogen and amino acids (AA) were lower (p = 0.08; p = 0.001) in broilers fed diets with soybean oil or tallow, respectively, compared to those fed the diet with no fat. Source of fat had no influence (p > 0.05) on EAA losses.4. The most abundant AA in the ileal endogenous protein was glutamic acid, followed by aspartic acid, threonine, leucine, serine, valine and proline. In general, the concentrations of AA in the endogenous protein were lower (p < 0.05) with added fat. The exceptions were methionine, cysteine, proline and serine, which were unaffected. The effect of fat source on the AA contents of endogenous protein were inconsistent and differed depending on the AA.5. The inclusion of fats decreased EAA losses which implied they have beneficial effects beyond direct energy contribution. It can be proposed that the reduction of EAA flow may be an additional mechanism contributing to the extra-caloric effect of dietary fats.

11.
Microorganisms ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38792821

ABSTRACT

The Cunninghamella genus has been utilized for the production of PUFA-rich lipids. Therefore, we investigate the impact of plant oil supplementation in the culture medium (soybean oil, rice bran oil, and perilla oil), selected based on their different fatty acid predominant, on lipid production and fatty acid composition in C. elegans (TISTR 3370). All oils significantly boosted fungal growth, each influencing distinct patterns of lipid accumulation within the cells. The cells exhibited distinct patterns of lipid accumulation, forming intracellular lipid bodies, influenced by the different oils. Monounsaturated fatty acids (MUFAs) were found to be the most abundant, followed by polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs) in the fungal lipid cultures. Oleic acid was identified as the primary MUFA, while palmitic acid was the predominant SFA in perilla oil supplements. Remarkably, perilla oil supplement provided the highest total lipid production with arachidonic acid being exclusively detected. The percentage of PUFAs ranged from 12% in the control to 33% in soybean oil, 32% in rice bran oil, and 61% in perilla oil supplements. These findings offer valuable opportunities for advancing biotechnological applications in lipid production and customization, with implications for food and nutrition as well as pharmaceuticals and cosmetics.

12.
Membranes (Basel) ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38786938

ABSTRACT

Edible film biopolymers are gaining attention to tackle problems of plastic waste and food safety to alleviate environmental problems associated with plastic products in food packaging. In this study, caseinate-carboxymethyl chitosan (CA-CMCH) composite films were made with the incorporation of soybean oil (SO) using a casting technique. The influence of different soybean oil concentrations at 0, 0.5, and 1% (w/w) on physical, mechanical, barrier, and surface characteristics of films composed of caseinate-carboxymethyl chitosan (CA-CMCH) was evaluated. The brightest film (L* value of 95.95 ± 0.30) was obtained with the edible film made from the control group of samples with sodium caseinate (NaCA-100; 100% NaCA). The results also indicated that samples with 1% SO in NaCA-75 and CaCA-75 had lower water vapor permeability (WVP), while those with NaCA-50 and CaCA-50 showed higher values of WVP. For mechanical properties, this study found that incorporating soybean oil into the caseinate-carboxymethyl (CA-CMCH) composite films led to an enhancement of both tensile strength and elongation at break. The morphological structures, determined using SEM, of control and composite films showed compact and homogenous surfaces. Overall, the addition of soybean oil contributed to the improvement of the functional properties of the edible films, offering potential solutions to the environmental issues associated with plastic packaging and enhancing the safety and performance of food packaging.

13.
Food Res Int ; 186: 114340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729695

ABSTRACT

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Subject(s)
Ethylenes , Food Packaging , Fruit , Polyurethanes , Soybean Oil , Zein , Ethylenes/chemistry , Polyurethanes/chemistry , Food Packaging/methods , Porosity , Fruit/chemistry , Soybean Oil/chemistry , Zein/chemistry , Adsorption , Polymers/chemistry , Solanum lycopersicum/chemistry , Hydrophobic and Hydrophilic Interactions
14.
Food Chem ; 453: 139656, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788646

ABSTRACT

Oxidative stability is a key quality characteristic of edible oils, and the oil's antioxidant capacity decreases during the deodorization stage. This study explores the changes in radical formation, molecular structure, oxidative characteristics, fatty acids, and main bioactive compounds in soybean oil during deodorization. The lag phase decreased, whereas the total amount of spins of free radicals increased as the deodorization time increased from 90 to 150 min. The total amount of spins and percentage of alkyl radicals varied dramatically under different times and temperatures (220 âˆ¼ 260 ℃). Results showed that identifying and quantifying the formed radicals can provide useful information for monitoring and controlling oil oxidation in vegetable oil refining systems. Therefore, to control early oxidation events, maximize refined oil product yield, and reduce energy consumption in the refining plant, the priority should be to minimize temperature during the oil refining process and then shorten the deodorization time.


Subject(s)
Fatty Acids , Oxidation-Reduction , Soybean Oil , Soybean Oil/chemistry , Fatty Acids/chemistry , Free Radicals/chemistry , Lipids/chemistry , Antioxidants/chemistry
15.
Int J Biol Macromol ; 268(Pt 1): 131692, 2024 May.
Article in English | MEDLINE | ID: mdl-38702247

ABSTRACT

Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.


Subject(s)
Antioxidants , Berberis , Chitosan , Nanofibers , Oxidation-Reduction , Soybean Oil , Chitosan/chemistry , Nanofibers/chemistry , Soybean Oil/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Berberis/chemistry , Polyvinyl Alcohol/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
Polymers (Basel) ; 16(9)2024 May 02.
Article in English | MEDLINE | ID: mdl-38732741

ABSTRACT

The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) and tetrahydrofurfuryl acrylate (THFA). Then, two fillers derived from different industrial wastes, corn (GTF) and wine (WPL-CF) by-products, were added to the AESO-based formulations to develop polymer composites with improved properties. The printability by LCD of the photocurable formulations was widely studied. Bio-based objects with different geometries were realized, showing printing accuracy, layer adhesion, and accurate details. The thermo-mechanical and mechanical properties of the 3D-printed composites were tested by TGA, DMA, and tensile tests. The results revealed that the agro-wastes' addition led to a remarkable increase in the elastic modulus, tensile strength, and glass transition temperature in the glassy state for the systems containing IBOMA and for flexible structures in the rubbery region for systems containing THFA. AESO-based polymers demonstrated tunable properties, varying from rigid to flexible, in the presence of different diluents and biofillers. This finding paves the way for the use of this kind of composite in applications, such as biomedical for the realization of prostheses.

17.
Poult Sci ; 103(7): 103746, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678974

ABSTRACT

Polyunsaturated fatty acids (PUFA), including n-6 and n-3 fatty acids, are essential for enhancing the performance and health of poultry. Avian species lack desaturase enzymes for endogenous synthesis of n-6 and n-3 fatty acids. This work aimed to determine the impacts of including soybean oil (SO) and linseed oil (LO) in quail diets on growth, lipid profile, hepatic and renal functions, immunity, and antioxidant status. A total of 350 Japanese quail chicks (1-wk-old) were randomly arranged into 7 dietary treatment groups. Seven isocaloric and isonitrogenous experimental basal diets were formed based on the nutritional requirements of growing Japanese quail. Group 1, the control, received a basal with no oils, while groups 2 to 7 received a basal diet containing either 1% SO, 1.5% SO, 2% SO, 1% LO, 1.5% LO, or 2% LO, respectively. Quail groups that consumed diets containing LO at all levels showed significantly greater live body weight (LBW) at 5th wk of age than other experimental groups. The dietary incorporation of 1.5 or 2% SO or LO at all levels yielded significant improvements in body weight gain (BWG) and feed conversion ratio (FCR) through 3 to 5 and 1 to 5 wk of age. Different dietary oil sources and levels have no significant impacts on feed intake (FI) and carcass yield parameters. Lipid profile parameters were improved by adding SO and LO in quail diets, with LO having a higher effect than SO. The hepatic and renal functionality were improved by adding SO and LO in quail diets. The lowest uric acid (UA) bloodstream concentrations were recorded in the quail group fed a diet with 2% LO. Values of Gamma globulins (G-GLO) and immunoglobulins (G, M, and A) were increased by adding SO or LO to quail diets. Blood levels of MDA and TAC were improved significantly by including LO in quail diets. The activity of the superoxide dismutase (SOD) enzyme was significantly increased by adding SO or LO to quail diets. Generally, adding SO or LO to growing quail diets up to 2% could yield favorable effects on growth performance, blood lipids, hepatic and renal functions, immunity, and antioxidant status; however, LO seems to have better effects than SO.


Subject(s)
Animal Feed , Coturnix , Diet , Dietary Supplements , Linseed Oil , Soybean Oil , Animals , Linseed Oil/administration & dosage , Animal Feed/analysis , Diet/veterinary , Coturnix/growth & development , Coturnix/physiology , Soybean Oil/administration & dosage , Soybean Oil/metabolism , Dietary Supplements/analysis , Random Allocation , Animal Nutritional Physiological Phenomena/drug effects , Male , Dose-Response Relationship, Drug , Health Status
18.
Nat Prod Res ; : 1-8, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38597177

ABSTRACT

Kaempferol (KPF) can be used as a natural antioxidant and food additive in food processing. However, the poor solubility of KPF limited its bioavailability and application. In order to improve the solubility of KPF, kaempferol composite carrier solid dispersion (KPF-CC-SD) was prepared and the process was optimised. When the ratio of KPF: CA (citric acid): Soluplus reached 1:4:6, the dissolution rate was the highest, and the sample was stable over 12 weeks. The characterisation results indicated that KPF-CC-SD exists in an amorphous form. Peroxidation value and acid value of soybean oil showed that the preservation effect of KPF-CC-SD was better than that of KPF, and the inhibition effect of KPF-CC-SD on acid value was better than that of butylated hydroxytoluene. In conclusion, KPF-CC-SD can change the solubility, crystal form and spatial stability of KPF through the carrier, which has a great application prospect in the field of food preservation.

19.
Pediatr Surg Int ; 40(1): 97, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581576

ABSTRACT

PURPOSE: The effect of different types of lipid emulsion may guide therapy of patients with intestinal failure (IF) to limit morbidity such as intestinal failure-associated liver disease (IFALD). METHODS: A retrospective chart review of pediatric patients with IF who received soybean oil lipid emulsion (SL) or mixed oil lipid emulsion (ML) was performed. Data over 1 year were collected. RESULTS: Forty-five patients received SL and 34 received ML. There were no differences in the incidence (82 versus 74%, P = 0.35) or resolution (86 versus 92%, P = 0.5) of IFALD between the cohorts. The median dose of ML was higher compared to SL (2 versus 1 g/kg/day, P < 0.001). If resolved, IFALD resolved rapidly in the ML cohort compared to the SL cohort (67 versus 37 days, P = 0.01). Weight gain was higher in the ML compared to the SL cohort at resolution of IFALD or 1 year from diagnosis of IF (P = 0.009). CONCLUSION: The administration of ML did not alter the incidence or resolution of IFALD compared to SL in pediatric IF. There was rapid resolution of IFALD and enhanced weight gain in the ML cohort compared to SL in pediatric IF.


Subject(s)
Intestinal Diseases , Intestinal Failure , Liver Diseases , Liver Failure , Humans , Child , Fat Emulsions, Intravenous/therapeutic use , Parenteral Nutrition , Retrospective Studies , Intestinal Diseases/drug therapy , Liver Diseases/complications , Liver Failure/complications , Soybean Oil/therapeutic use , Weight Gain , Fish Oils
20.
Polymers (Basel) ; 16(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675090

ABSTRACT

This study presents the synthesis and characterization of non-isocyanate polyurethanes (NIPU) derived from the copolymerization of cyclic-carbonated soybean oil (CSBO) and cyclic carbonate (CC)-terminated poly(ether carbonate) (RCC). Using a double-metal cyanide catalyst, poly(ether carbonate) polyol was first synthesized through the copolymerization of carbon dioxide and propylene oxide. The terminal hydroxyl group was then subjected to a substitution reaction with a five-membered CC group using glycerol-1,2-carbonate and oxalyl chloride, yielding RCC. Attempts to prepare NIPU solely using RCC and diamine were unsuccessful, possibly due to the low CC functionality and the aminolysis of RCC's linear carbonate repeating units. However, when combined with CSBO, solid NIPUs were successfully obtained, exhibiting good thermal stability along with enhanced mechanical properties compared to conventional CSBO-based NIPU formulations. Overall, this study underscores the potential of leveraging renewable resources and carbon capture technologies to develop sustainable NIPUs with tailored properties, thereby expanding their range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...