Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 448
Filter
1.
Cureus ; 16(5): e61270, 2024 May.
Article in English | MEDLINE | ID: mdl-38947613

ABSTRACT

BACKGROUND: With COVID-19 becoming a common disease, primary care facilities such as clinics are required to efficiently triage patients at high risk of severe illness within the constraints of limited medical resources. However, existing COVID-19 severity risk scores require detailed medical history assessments, such as evaluating the severity of pneumonia via chest CT and accounting for past and comorbid conditions. Therefore, they may not be suitable for practical use in clinical settings with limited medical resources, including personnel and equipment. PURPOSE:  The goal is to identify key variables that predict the need for oxygen therapy in COVID-19 patients and develop a simplified clinical risk score based solely on vital signs to predict oxygen requirements. PATIENTS AND METHODS: A retrospective observational study of 584 outpatients with COVID-19 confirmed by polymerase chain reaction test visited Sasebo Chuo Hospital between April 28, 2022, and August 18, 2022. Analyses were conducted after adjustment for background factors of age and sex with propensity score matching. We used the Fisher test for nominal variables and the Kruskal-Wallis test for continuous variables. RESULTS: After adjusting for age and sex, several factors significantly correlated with the need for oxygen within seven days including body temperature (p < 0.001), respiratory rate (p = 0.007), SpO2 (p < 0.001), and the detection of pneumonia on CT scans (p = 0.032). The area under the receiver-operating characteristic curve for the risk score based on these vital signs and CT was 0.947 (95% confidence interval: 0.911-0.982). The risk score based solely on vital signs was 0.937 (0.900-0.974), demonstrating the ability to predict oxygen administration with no significant differences. CONCLUSIONS: Body temperature, advanced age, increased respiratory rate, decreased SpO2, and the presence of pneumonia on CT scans were significant predictors of oxygen need within seven days among the study participants. The risk score, based solely on vital signs, effectively and simply assesses the likelihood of requiring oxygen therapy within seven days with high accuracy. The risk score, which utilizes only age and vital signs and does not require a detailed patient history or CT scans, could streamline hospital referral processes for admissions.

2.
Cureus ; 16(6): e62616, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39027799

ABSTRACT

Background Since bilateral nasal packing entails nasal and airway obstruction, this practice consequently leads to oral breathing. The resulting hypoxemia may then negatively impact vital signs, including blood pressure (BP), blood oxygen saturation (SpO2), and heart rate (HR). These systemic effects have a detrimental effect on patients. Objective The objective of this study is to observe the effects of bilateral nasal packing on patients' post-operative vital signs. Materials and methods This prospective study was conducted in the department of otolaryngology - head and neck surgery over a six-month period. The study included 83 post-operative patients with nasal surgery, in which bilateral merocele nasal packing was performed. The patients' pulse oximetry, systolic and diastolic BP, and HR were recorded four times the night before and after surgery. A statistical analysis was performed, and the mean values, standard deviation, and range were calculated. A paired sample t-test was also applied. The results are presented in figures and tables. Results The mean age of the participants was 27.65 ± 10.72 years, and 56 (67.5%) were male. Septoplasty was the most common surgery performed, with 63 participants having undergone this procedure (75.9%). When the pre-operative mean values of systolic and diastolic BP, SpO2, and HR were compared with the post-operative mean values, when a bilateral nasal pack was in place, a significant increase was found in all, with a p-value of <0.001 in each. Conclusion Bilateral nasal packing affects patients' vital signs by significantly increasing diastolic and systolic BP and decreasing SpO2. The HR is also significantly increased when packing is in place.

3.
Biomed Eng Online ; 23(1): 63, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978075

ABSTRACT

BACKGROUND: Sleep apnea syndrome, characterized by recurrent cessation (apnea) or reduction (hypopnea) of breathing during sleep, is a major risk factor for postoperative respiratory depression. Challenges in sleep apnea assessment have led to the proposal of alternative metrics derived from oxyhemoglobin saturation (SpO2), such as oxygen desaturation index (ODI) and percentage of cumulative sleep time spent with SpO2 below 90% (CT90), as predictors of postoperative respiratory depression. However, their performance has been limited with area under the curve of 0.60 for ODI and 0.59 for CT90. Our objective was to propose novel features from preoperative overnight SpO2 which are correlated with sleep apnea severity and predictive of postoperative respiratory depression. METHODS: Preoperative SpO2 signals from 235 surgical patients were retrospectively analyzed to derive seven features to characterize the sleep apnea severity. The features included entropy and standard deviation of SpO2 signal; below average burden characterizing the area under the average SpO2; average, standard deviation, and entropy of desaturation burdens; and overall nocturnal desaturation burden. The association between the extracted features and sleep apnea severity was assessed using Pearson correlation analysis. Logistic regression was employed to evaluate the predictive performance of the features in identifying postoperative respiratory depression. RESULTS: Our findings indicated a similar performance of the proposed features to the conventional apnea-hypopnea index (AHI) for assessing sleep apnea severity, with average area under the curve ranging from 0.77 to 0.81. Notably, entropy and standard deviation of overnight SpO2 signal and below average burden showed comparable predictive capability to AHI but with minimal computational requirements and individuals' burden, making them promising for screening purposes. Our sex-based analysis revealed that compared to entropy and standard deviation, below average burden exhibited higher sensitivity in detecting respiratory depression in women than men. CONCLUSION: This study underscores the potential of preoperative SpO2 features as alternative metrics to AHI in predicting postoperative respiratory.


Subject(s)
Oxygen Saturation , Postoperative Complications , Respiratory Insufficiency , Sleep Apnea Syndromes , Humans , Male , Female , Sleep Apnea Syndromes/blood , Middle Aged , Postoperative Complications/etiology , Aged , Signal Processing, Computer-Assisted , Severity of Illness Index , Retrospective Studies , Adult , Oximetry , Oxygen/blood , Oxygen/metabolism
4.
Heliyon ; 10(11): e31956, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841476

ABSTRACT

Bacillus sp. TL7-3 has potential as a dietary supplement to promote human and animal health. It produces spores that can survive in harsh environments. Thus, when supplemented with nutrients, these spores can withstand the acidic pH of the stomach and resume vegetative development in the gut when exposed to growth-promoting conditions. Spores are formed as a cellular defense mechanism when a culture experiences stress and process optimization to achieve high spore production in a typical batch process remains challenging. Existing literature on the manipulation of gene expression and enzyme activity during batch cultivation is limited. Studies on the growth patterns, morphological changes, and relevant gene expression have aided in enhancing spore production. The present study used the response surface methodology for medium optimization. The model suggested that yeast extract and NH4Cl were significant factors controlling spore production. A comparison between the high weight ratio of carbon and nitrogen (C:N) substrates (8.57:1) in the optimized and basal media (0.52:1) showed an 8.76-fold increase in the final spore concentration. The expression of major genes, including codY, spo0A, kinA, and spo0F, involved in the sporulation was compared when cultivating Bacillus sp. TL7-3 in media with varying C:N ratios. At high C:N ratios, spo0A, kinA, and spo0F were upregulated, whereas codY was downregulated. This led to decreased guanylate kinase activity, resulting in a low guanosine triphosphate concentration and inactivation of CodY, thereby reducing the repression of spo0A and CodY-repressed genes and stimulating sporulation.

5.
J Clin Med ; 13(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892993

ABSTRACT

Background/Objectives: During the COVID-19 pandemic and the burden on hospital resources, the rapid categorization of high-risk COVID-19 patients became essential, and lung ultrasound (LUS) emerged as an alternative to chest computed tomography, offering speed, non-ionizing, repeatable, and bedside assessments. Various LUS score systems have been used, yet there is no consensus on an optimal severity cut-off. We assessed the performance of a 12-zone LUS score to identify adult COVID-19 patients with severe lung involvement using oxygen saturation (SpO2)/fractional inspired oxygen (FiO2) ratio as a reference standard to define the best cut-off for predicting adverse outcomes. Methods: We conducted a single-centre prospective study (August 2020-April 2021) at Hospital del Mar, Barcelona, Spain. Upon admission to the general ward or intensive care unit (ICU), clinicians performed LUS in adult patients with confirmed COVID-19 pneumonia. Severe lung involvement was defined as a SpO2/FiO2 ratio <315. The LUS score ranged from 0 to 36 based on the aeration patterns. Results: 248 patients were included. The admission LUS score showed moderate performance in identifying a SpO2/FiO2 ratio <315 (area under the ROC curve: 0.71; 95%CI 0.64-0.77). After adjustment for COVID-19 risk factors, an admission LUS score ≥17 was associated with an increased risk of in-hospital death (OR 5.31; 95%CI: 1.38-20.4), ICU admission (OR 3.50; 95%CI: 1.37-8.94) and need for IMV (OR 3.31; 95%CI: 1.19-9.13). Conclusions: Although the admission LUS score had limited performance in identifying severe lung involvement, a cut-off ≥17 score was associated with an increased risk of adverse outcomes. and could play a role in the rapid categorization of COVID-19 pneumonia patients, anticipating the need for advanced care.

6.
JMIR Form Res ; 8: e54256, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838332

ABSTRACT

BACKGROUND: Over recent years, technological advances in wearables have allowed for continuous home monitoring of heart rate and oxygen saturation. These devices have primarily been used for sports and general wellness and may not be suitable for medical decision-making, especially in saturations below 90% and in patients with dark skin color. Wearable clinical-grade saturation of peripheral oxygen (SpO2) monitoring can be of great value to patients with chronic diseases, enabling them and their clinicians to better manage their condition with reliable real-time and trend data. OBJECTIVE: This study aimed to determine the SpO2 accuracy of a wearable ring pulse oximeter compared with arterial oxygen saturation (SaO2) in a controlled hypoxia study based on the International Organization for Standardization (ISO) 80601-2-61:2019 standard over the range of 70%-100% SaO2 in volunteers with a broad range of skin color (Fitzpatrick I to VI) during nonmotion conditions. In parallel, accuracy was compared with a calibrated clinical-grade reference pulse oximeter (Masimo Radical-7). Acceptable medical device accuracy was defined as a maximum of 4% root mean square error (RMSE) per the ISO 80601-2-61 standard and a maximum of 3.5% RMSE per the US Food and Drug Administration guidance. METHODS: We performed a single-center, blinded hypoxia study of the test device in 11 healthy volunteers at the Hypoxia Research Laboratory, University of California at San Francisco, under the direction of Philip Bickler, MD, PhD, and John Feiner, MD. Each volunteer was connected to a breathing apparatus for the administration of a hypoxic gas mixture. To facilitate frequent blood gas sampling, a radial arterial cannula was placed on either wrist of each participant. One test device was placed on the index finger and another test device was placed on the fingertip. SaO2 analysis was performed using an ABL-90 multi-wavelength oximeter. RESULTS: For the 11 participants included in the analysis, there were 236, 258, and 313 SaO2-SpO2 data pairs for the test device placed on the finger, the test device placed on the fingertip, and the reference device, respectively. The RMSE of the test device for all participants was 2.1% for either finger or fingertip placement, while the Masimo Radical-7 reference pulse oximeter RMSE was 2.8%, exceeding the standard (4% or less) and the Food and Drug Administration guidance (3.5% or less). Accuracy of SaO2-SpO2 paired data from the 4 participants with dark skin in the study was separately analyzed for both test device placements and the reference device. The test and reference devices exceeded the minimum accuracy requirements for a medical device with RMSE at 1.8% (finger) and 1.6% (fingertip) and for the reference device at 2.9%. CONCLUSIONS: The wearable ring meets an acceptable standard of accuracy for clinical-grade SpO2 under nonmotion conditions without regard to skin color. TRIAL REGISTRATION: ClinicalTrials.gov NCT05920278; https://clinicaltrials.gov/study/NCT05920278.

7.
Med. intensiva (Madr., Ed. impr.) ; 48(5): 272-281, mayo.-2024. ilus, tab
Article in Spanish | IBECS | ID: ibc-ADZ-391

ABSTRACT

El síndrome de dificultad respiratoria aguda (SDRA), inicialmente descrito en 1967, se caracteriza por insuficiencia respiratoria aguda con hipoxemia profunda, disminución de la distensibilidad pulmonar e infiltrados bilaterales en la Rx de tórax. En 2012 la definición de Berlín estableció tres categorías con base en la hipoxemia (SDRA leve, moderado y grave), precisando aspectos temporales y permitiendo el diagnóstico con ventilación no invasiva. La pandemia de COVID-19 llevó a reconsiderar la definición, enfocándose en el monitoreo continuo de la oxigenación y la oxigenoterapia de alto flujo. En 2021 se propuso una nueva definición global de SDRA, basada en la definición de Berlín, pero incluyendo una categoría para pacientes no intubados, permitiendo el uso de saturación periférica de oxígeno medida con oximetría de pulso/fracción inspirada de oxígeno (SpO2/FiO2) y la ecografía pulmonar para el diagnóstico, y sin ningún requerimiento de soporte especial de la oxigenación en regiones con recursos limitados. Aunque persisten debates, la evolución continua busca adaptarse a las necesidades clínicas y epidemiológicas, y personalizar tratamientos. (AU)


Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments. (AU)


Subject(s)
Humans , Respiratory Distress Syndrome, Newborn , Pulmonary Edema , Respiration, Artificial , Hypoxia
8.
MethodsX ; 12: 102651, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38559389

ABSTRACT

Most strategies are implemented; however, South Africa needs to evaluate and develop trauma interventions. The study aims to develop, test and validate childhood trauma exposure intervention in the Vhembe district, Limpopo province. Donabedian's structure-process-outcome model will guide the study. The study will employ multiphase mixed methods with five phases. Phase 1 will be a thorough systematic evaluation of literature on childhood trauma and exposure to violence interventions to describe existing interventions. Phase 2, stage 1: Will explore the experiences of children exposed to trauma and violence regarding their experiences of the treatment they received, using semi-structured qualitative interviews. Non-probability purposeful sampling techniques will be used to select participants. The Thoyondou Victim Empowerment's database will select participants. The researchers will conduct semi-structured and unstructured interviews with youngsters exposed to violence and trauma. Stage 2 will be a qualitative study of trauma centre managers and personnel sampled from the contact record. IPA will analyze data. Phase 3 will conceptualize Phase 1 and the empirical phase into Donabedian's SPO framework for Phase 4. Phase 4 develops the intervention using Phase 3's conceptual framework and tests and validates it.

9.
Toxins (Basel) ; 16(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668620

ABSTRACT

The CPR1953 and CPR1954 orphan histidine kinases profoundly affect sporulation initiation and Clostridium perfringens enterotoxin (CPE) production by C. perfringens type F strain SM101, whether cultured in vitro (modified Duncan-Strong sporulation medium (MDS)) or ex vivo (mouse small intestinal contents (MIC)). To help distinguish whether CPR1953 and CPR1954 act independently or in a stepwise manner to initiate sporulation and CPE production, cpr1953 and cpr1954 null mutants of SM101 were transformed with plasmids carrying the cpr1954 or cpr1953 genes, respectively, causing overexpression of cpr1954 in the absence of cpr1953 expression and vice versa. RT-PCR confirmed that, compared to SM101, the cpr1953 mutant transformed with a plasmid encoding cpr1954 expressed cpr1954 at higher levels while the cpr1954 mutant transformed with a plasmid encoding cpr1953 expressed higher levels of cpr1953. Both overexpressing strains showed near wild-type levels of sporulation, CPE toxin production, and Spo0A production in MDS or MIC. These findings suggest that CPR1953 and CPR1954 do not function together in a step-wise manner, e.g., as a novel phosphorelay. Instead, it appears that, at natural expression levels, the independent kinase activities of both CPR1953 and CPR1954 are necessary for obtaining sufficient Spo0A production and phosphorylation to initiate sporulation and CPE production.


Subject(s)
Bacterial Proteins , Clostridium perfringens , Enterotoxins , Histidine Kinase , Spores, Bacterial , Clostridium perfringens/genetics , Clostridium perfringens/enzymology , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Enterotoxins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Gene Expression Regulation, Bacterial , Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Mice
10.
Biosensors (Basel) ; 14(4)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38667198

ABSTRACT

Wearable health devices (WHDs) are rapidly gaining ground in the biomedical field due to their ability to monitor the individual physiological state in everyday life scenarios, while providing a comfortable wear experience. This study introduces a novel wearable biomedical device capable of synchronously acquiring electrocardiographic (ECG), photoplethysmographic (PPG), galvanic skin response (GSR) and motion signals. The device has been specifically designed to be worn on a finger, enabling the acquisition of all biosignals directly on the fingertips, offering the significant advantage of being very comfortable and easy to be employed by the users. The simultaneous acquisition of different biosignals allows the extraction of important physiological indices, such as heart rate (HR) and its variability (HRV), pulse arrival time (PAT), GSR level, blood oxygenation level (SpO2), and respiratory rate, as well as motion detection, enabling the assessment of physiological states, together with the detection of potential physical and mental stress conditions. Preliminary measurements have been conducted on healthy subjects using a measurement protocol consisting of resting states (i.e., SUPINE and SIT) alternated with physiological stress conditions (i.e., STAND and WALK). Statistical analyses have been carried out among the distributions of the physiological indices extracted in time, frequency, and information domains, evaluated under different physiological conditions. The results of our analyses demonstrate the capability of the device to detect changes between rest and stress conditions, thereby encouraging its use for assessing individuals' physiological state. Furthermore, the possibility of performing synchronous acquisitions of PPG and ECG signals has allowed us to compare HRV and pulse rate variability (PRV) indices, so as to corroborate the reliability of PRV analysis under stationary physical conditions. Finally, the study confirms the already known limitations of wearable devices during physical activities, suggesting the use of algorithms for motion artifact correction.


Subject(s)
Electrocardiography , Fingers , Galvanic Skin Response , Heart Rate , Photoplethysmography , Wearable Electronic Devices , Humans , Monitoring, Physiologic/instrumentation , Signal Processing, Computer-Assisted , Male , Adult , Female
11.
Cell Mol Life Sci ; 81(1): 194, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653846

ABSTRACT

Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.


Subject(s)
Chromosome Pairing , Chromosome Segregation , Meiosis , Humans , Animals , Chromosome Pairing/genetics , Male , Meiosis/genetics , Mice , Chromosome Segregation/genetics , Female , Aneuploidy , Chromosomes, Human, X/genetics , Chromosomes, Human, Y/genetics , Sex Chromosomes/genetics , Crossing Over, Genetic/genetics
12.
J Thorac Dis ; 16(3): 1854-1865, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38617788

ABSTRACT

Background: Mask-wearing caused significant reductions in coronavirus disease 2019 (COVID-19) transmission. We aimed to determine whether face mask-wearing during exercise caused reductions in peripheral oxygen saturation (SpO2) and whether it affected secondary physiological measures [end-tidal carbon dioxide (EtCO2), respiratory rate (RR), heart rate (HR), expired breath temperature (EBT)]. Subjective measurements included ratings of perceived exertion (RPE), ratings of perceived breathlessness (RPB), and symptomology. Methods: A randomised cross-over trial examined no mask (NM), surgical mask (SM) and a buff mask (BM). Thirty participants (30-45 years) cycled at 60% power output for 30 min in three exercise sessions, 24 h apart, within 6 days. Each session recorded all measures at resting baseline (T0), 9 min (T1), 18 min (T2), and 27 min (T3). Dependent statistical tests determined significant differences between masks and time-points. Results: SpO2 decreased for SM and BM between T0 compared to T1, T2 and T3 (all P<0.005). BM caused significant reductions at T1 and T2 compared to NM (P<0.001 and P=0.018). Significant changes in EtCO2 and EBT occurred throughout exercise and between exercise stages for all mask conditions (P<0.001). As expected for moderate intensity exercise, RR and HR were significantly higher during exercise compared to T0 (P<0.001). RPB significantly increased for each condition at each time point (P<0.001). RPE was not significant between mask conditions at any exercise stage. Conclusions: SM and BM caused a mild but sustained reduction in SpO2 at commencement of exercise, which did not worsen throughout short (<30 min) moderate intensity exercise. Level of perception was similar, suggesting healthy people can wear masks during moderate exercise and activities of daily living.

13.
medRxiv ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38585762

ABSTRACT

Background: Recent studies showed that Black patients more often have falsely normal oxygen saturation on pulse oximetry compared to White patients. However, whether the racial differences in occult hypoxemia are mediated by other clinical differences is unknown. Methods: We conducted a retrospective case-control study utilizing two large ICU databases (eICU and MIMIC-IV). We defined occult hypoxemia as oxygen saturation on pulse oximetry within 92-98% despite oxygen saturation on arterial blood gas below 90%. We assessed associations of commonly measured clinical factors with occult hypoxemia using multivariable logistic regression and conducted mediation analysis of the racial effect. Results: Among 24,641 patients, there were 1,855 occult hypoxemia cases and 23,786 controls. In both datasets, Black patients were more likely to have occult hypoxemia (unadjusted odds ratio 1.66 [95%-CI: 1.41-1.95] in eICU and 2.00 [95%-CI: 1.22-3.14] in MIMIC-IV). In multivariable models, higher respiratory rate, PaCO2 and creatinine as well as lower hemoglobin were associated with increased odds of occult hypoxemia. Differences in the commonly measured clinical markers accounted for 9.2% and 44.4% of the racial effect on occult hypoxemia in eICU and MIMIC-IV, respectively. Conclusion: Clinical differences, in addition to skin tone, might mediate some of the racial differences in occult hypoxemia.

14.
Med Intensiva (Engl Ed) ; 48(5): 272-281, 2024 05.
Article in English | MEDLINE | ID: mdl-38644108

ABSTRACT

Acute respiratory distress syndrome (ARDS), first described in 1967, is characterized by acute respiratory failure causing profound hypoxemia, decreased pulmonary compliance, and bilateral CXR infiltrates. After several descriptions, the Berlin definition was adopted in 2012, which established three categories of severity according to hypoxemia (mild, moderate and severe), specified temporal aspects for diagnosis, and incorporated the use of non-invasive ventilation. The COVID-19 pandemic led to changes in ARDS management, focusing on continuous monitoring of oxygenation and on utilization of high-flow oxygen therapy and lung ultrasound. In 2021, a New Global Definition based on the Berlin definition of ARDS was proposed, which included a category for non-intubated patients, considered the use of SpO2, and established no particular requirement for oxygenation support in regions with limited resources. Although debates persist, the continuous evolution seeks to adapt to clinical and epidemiological needs, and to the search of personalized treatments.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/epidemiology , COVID-19/complications , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , Health Resources , Oxygen Inhalation Therapy , Terminology as Topic , Hypoxia/etiology , Hypoxia/therapy
15.
Front Neurol ; 15: 1344000, 2024.
Article in English | MEDLINE | ID: mdl-38533418

ABSTRACT

Objective: This study aimed to evaluate the SpO2 (transcutaneous oxygen saturation) -mortality link in elderly T2DM (diabetes mellitus type 2) patients with cerebral infarction and identify their optimal SpO2 range. Methods: In this investigation, we employed a comprehensive approach. Initially, we screened the MIMIC-IV database, identifying elderly T2DM patients with cerebral infarction, utilizing specific ICD-9 and ICD-10 codes. We then harnessed the power of restricted cubic splines to craft a visual representation of the correlation between SpO2 and 1-year mortality. To enhance our analysis, we harnessed Cox multivariate regression, allowing us to compute adjusted hazard ratios (HR) accompanied by 95% confidence intervals (CIs). Additionally, we crafted Cumulative Mortality Curve analyses, augmenting our study by engaging in rigorous subgroup analyses, stratifying our observations based on pertinent covariates. Results: In this study, 448 elderly T2DM patients with cerebral infarction were included. Within 1-year post-discharge, 161 patients (35.94%) succumbed. Employing Restricted Cubic Spline analysis, a statistically significant U-shaped non-linear relationship between admission ICU SpO2 levels and 1-year mortality was observed (P-value < 0.05). Further analysis indicated that both low and high SpO2 levels increased the mortality risk. Cox multivariate regression analysis, adjusting for potential confounding factors, confirmed the association of low (≤94.5%) and high SpO2 levels (96.5-98.5%) with elevated 1-year mortality risk, particularly notably high SpO2 levels (>98.5%) [HR = 2.06, 95% CI: 1.29-3.29, P-value = 0.002]. The cumulative mortality curves revealed the following SpO2 subgroups from high to low cumulative mortality at the 365th day: normal levels (94.5% < SpO2 ≤ 96.5%), low levels (SpO2 ≤ 94.5%), high levels (96.5% < SpO2 ≤ 98.5%), and notably high levels (>98.5%). Subgroup analysis demonstrated no significant interaction between SpO2 and grouping variables, including Sex, Age, Congestive heart failure, Temperature, and ICU length of stay (LOS-ICU; P-values for interaction were >0.05). Conclusions: Striking an optimal balance is paramount, as fixating solely on lower SpO2 limits or neglecting high SpO2 levels may contribute to increased mortality rates. To mitigate mortality risk in elderly T2DM patients with cerebral infarction, we recommend maintaining SpO2 levels within the range of 94.5-96.5%.

16.
Artif Intell Med ; 150: 102808, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553148

ABSTRACT

The most prevalent sleep-disordered breathing condition is Obstructive Sleep Apnea (OSA), which has been linked to various health consequences, including cardiovascular disease (CVD) and even sudden death. Therefore, early detection of OSA can effectively help patients prevent the diseases induced by it. However, many existing methods have low accuracy in detecting hypopnea events or even ignore them altogether. According to the guidelines provided by the American Academy of Sleep Medicine (AASM), two modal signals, namely nasal pressure airflow and pulse oxygen saturation (SpO2), offer significant advantages in detecting OSA, particularly hypopnea events. Inspired by this notion, we propose a bimodal feature fusion CNN model that primarily comprises of a dual-branch CNN module and a feature fusion module for the classification of 10-second-long segments of nasal pressure airflow and SpO2. Additionally, an Efficient Channel Attention mechanism (ECA) is incorporated into the second module to adaptively weight feature map of each channel for improving classification accuracy. Furthermore, we design an OSA Severity Assessment Framework (OSAF) to aid physicians in effectively diagnosing OSA severity. The performance of both the bimodal feature fusion CNN model and OSAF is demonstrated to be excellent through per-segment and per-patient experimental results, based on the evaluation of our method using two real-world datasets consisting of polysomnography (PSG) recordings from 450 subjects.


Subject(s)
Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/diagnosis , Oximetry , Polysomnography , Neural Networks, Computer
17.
Int J Antimicrob Agents ; 63(5): 107155, 2024 May.
Article in English | MEDLINE | ID: mdl-38527561

ABSTRACT

Due to intramolecular ring structures, the ribosomally produced and post-translationally modified peptide mersacidin shows antimicrobial properties comparable to those of vancomycin without exhibiting cross-resistance. Although the principles of mersacidin biosynthesis are known, there is no information on the molecular control processes for the initial stimulation of mersacidin bioproduction. By using Bacillus subtilis for heterologous biosynthesis, a considerable amount of mersacidin could be produced without the mersacidin-specific immune system and the mersacidin-activating secretory protease. By using the established laboratory strain Bacillus subtilis 168 and strain 3NA, which is used for high cell density fermentation processes, in combination with the construction of reporter strains to determine the promoter strengths within the mersacidin core gene cluster, the molecular regulatory circuit of Spo0A, a master regulator of cell differentiation including sporulation initiation, and the global transcriptional regulator AbrB, which is involved in cell adaptation processes in the transient growth phase, was identified to control the initial stimulation of the mersacidin core gene cluster. In a second downstream regulatory step, the activator MrsR1, encoded in the core gene cluster, acts as a stimulatory element for mersacidin biosynthesis. These findings are important to understand the mechanisms linking environmental conditions and microbial responses with respect to the bioproduction of bioactive metabolites including antimicrobials such as mersacidin. This information will also support the construction of production strains for bioactive metabolites with antimicrobial properties.


Subject(s)
Bacillus subtilis , Bacterial Proteins , Bacteriocins , Gene Expression Regulation, Bacterial , Multigene Family , Transcription Factors , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Bacillus subtilis/drug effects , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Peptides/metabolism , Peptides/genetics , Promoter Regions, Genetic , Peptide Fragments/genetics , Peptide Fragments/metabolism
18.
mBio ; 15(4): e0224823, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38477571

ABSTRACT

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Subject(s)
Bacillus , Histidine , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine/metabolism , Phosphorylation , Transcription Factors/metabolism , Bacillus/metabolism , Clostridium/genetics , Clostridium/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Spores, Bacterial/metabolism , Bacillus subtilis/genetics , Gene Expression Regulation, Bacterial
19.
bioRxiv ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38463951

ABSTRACT

Double-strand breaks (DSBs) are the most deleterious lesions experienced by our genome. Yet, DSBs are intentionally induced during gamete formation to promote the exchange of genetic material between homologous chromosomes. While the conserved topoisomerase-like enzyme Spo11 catalyzes DSBs, additional regulatory proteins-referred to as "Spo11 accessory factors"- regulate the number, timing, and placement of DSBs during early meiotic prophase ensuring that SPO11 does not wreak havoc on the genome. Despite the importance of the accessory factors, they are poorly conserved at the sequence level suggesting that these factors may adopt unique functions in different species. In this work, we present a detailed analysis of the genetic and physical interactions between the DSB factors in the nematode Caenorhabditis elegans providing new insights into conserved and novel functions of these proteins. This work shows that HIM-5 is the determinant of X-chromosome-specific crossovers and that its retention in the nucleus is dependent on DSB-1, the sole accessory factor that interacts with SPO-11. We further provide evidence that HIM-5 coordinates the actions of the different accessory factors sub-groups, providing insights into how components on the DNA loops may interact with the chromosome axis.

20.
Bioengineering (Basel) ; 11(2)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38391599

ABSTRACT

Video-based peripheral oxygen saturation (SpO2) estimation, utilizing solely RGB cameras, offers a non-contact approach to measuring blood oxygen levels. Previous studies set a stable and unchanging environment as the premise for non-contact blood oxygen estimation. Additionally, they utilized a small amount of labeled data for system training and learning. However, it is challenging to train optimal model parameters with a small dataset. The accuracy of blood oxygen detection is easily affected by ambient light and subject movement. To address these issues, this paper proposes a contrastive learning spatiotemporal attention network (CL-SPO2Net), an innovative semi-supervised network for video-based SpO2 estimation. Spatiotemporal similarities in remote photoplethysmography (rPPG) signals were found in video segments containing facial or hand regions. Subsequently, integrating deep neural networks with machine learning expertise enabled the estimation of SpO2. The method had good feasibility in the case of small-scale labeled datasets, with the mean absolute error between the camera and the reference pulse oximeter of 0.85% in the stable environment, 1.13% with lighting fluctuations, and 1.20% in the facial rotation situation.

SELECTION OF CITATIONS
SEARCH DETAIL
...