Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
New Phytol ; 242(5): 2338-2352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531810

ABSTRACT

Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.


Subject(s)
Climate Change , Models, Biological , Species Specificity , Plants , Extinction, Biological , Ecosystem
2.
Sci Total Environ ; 914: 169899, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38184245

ABSTRACT

The detection and attribution of biodiversity change is of great scientific interest and central to policy effects aimed at meeting biodiversity targets. Yet, how such a diverse climate scenarios influence forest biodiversity and composition dynamics remains unclear, particularly in high diversity systems of subtropical forests. Here we used data collected from the permanent sample plot spanning 26 years in an old-growth subtropical forest. Combining various climatic events (extreme drought, subsequent drought, warming, and windstorm), we analyzed long-term dynamics in multiple metrics: richness, turnover, density, abundance, reordering and stability. We did not observe consistent and directional trends in species richness under various climatic scenarios. Still, drought and windstorm events either reduced species gains or increased species loss, ultimately increased species turnover. Tree density increased significantly over time as a result of rapid increase in smaller individuals due to mortality in larger trees. Climate events caused rapid changes in dominant populations due to a handful of species undergoing strong increases or declines in abundance over time simultaneously. Species abundance composition underwent significant changes, particularly in the presence of drought and windstorm events. High variance ratio and species synchrony weaken community stability under various climate stress. Our study demonstrates that all processes underlying forest community composition changes often occur simultaneously and are equally affected by climate events, necessitating a holistic approach to quantifying community changes. By recognizing the interconnected nature of these processes, future research should accelerate comprehensive understanding and predicting of how forest vegetation responds to global climate change.


Subject(s)
Climate Change , Forests , Humans , Biodiversity , Trees , Droughts
3.
Proc Natl Acad Sci U S A ; 121(6): e2305944121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38252845

ABSTRACT

Protected areas are of paramount relevance to conserving wildlife and ecosystem contributions to people. Yet, their conservation success is increasingly threatened by human activities including habitat loss, climate change, pollution, and species overexploitation. Thus, understanding the underlying and proximate drivers of anthropogenic threats is urgently needed to improve protected areas' effectiveness, especially in the biodiversity-rich tropics. We addressed this issue by analyzing expert-provided data on long-term biodiversity change (last three decades) over 14 biosphere reserves from the Mesoamerican Biodiversity Hotspot. Using multivariate analyses and structural equation modeling, we tested the influence of major socioeconomic drivers (demographic, economic, and political factors), spatial indicators of human activities (agriculture expansion and road extension), and forest landscape modifications (forest loss and isolation) as drivers of biodiversity change. We uncovered a significant proliferation of disturbance-tolerant guilds and the loss or decline of disturbance-sensitive guilds within reserves causing a "winner and loser" species replacement over time. Guild change was directly related to forest spatial changes promoted by the expansion of agriculture and roads within reserves. High human population density and low nonfarming occupation were identified as the main underlying drivers of biodiversity change. Our findings suggest that to mitigate anthropogenic threats to biodiversity within biosphere reserves, fostering human population well-being via sustainable, nonfarming livelihood opportunities around reserves is imperative.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Agriculture , Animals, Wild , Climate Change
4.
Front Psychol ; 14: 1112182, 2023.
Article in English | MEDLINE | ID: mdl-37448712

ABSTRACT

Due to the dramatic biodiversity crisis, it is crucial to understand how people perceive biodiversity. Knowledge of how thoughts are organized around this concept can identify which ideas are best to focus on biodiversity conservation information campaigns. The primary aim of the present study was to identify social representations of the German public regarding the concept of biodiversity and its loss using a free word association test. Furthermore, unique association networks were analyzed. For this purpose, data collection was performed in September 2021 in Germany using an online questionnaire to assess participants' associations with the prompt "biodiversity" (n = 131) and "biodiversity loss" (n = 130). Additionally, we used the social network software Gephi to create biodiversity (loss) association networks. The five most commonly mentioned associations for biodiversity were "animal," "plant," "nature," "human," and "flower." For biodiversity loss, the five most commonly mentioned associations were "species extinction," "climate change," "plant," "insect," and "bee." Neither "land use change" nor "invasive species," as key drivers of biodiversity loss, were present in social representations of the German public. A difference was observed in the total number of mentioned associations between biodiversity and biodiversity loss. For both, the associations "plant" and "animal" were related. However, participants associated specific taxa only with animals, such as "insects" and "birds." For plants, no specific taxa were named. Based on the network analysis, the most commonly mentioned word pairs for biodiversity and biodiversity loss were "plant - animal" and "species loss - climate change," respectively. Based on our statistical network analysis, these associations were identified as the most central associations with the greatest influence in the network. Thus, they had the most connections and the function of predicting the flow in the network. In sum, the public's multifaceted views on biodiversity and its loss, as well as the aforementioned central associations, hold great potential to be utilized more for the communication and education of biodiversity conservation. In addition, our findings contribute to the scientific community's understanding of social representations and perceptions of biodiversity and its loss.

5.
Oecologia ; 202(3): 549-559, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37454309

ABSTRACT

Nutrient resorption is a fundamental physiological process in plants, with important ecological controls over numerous ecosystem functions. However, the role of community assembly in driving responses of nutrient resorption to perturbation remains largely unknown. Following the Price equation framework and the Community Assembly and Ecosystem Function framework, we quantified the contribution of species loss, species gain, and shared species to the reduction of community-level nutrient resorption efficiency in response to multi-level nitrogen (N) addition in a temperate steppe, after continuous N addition for seven years. Reductions of both N and phosphorus (P) resorption efficiency (NRE and PRE, respectively) were positively correlated with N addition levels. The dissimilarities in species composition between N-enriched and control communities increased with N addition levels, and N-enriched plots showed substantial species losses and gains. Interestingly, the reduction of community-scale NRE and PRE mostly resulted from N-induced decreases in resorption efficiency for the shared species in the control and N-enriched communities. There were negative correlations between the contributions of species richness effect and species identity effect and between the number and identity of species gained for the changes in both NRE and PRE following N enrichment. By simultaneously considering N-induced changes in species composition and in species-level resorption, our work presents a more complete picture of how different community assembly processes contribute to N-induced changes in community-level resorption.


Subject(s)
Ecosystem , Nitrogen , Nitrogen/analysis , Plants , Phosphorus , Nutrients , Soil , Plant Leaves/chemistry
6.
Mar Environ Res ; 188: 106003, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37121175

ABSTRACT

Waterbirds are vital to coastal wetland ecosystem, and play significant roles in global biodiversity maintenance, cultural and educational services, etc. Waterbirds are particularly vulnerable to environmental change, particularly land-cover change, which has severely degraded their ecological niches. Accordingly, this study developed a waterbird-habitat preference index to quantify waterbird dependence on Xiamen Bay's habitats and a subsidiary waterbird-specific habitat suitability index to predict potential effects of future land-cover change on waterbirds. Results showed that the waterbird-habitat preference index ranged from -9.8 to 18.71, indicating that habitat selection varied greatly among different waterbird species, where tidal flats were the most popular waterbird habitat. Additionally, most waterbird species showed a preference for more than one habitat, which could be indicative of their diverse ecological demands. Effects on waterbirds varied greatly among the three different land-cover scenarios, where positive benefits were predicted under the ecological protection scenario (EPS), while the greatest negative effects were observed under the development and utilization scenario (DUS). Effects also varied among different waterbirds species. Those under the current trend scenario (CTS) (e.g., Tringa brevipes and Calidris ruficollis) could be at risk for species abundance loss (i.e., losers) while others (i.e., Egretta garzetta and Saundersilarus saundersi) could benefit from increased abundance (i.e., winners). Generally, migratory and traveling birds were much more vulnerable than resident birds. Spatially, conservation priority should be given to the Dadeng Waters and those waters adjacent to it (i.e., Tongan Bay and Anhai Bay) because of the highest waterbird loss risk in these areas under a conflict between an urgent need to protect waterbird biodiversity and intense present and future land-cover development. The intent of this study is to provide a useful tool to explore land-cover effects on waterbirds in similar coastal regions, which can provide important information on protection and restoration strategies.


Subject(s)
Charadriiformes , Ecosystem , Animals , Bays , Prospective Studies , Conservation of Natural Resources , Biodiversity , Wetlands , China , Birds
7.
Glob Chang Biol ; 29(9): 2466-2477, 2023 05.
Article in English | MEDLINE | ID: mdl-36806834

ABSTRACT

Long-term records of benthic macroinvertebrates in high-latitude streams are essential for understanding climatic changes, including extreme events (e.g. floods). Data extending over multiple decades are typically scarce. Here, we investigated macroinvertebrate community structural change (including alpha and beta diversity and gain and loss of species) over 22 years (1994-2016) in 10 stream systems across Denali National Park (Alaska, USA) in relation to climatological and meteorological drivers (e.g. air temperature, snowpack depth, precipitation). We hypothesised that increases in air temperature and reduced snowpack depth, due to climatic change, would reduce beta and gamma diversity but increase alpha diversity. Findings showed temporal trends in alpha diversity were variable across streams, with oscillating patterns in many snowmelt- and rainfall runoff-fed streams linked to climatic variation (temperature and precipitation), but increased over time in several streams supported by a mixture of water sources, including more stable groundwater-fed streams. Beta-diversity over the time series was highly variable, yet marked transitions were observed in response to extreme snowpack accumulation (1999-2000), where species loss drove turnover. Gamma diversity did not significantly increase or decrease over time. Investigating trends in individual taxa, several taxa were lost and gained during a relative constrained time period (2000-2006), likely in response to climatic variability and significant shifts in instream environmental conditions. Findings demonstrate the importance of long-term biological studies in stream ecosystems and highlight the vulnerability of high-latitude streams to climate change.


Subject(s)
Ecosystem , Invertebrates , Animals , Invertebrates/physiology , Rivers/chemistry , Temperature , Alaska
8.
Environ Int ; 171: 107705, 2023 01.
Article in English | MEDLINE | ID: mdl-36549223

ABSTRACT

Freshwater ecosystems provide major benefits to human wellbeing-so-called ecosystem services (ES)-but are currently threatened among others by ecotoxicological pressure from chemicals reaching the environment. There is an increased motivation to incorporate ES in quantification tools that support decision-making, such as life cycle assessment (LCA). However, mechanistic models and frameworks that can systematically translate ecotoxicity effect data from chemical tests into eventual damage on species diversity, functional diversity, and ES in the field are still missing. While current approaches focus on translating predicted ecotoxicity impacts to damage in terms of species loss, no approaches are available in LCA and other comparative assessment frameworks for linking ecotoxicity to damage on ecosystem functioning or ES. To overcome this challenge, we propose a way forward based on evaluating available approaches to characterize damage of chemical pollution on freshwater ES. We first outline an overall framework for linking freshwater ecotoxicity effects to damage on related ES in compliance with the boundary conditions of quantitative, comparative assessments. Second, within the proposed framework, we present possible approaches for stepwise linking ecotoxicity effects to species loss, functional diversity loss, and damage on ES. Finally, we discuss strengths, limitations, and data availability of possible approaches for each step. Although most approaches for directly deriving damage on ES from either species loss or damage to functional diversity have not been operationalized, there are some promising ways forward. The Threshold Indicator Taxa ANalysis (TITAN) seems suitable to translate predicted ecotoxicity effects to a metric of quantitative damage on species diversity. A Trait Probability Density Framework (TPD) approach that incorporates various functional diversity components and functional groups could be adapted to link species loss to functional diversity loss. An Ecological Production Function (EPF) approach seems most promising for further linking functional diversity loss to damage on ES flows for human wellbeing. However, in order to integrate the entire pathway from predicted freshwater ecotoxicity to damage on ES into LCA and other comparative frameworks, the approaches adopted for each step need to be harmonized in terms of assumptions, boundary conditions and consistent interfaces with each other.


Subject(s)
Ecosystem , Environmental Pollution , Humans , Animals , Ecotoxicology , Fresh Water/chemistry , Life Cycle Stages
9.
Sci Total Environ ; 864: 161166, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36572286

ABSTRACT

Direct observation of biodiversity loss in response to abrupt climate change can resolve fundamental questions about temporal community dynamics and clarify the controversial debate of biodiversity loss impacts on ecosystem functioning. We tracked local plant species loss and the corresponding change of aboveground biomass of native and non-native species by actively pushing mountain grassland ecosystems beyond their ecological thresholds in a five-year, multisite translocation experiment across the European Alps. Our results show that species loss (ranging from a 73 % to 94 % reduction in species richness) caused by simulated climate extremes (strong warming interacting with drought) did not decrease community biomass. Even without non-native species colonization, the community biomass of native species remained stable during native species richness collapse. Switching our research focus from local extinction in the face of climate change towards the beneficial impacts of persisting native species (in addition to novel plant-plant interactions) might yield insights on transformative opportunities for boosting climate resilience.


Subject(s)
Biomass , Ecosystem , Biodiversity , Climate Change , Plants , Europe
10.
Oecologia ; 200(3-4): 479-490, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36329313

ABSTRACT

Litter decomposition is a central ecosystem function because dead plant biomass plays a critical role in carbon storage, the nitrogen (N) cycle, and as food/habitat for animals and microorganisms. In the face of global change, interactions between organisms that participate in litter decomposition are likely to change due to species loss and N pollution. To understand how these global change factors may interact to alter litter decomposition, we manipulated the detritivore community and N concentrations in a coastal salt marsh for 2 years. We chose to manipulate densities of a dominant, detritivorous snail (Melampus bidentatus) because its population size is expected to decline due to climate change, yet its impact on litter decomposition has not been tested in the field. We measured litter decomposition rates, detritivore densities, and the N concentrations of sediment and litter. We found that endogenous N enrichment (N added live plants before decomposition), exogenous N enrichment (N added to decomposing plants) and higher densities of Melampus increased litter decomposition rates. Linear mixed models further revealed that snails, other detritivores, and soil NH4+ were the best predictors of litter mass loss in the middle stages of decomposition. Notably, exogenous N added to litter already enriched with N further increased mass loss but did not increase litter %N. Our study reveals how global change in the form species loss and N pollution can have palpable impacts on carbon cycling and ecosystem function.


Subject(s)
Gastropoda , Wetlands , Animals , Nitrogen , Ecosystem , Environmental Pollution , Carbon
11.
Glob Change Biol Bioenergy ; 14(3): 307-321, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35875590

ABSTRACT

Bioenergy with carbon capture and storage (BECCS) based on purpose-grown lignocellulosic crops can provide negative CO2 emissions to mitigate climate change, but its land requirements present a threat to biodiversity. Here, we analyse the implications of crop-based BECCS for global terrestrial vertebrate species richness, considering both the land-use change (LUC) required for BECCS and the climate change prevented by BECCS. LUC impacts are determined using global-equivalent, species-area relationship-based loss factors. We find that sequestering 0.5-5 Gtonne of CO2 per year with lignocellulosic crop-based BECCS would require hundreds of Mha of land, and commit tens of terrestrial vertebrate species to extinction. Species loss per unit of negative emissions decreases with: (i) longer lifetimes of BECCS systems, (ii) less overall deployment of crop-based BECCS and (iii) optimal land allocation, that is prioritizing locations with the lowest species loss per negative emission potential, rather than minimizing overall land use or prioritizing locations with the lowest biodiversity. The consequences of prevented climate change for biodiversity are based on existing climate response relationships. Our tentative comparison shows that for crop-based BECCS considered over 30 years, LUC impacts on vertebrate species richness may outweigh the positive effects of prevented climate change. Conversely, for BECCS considered over 80 years, the positive effects of climate change mitigation on biodiversity may outweigh the negative effects of LUC. However, both effects and their interaction are highly uncertain and require further understanding, along with the analysis of additional species groups and biodiversity metrics. We conclude that factoring in biodiversity means lignocellulosic crop-based BECCS should be used early to achieve the required mitigation over longer time periods, on optimal biomass cultivation locations, and most importantly, as little as possible where conversion of natural land is involved, looking instead to sustainably grown or residual biomass-based feedstocks and alternative strategies for carbon dioxide removal.

12.
Ecology ; 103(6): e3675, 2022 06.
Article in English | MEDLINE | ID: mdl-35253208

ABSTRACT

Competition is often highlighted as a major force influencing plant species diversity. However, there are multiple facets of competition (e.g., strength, intransitivity, and size asymmetry) that may have independent and differential impacts on diversity, making understanding the degree to which competition structures communities difficult. Unfortunately, field-based experiments that decouple multiple facets of competition are lacking, limiting our ability to test theoretical frameworks and reducing understanding of the actual linkages among competition and coexistence. Here, we experimentally manipulate the size structure of local grassland communities to examine the relative impacts of competitive size asymmetry (i.e., competitive advantage based on relative size) and intensity (i.e., mean effect of neighbors on plant growth) on species loss and gain. Increased competitive size asymmetry was associated with increased species loss and decreased species gain, while no relationship was found between competitive intensity and species loss and gain. Furthermore, the probability of loss was not dependent on a species initial size, suggesting that small species may not always be the losers of size-asymmetric interactions. Instead, loss was dependent on species rarity, where loss was higher for rare species. Overall, these results suggest that competitive size asymmetry may be more important for species loss than intensity in some plant communities and demonstrates the importance of decoupling different aspects of competition to better understand their drivers and ecological consequences.


Subject(s)
Grassland , Plants
13.
Front Plant Sci ; 13: 832473, 2022.
Article in English | MEDLINE | ID: mdl-35211142

ABSTRACT

Fertilization is an effective management strategy to promote community biomass but can simultaneously reduce species diversity in many grassland systems. Shifts in competition for resources have been proposed to explain the decline in plant species diversity due to fertilization, yet the underlying mechanism driving species loss remains controversial. This uncertainty may be driven by variation in aboveground and belowground resource availability. However, experiments simultaneously manipulating both light availability and soil nutrients are rare. Using a 6-year field experiment to manipulate light availability (via shade cloth) and soil nutrients (via fertilizer addition), we tested this resource competition hypothesis in a species-rich alpine meadow by examining the variation of species traits associated with the capacity of light acquisition within these treatments. Our results showed that artificial shade decreased community biomass accumulation whereas fertilization increased it. In contrast, both shade and fertilization reduced species diversity. Extinction of non-Gramineae species (e.g., Fabaceae and Cyperaceae) was the main reason for species diversity decline. Species loss can be explained by the limitation of light availability and predicted by species traits associated with light acquisition capability under fertilization and low light tolerance under artificial shade. Specifically, fertilization eliminated species with lower stature and artificial shade exterminated species with the higher light compensation point (LCP). The findings suggest that light availability is consistently important for plant growth and that low competitiveness for light under fertilization and intolerance of low light conditions under artificial shade trigger species loss process in the alpine meadow. Our experiment helps clarify the mechanisms of how artificial shade and fertilization decreased species diversity and highlight that LCP, which tends to be neglected by most of the studies, is one of the vital drivers in determining species coexistence.

14.
Sci Total Environ ; 822: 153595, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35114247

ABSTRACT

Habitat alteration and destruction are primary drivers of biodiversity loss. However, the evolutionary dimensions of biodiversity loss remain largely unexplored in many systems. For example, little is known about how habitat alteration/loss can lead to phylogenetic deconstruction of ecological assemblages at the local level. That is, while species loss is evident, are some lineages favored over others? Using a long-term dataset of a globally, ecologically important guild of invertebrate consumers, stream leaf "shredders," we created a phylogenetic tree of the taxa in the regional species pool, calculated mean phylogenetic distinctiveness for >1000 communities spanning >10 year period, and related species richness, phylogenetic diversity, and distinctiveness to watershed-scale impervious cover. Using a combination of changepoint and compositional analyses, we learned that increasing impervious cover produced marked reductions in all three measures of diversity. These results aid in understanding both phylogenetic diversity and mean assemblage phylogenetic distinctiveness. Our findings indicate that, not only are species lost when there is an increase in watershed urbanization, as other studies have demonstrated, but that those lost are members of more distinct lineages relative to the community as a whole..


Subject(s)
Biodiversity , Ecosystem , Animals , Invertebrates , Phylogeny , Urbanization
15.
Appl Veg Sci ; 25(4): e12700, 2022.
Article in English | MEDLINE | ID: mdl-37082134

ABSTRACT

The abandonment of marginally productive habitats and the intensification of land use on productive sites have caused transformative changes in vegetation composition in Central Europe. In this study, after 25 years we resurveyed a total of 145 grassland relevés from the mid-1990s in a grassland-dominated valley of the Northern Alps of Upper Austria. We studied changes in richness and composition, and related these to underlying drivers. We found that the average species number in plots increased from 46 in the first survey period to 49 in the second one. Median species richness across sites significantly increased from 1995 to 2020 for Festuco-Brometea (55-61 species) and Galio-Urticetea (24-32 species), but did not show any significant change for the other classes. Further, we recorded substantial species turnover, with winners consisting mostly of species that prefer nutrient-rich sites, while losers were predominantly species of nutrient-poor sites. In particular, using Ellenberg Indicator Values for calculating community indices, we found an indication for ongoing eutrophication in vegetation types of nutrient-poor vegetation classes (Festuco-Brometea and Calluno-Ulicetea), and in wet habitats (Scheuchzerio-Caricetea fuscae). Community indices of wet habitats also showed clear signs of becoming more mesic. Thermophilization of community indices was evident across several vegetation classes. Further, alien species that were very rare in the mid-1990s became more abundant in the resurveyed plots, although the level of invasion is still low. Finally, community values for nutrients of plots that are located in a protected area that has been established in 2014 did not increase significantly, while this was the case in plots outside the protected area, indicating that the management of the protected area has positive effects in halting eutrophication. We conclude that despite overall species richness changing only moderately between both surveys, substantial changes in community composition toward more nitrophilic and thermophilic conditions occurred.

16.
Ecol Appl ; 32(2): e2517, 2022 03.
Article in English | MEDLINE | ID: mdl-34918838

ABSTRACT

Nitrogen (N) retention is a critical ecosystem function for maintaining soil fertility and mitigating pollution caused by anthropogenic N input. However, it has not yet been elucidated how responses of plant and soil regulate ecosystem N retention. Here, we combined a 14-year N addition experiment in a temperate steppe with a global meta-analysis in grasslands, to assess changes in carbon (C) pool size and stoichiometric C:N ratio of plant and soil components and evaluate the contribution of each component to grassland N retention under increasing N levels. We found that N addition increased N storage in the plant pool by stimulating biomass production and reducing tissue C:N at the community level. However, the non-random loss of forbs and legumes associated with a low C:N ratio partially offset the decline in community-level C:N ratio, thereby diminishing the positive net effect of N enrichment on plant N storage. The observed increase in soil N storage was predominantly determined by the decrease in C:N ratio of topsoil, while no changes were detected in the subsoil. On 14-year time scale, the upper limitation of N retention capacity in our study site was 167.02 g N/m2 . Global meta-analysis further indicated that a decade's N addition significantly increased the N storage in shoot, root and topsoil through enhancing the C pool and decreasing the C:N ratio, while did not affect those of subsoil. However, the positive correlation between the response of subsoil N storage and treatment duration further indicates that, though the accumulation of added N lagged behind that of topsoil, subsoil could play an important role in N retention on a longer time scale. Our study demonstrated that the enhanced plant productivity and altered physiological metabolism indicated by the decreased C:N ratio jointly determined grassland ecosystem N retention. The capacity of the grassland ecosystem to retain exogenous N input is limited, especially for a large amount of N input that occurs in a short period. However, in the context of chronically rising N deposition, the long-term N retention capacity of grasslands should largely depend on the response of subsoil, especially after topsoil N is saturated.


Subject(s)
Grassland , Soil , Carbon/analysis , Ecosystem , Nitrogen/metabolism
17.
BMC Ecol Evol ; 21(1): 186, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34615463

ABSTRACT

BACKGROUND: Sympatric speciation along ecological gradients has been studied repeatedly, in particular in freshwater fishes. Rapid post-glacial ecological divergence has resulted in numerous endemic species or ecologically distinct populations in lakes of the temperate zones. Here, we focus on the Baltic cisco (Coregonus albula) complex, to study the genetic similarity among two pairs of sympatric autumn- and spring-spawning populations from post-glacial German Lakes Stechlin and Breiter Luzin. For comparison, we included a similar pair of sympatric populations from the Swedish Lake Fegen. We wanted to explore potential genetic similarities between the three sympatric cisco population pairs in the three lakes, to evaluate whether the pairs may have emerged independently in the three lakes, or whether two different species may have colonized all three lakes independently. Furthermore, we considered allopatric C. albula populations from three Polish, three Finnish, and four Swedish locations, added one Siberian population of the sister species C. sardinella and a Swedish C. maraena (whitefish) population. By genotyping nine microsatellite markers in 655 individuals from these 18 populations, we wanted to elucidate how strongly the cisco populations differ across a larger geographical area within Europe. Finally, we compared the genetic differences between the spring- and autumn-spawning populations of ciscoes in the two German lakes to infer the potentially deteriorating effect of strong anthropogenic pressure on the lakes. RESULTS: Dendrogram, Principal Coordinate Analysis and admixture analysis all indicated strong correspondence between population differentiation and geographical location for most cisco populations in Europe, including the Siberian population of C. sardinella. However, populations from some Swedish lakes deviated from this general pattern, by showing a distinct genetic structure. We found evidence for independent evolution of the three sympatric population pairs, because the populations co-occurring in the same lake were always most closely related. However, genetic differentiation was weak in the two German population pairs, but strong in the Swedish Lake Fegen, indicating that the weak differentiation in the German pairs reported earlier has eroded further. CONCLUSIONS: Our results suggest that the genetic differentiation at neutral genetic markers among populations of the Baltic cisco complex has evolved (and is maintained) by random genetic drift in isolated populations. However, earlier studies on the Swedish populations combining mitochondrial DNA and microsatellite data indicate that also post-glacial immigration from separate glacial refugia has shaped the present genetic population structure. The low neutral differentiation of the German sympatric pairs in contrast to the Swedish pair suggests that recent anthropogenic effects on the lakes in Germany may put the endemic spring-spawners at risk to extinction.


Subject(s)
Salmonidae , Animals , Genetics, Population , Humans , Lakes , Microsatellite Repeats , Salmonidae/genetics , Sympatry
18.
Ecol Lett ; 24(3): 553-562, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33423373

ABSTRACT

Light asymmetry, with a higher light acquisition per unit biomass for larger plants, has been proposed as a major mechanism of species loss after nitrogen addition. However, solid evidence for this has been scarce. We measured the allometric size-height relationships of 25 plant species along a nitrogen addition gradient manipulated annually for eight years in a speciose alpine meadow and found that the positive relationship between species relative abundance and the height scaling exponent in natural conditions disappeared after nitrogen addition. Those species with lower height scaling exponents increased in relative abundance after nitrogen addition, thereby decreasing the community weighted mean and dispersion of the height scaling exponent and ultimately the species richness. Our results provided some unique evidence for light asymmetry induced species loss after nitrogen addition and a new insight from the perspective of allometric scaling to explain biodiversity maintenance in the face of global changes.


Subject(s)
Nitrogen , Plants , Biodiversity , Biomass
19.
Glob Change Biol Bioenergy ; 11(6): 763-772, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31423154

ABSTRACT

The global demand for biofuels in the transport sector may lead to significant biodiversity impacts via multiple human pressures. Biodiversity assessments of biofuels, however, seldom simultaneously address several impact pathways, which can lead to biased comparisons with fossil fuels. The goal of the present study was to quantify the direct influence of habitat loss, water consumption and greenhouse gas (GHG) emissions on potential global species richness loss due to the current production of first-generation biodiesel from soybean and rapeseed and bioethanol from sugarcane and corn. We found that the global relative species loss due to biofuel production exceeded that of fossil petrol and diesel production in more than 90% of the locations considered. Habitat loss was the dominating stressor with Chinese corn, Brazilian soybean and Brazilian sugarcane having a particularly large biodiversity impact. Spatial variation within countries was high, with 90th percentiles differing by a factor of 9 to 22 between locations. We conclude that displacing fossil fuels with first-generation biofuels will likely negatively affect global biodiversity, no matter which feedstock is used or where it is produced. Environmental policy may therefore focus on the introduction of other renewable options in the transport sector.

20.
Oecologia ; 189(4): 851-861, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30382388

ABSTRACT

Space and environment are fundamental in influencing the community structure. However, their relative influences vary according to species' biological characteristics. Here we test whether differences in life-history traits mainly linked to dispersal abilities influence bat, rodent and marsupial beta diversity along spatial and environmental gradients. We expect bat beta diversity to be weakly related with space in comparison to dispersal-limited rodents and marsupials. Using data from communities distributed along the Atlantic Forest of South America, we calculated the total beta diversity and its turnover and nestedness components for each group. We estimated the strength of correlation of beta diversity and its components along spatial and environmental gradients, comparing their importance within and between groups. Space had the higher influence on rodent and marsupial beta diversity. For bats, both gradients influenced similarly their community composition. Between taxa, the influence of these gradients did not differ for rodents and marsupials, while bats presented a stronger relationship with environment compared to non-volant small mammals. Also, all groups presented a similar influence of the spatial gradients on their community structure, despite their differences in dispersal abilities. Our results suggest that differences in biological characteristics partially influence the community structure of these mammals, with their responses along space likely reflecting similar biogeographical dynamics affecting their distribution. Overall, our results improve the understanding of the processes structuring these communities, highlighting the benefits of comparative analyses within a beta diversity perspective to better understand the influence of multiple processes on the community assembly along geographical gradients.


Subject(s)
Chiroptera , Marsupialia , Animals , Biodiversity , Forests , Mammals , Rodentia , South America
SELECTION OF CITATIONS
SEARCH DETAIL
...