Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Clin Neurophysiol ; 161: 147-156, 2024 May.
Article in English | MEDLINE | ID: mdl-38484486

ABSTRACT

OBJECTIVE: We leveraged microstate characteristics and power features to examine temporal and spectral deviations underlying persistent and remittent attention-deficit/hyperactivity disorder (ADHD). METHODS: 50 young adults with childhood ADHD (28 persisters, 22 remitters) and 28 demographically similar healthy controls (HC) were compared on microstates features and frequency principal components (f-PCs) of eye-closed resting state. Support vector machine model with sequential forward selection (SVM-SFS) was utilized to discriminate three groups. RESULTS: Four microstates and four comparable f-PCs were identified. Compared to HC, ADHD persisters showed prolonged duration in microstate C, elevated power of the delta component (D), and compromised amplitude of the two alpha components (A1 and A2). Remitters showed increased duration and coverage of microstate C, together with decreased activity of D, relatively intact amplitude of A1, and amplitude reduction in A2. The SVM-SFS algorithm achieved an accuracy of 93.59% in classifying persisters, remitters and controls. The most discriminative features selected were those exhibiting group differences. CONCLUSIONS: We found widespread anomalies in ADHD persisters in brain dynamics and intrinsic EEG components. Meanwhile, the neural features in remitters exhibited multiple patterns. SIGNIFICANCE: This study underlines the use of microstate dynamics and spectral components as potential markers of persistent and remittent ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Electroencephalography , Humans , Attention Deficit Disorder with Hyperactivity/physiopathology , Attention Deficit Disorder with Hyperactivity/diagnosis , Male , Female , Young Adult , Adult , Electroencephalography/methods , Support Vector Machine , Adolescent
2.
Biol Res ; 51(1): 57, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30572940

ABSTRACT

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Subject(s)
Blood Pressure/physiology , Heart Rate/physiology , Hypoxia/physiopathology , Vagotomy , Animals , Blood Glucose/physiology , Body Weight/physiology , Chronic Disease , Disease Models, Animal , Hematocrit , Male , Rabbits
3.
Biol. Res ; 51: 57, 2018. tab, graf
Article in English | LILACS | ID: biblio-1011401

ABSTRACT

BACKGROUND: chronic hypoxia increases basal ventilation and pulmonary vascular resistance, with variable changes in arterial blood pressure and heart rate, but it's impact on heart rate variability and autonomic regulation have been less well examined. We studied changes in arterial blood pressure, heart rate and heart rate variability (HRV) in rabbits subjected to chronic normobaric hypoxia (CNH; PB ~ 719 mmHg; FIO2 ~ 9.2%) for 14 days and assess the effect of autonomic control by acute bilateral vagal denervation. RESULTS: exposure to CNH stalled animal weight gain and increased the hematocrit, without affecting heart rate or arterial blood pressure. Nevertheless, Poincaré plots of the electrocardiographic R-R intervals showed a reduced distribution parallel to the line of identity, which interpreted as reduced long-term HRV. In the frequency domain, CNH reduced the very-low- (< 0.2 Hz) and high-frequency components (> 0.8 Hz) of the R-R spectrograms and produced a prominent component in the low-frequency component (0.2-0.5 Hz) of the power spectrum. In control and CNH exposed rabbits, bilateral vagotomy had no apparent effect on the short- and long-term HRV in the Poincaré plots. However, bilateral vagotomy differentially affected higher-frequency components (> 0.8 Hz); reducing it in control animals without modifying it in CNH-exposed rabbits. CONCLUSIONS: These results suggest that CNH exposure shifts the autonomic balance of heart rate towards a sympathetic predominance without modifying resting heart rate or arterial blood pressure.


Subject(s)
Animals , Male , Rabbits , Vagotomy , Blood Pressure/physiology , Heart Rate/physiology , Hypoxia/physiopathology , Blood Glucose/physiology , Body Weight/physiology , Chronic Disease , Disease Models, Animal , Hematocrit
4.
Luminescence ; 32(3): 321-326, 2017 May.
Article in English | MEDLINE | ID: mdl-27476471

ABSTRACT

Night-time changes in bioluminescence intensity in the coastal area of the Black Sea were recorded. It was noted that the biomass of luminous organisms is closely correlated with the biomass of plankton and other pelagic organisms, including commercial pelagic fish. The parameters of plankton communities' basic biological rhythms were determined using the discrete Fourier transform method. These rhythms were manifest as spatial and temporal changes in the bioluminescence intensity. It was shown that changes in the bioluminescence intensity over a 14.0-h period were due to the duration of the light/dark cycles. By contrast, changes in bioluminescence intensity with periods of 4.7 and 2.8 h were due to the endogenous rhythms of the plankton community (feeding and cell division). An original method for evaluating of errors in the calculated periods of the biological rhythms was proposed. A strong correlation (r = 0.906) was observed between the measured and calculated values for the bioluminescence intensity, which provided support for the assumptions made.


Subject(s)
Circadian Rhythm , Fourier Analysis , Plankton/metabolism , Black Sea , Luminescence , Plankton/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...