Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Foods ; 13(12)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38928871

ABSTRACT

Citrinin (CIT) is a mycotoxin commonly found in grains, fruits, herbs, and spices. Its toxicity primarily affects the kidney and liver. Meanwhile, food industry by-products, particularly from fishing and aquaculture, contribute significantly to environmental concerns but can also serve as valuable sources of nutrients and bioactive compounds. Additionally, microalgae like spirulina (Arthrospira platensis) offer interesting high-added-value compounds with potential biological and cytoprotective properties. This study aims to reduce CIT's toxicity on SH-SY5Y cells using natural extracts from the microalgae spirulina and fish processing by-products (sea bass head). The combination of these extracts with CIT has shown increased cell viability up to 15% for fish by-products extract and about 10% for spirulina extract compared to CIT alone. Furthermore, a notable reduction of up to 63.2% in apoptosis has been observed when fish by-products extracts were combined with CIT, counteracting the effects of CIT alone. However, the extracts' effectiveness in preventing CIT toxicity in the cell cycle remains unclear. Overall, considering these nutrient and bioactive compound sources is crucial for enhancing food safety and mitigating the harmful effects of contaminants such as mycotoxins. Nevertheless, further studies are needed to investigate their mechanisms of action and better understand their protective effects more comprehensively.

2.
J Vet Res ; 65(2): 193-200, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34250304

ABSTRACT

INTRODUCTION: There is a balance between oxidative stress, antioxidant capacity and immune response. Their roles in physiological and behavioural mechanisms are important for the maintenance of the organism's internal equilibrium. This study aimed to evaluate the antioxidant effects of the exogenous alga Spirulina platensis (Arthrospira platensis) in a stress-induced rat model, and to describe its possible mechanism of action. MATERIAL AND METHODS: Thirty-six adult male Sprague Dawley rats were separated into four groups: control (C), stress (S), S. platensis (Sp), and S. platensis + stress (SpS). The rats in groups Sp and SpS were fed with 1,500 mg/kg b.w./day Spirulina platensis for 28 days. All rats were exposed to prolonged light phase conditions (18 h light : 6 h dark) for 14 days. The SpS and S groups were exposed to stress by being kept isolated and in a crowded environment. Blood samples were obtained by puncturing the heart on the 28th day. The effect of stress on serum corticosterone, oxidative stress markers (TOS, TAC, PON1, OSI) and immunological parameters (IL-2, IL-4, IFN-É£) were tested. Also, the brain, heart, intestines (duodenum, ileum, and colon), kidney, liver, spleen, and stomach of the rats were weighed. RESULTS: Serum corticosterone levels were higher in the S group than in the C group, and significantly lower in the SpS group than in the S group. Mean total antioxidant capacity were lower in the S group than in the C group, and Spirulina reversed this change. Although not significantly different, IL-2 was lower in the S group than in the C group. However, in the SpS group, IL-2 increased due to Spirulina platensis mitigating effects of stress. CONCLUSION: Male rats fed a diet with Spirulina platensis could experience significantly milder physiological changes during stress, although stress patterns may be different. Exogenous antioxidant supplements merit further investigation in animals and humans where the endogenous defence mechanism against stress may not be sufficient.

3.
Front Nutr ; 8: 667072, 2021.
Article in English | MEDLINE | ID: mdl-34124121

ABSTRACT

Spirulina refers to two species of blue green algae (Arthrospira platensis, and A. maxima) consumed by humans as food for centuries. While, Spirulina has been shown to have immune enhancing properties in several animal and human studies, there are no systematic studies in dogs. The aim of this study was to evaluate the immunomodulatory effect of dietary supplementation with Spirulina in dogs. The study was conducted in two phases: Pre-test (8 wks.) and Test (42 wks.). Thirty adult dogs (mean 2.9 yrs.) were randomized into two groups and fed a nutritionally complete diet in the "Pre-test" phase. At the end of "Pre-test" phase all dogs received a rabies vaccine, and dogs in "test group" were switched to diet supplemented with dried Arthrospira platensis (Spirulina). Response to rabies vaccine was evaluated by Rapid Fluorescent Focus Inhibition Test (RFFIT). Gut immune response was assessed by measuring fecal IgA. Gut microbiota was evaluated by Temporal Temperature Gel Electrophoresis (TTGE) methodology. Repeated measures ANOVA was used to test for differences between groups and statistical significance considered to be p < 0.05. Dogs fed diets supplemented with Spirulina demonstrated enhanced immune status by showing significantly higher vaccine response and higher levels of fecal IgA as compared to the control group. Supplementing diets with Spirulina also resulted in significantly increased gut microbiota stability in the test group. In conclusion, diets supplemented with Spirulina significantly enhanced immune response and gut health in dogs.

4.
São Paulo; s.n; 2011. 169 p. ilus, tab, graf.
Thesis in Portuguese | LILACS | ID: lil-691562

ABSTRACT

O principal objetivo deste trabalho foi a avaliação do potencial da utilização do dióxido de carbono proveniente da fermentação alcoólica no cultivo Spirulina (Arthrospira) platensis, visando demonstrar a possibilidade do uso de um gás efluente na produção de biomassa microbiana de alto valor comercial. Para tanto, tal cianobactéria foi cultivada em tanques abertos, em escala laboratorial, em temperatura de 30 ± 1 °C e intensidade luminosa de 156 ± 20 µmol fótons m-2 s-1. O estudo de diversas variáveis de cultivo levou à fixação das seguintes condições: concentração do inóculo de 400 ± 20 mg L-1; pH de 9,0 ± 0,3, controlado por meio da adição de dióxido de carbono proveniente de cilindros; meio de cultura Schlõsser, modificado de maneira a conter 0,497 e 16,4 g L-1 de carbonato e bicarbonato de sódio, respectivamente, e apenas 5,9 mM de nitrato de sódio; adição de 7,5 mM de sulfato de amônio no decorrer de 13 dias, em quantidades diárias exponencialmente crescentes, através do processo descontínuo alimentado de cultivo. Sob tais condições foram obtidos os seguintes resultados: concentração celular máxima (Xm) de 2990 mg L-1, produtividade celular (PX) de 185 mg L-1 d-1, velocidade específica máxima de crescimento (µm) de 0,42 d-1, fator de conversão de nitrogênio em células (YX/N) de 8,85 mg mg-1, teor final de clorofila (CLf) de 4,3 mg g-1, e teores de proteínas (PTN) e lipídeos (LIP) de 35 e 21 %, respectivamente. Com a finalidade de estimular o crescimento celular de A. platensis, optou-se por aumentar o valor da intensidade luminosa de 156 para 192 ou 252 ± 20 µmol fótons m-2 s-1 no 5º, 8º ou 11º dia de cultivo. Os melhores resultados cinéticos (Xm = 3954 mg L-1, PX = 253 mg L-1 d-1) e de conteúdo da biomassa (CLf = 4,2 mg g-1, PTN = 28 %, LIP = 19 %) foram obtidos com aumento da intensidade luminosa para 192 ± 20 µmol fótons m-2 s-1 no 8º dia de cultivo. Os ensaios realizados sob tais condições otimizadas, porém com dióxido de carbono...


The main objective of this work was the evaluation of the potential of using carbon dioxide from alcoholic fermentation on Spirulina (Arthrospira) platensis cultivation, aiming to prove the feasibility of applying an effluent gas in the production of high added-value microbial biomass. In order to do so, the cyanobacterium was cultivated in laboratorial-scale open raceway tanks at temperature 30 ± 1 °C and light intensity 156 ± 20 µmol photons m-2 s-1. After the study of several cultivation variables, the following conditions were set: inoculum concentration 400 ± 20 mg L-1; pH 9,0 ± 0,3, controlled by the addition of carbon dioxide from cylinders; Schlõsser medium, modified as to contain 0,497 and 16,4 g L-1 sodium carbonate and bicarbonate, respectively, and only 5,9 mM sodium nitrate; addition of 7,5 mM ammonium sulphate throughout 13 days, at exponentially increasing amounts, by the fed-batch cultivation process. Under such conditions, the following results were obtained: maximum cell concentration Xm = 2990 mg L-1, cell productivity PX = 185 mg L-1 d-1, maximum specific growth rate µm = 0,42 d-1, cell to nitrogen conversion factor YX/N = 8,85 mg mg-1, final chlorophyll content CLf = 4,3 mg g-1, and content of proteins (PTN) and lipids (LIP) of 35 and 21 %, respectively. Objectiving further optimized A. platensis growth, it was chosen to increase the light intensity from 156 to 192 or 252 ± 20 µmol photons m-2 s-1 on the 5th, 8th or 11th day of cultivation. The best results in terms of growth (Xm = 3954 mg L-1, PX = 253 mg L-1 d-1) and biomass content (CLf = 4,2 mg g-1, PTN = 28 %, LIP = 19 %) were reached with increasing the light intensity to 192 ± 20 µmol photons m-2 s-1 on the 8th day of cultivation. The runs carried out under such optimum conditions, but using carbon dioxide from alcoholic fermentation, led to the following results: Xm = 3298 mg L-1, PX = 206 mg L-1 d-1, CLf = 4,0 mg g-1, PTN = 28 %, LIP = 17 %. Conclusively, the...


Subject(s)
Carbon Dioxide , Fermentation , Nitrogen , Nitrates/administration & dosage , Spirulina/growth & development , Crop Production , Photic Stimulation , Ponds
5.
J Phycol ; 36(4): 675-679, 2000 Aug 26.
Article in English | MEDLINE | ID: mdl-29542156

ABSTRACT

Spirulina (Arthrospira) platensis (Nordstedt) Geitler cells grown under mixotrophic conditions exhibit a modified response to light. The maximal photosynthetic rate and the light saturation value of mixotrophic cultures were higher than those of the photoautotrophic cultures. Dark respiration and light compensation point were also significantly higher in the mixotrophically grown cells. As expected, the mixotrophic cultures grew faster and achieved a higher biomass concentration than the photoautotrophic cultures. In contrast, the growth rate of the photoautotrophic cultures was more sensitive to light. The differences between the two cultures were also apparent in their responses to exposure to high photon flux density of 3000 µmol·m-2 ·s-1 . The light-dependent O2 evolution rate and the maximal efficiency of photosystem II photochemistry declined more rapidly in photoautotrophically grown than in mixotrophically grown cells as a result of exposure to high photon flux density. Although both cultures recovered from the high photon flux density stress, the mixotrophic culture recovered faster and to a higher extent. Based on the above results, growth of S. platensis with a fixed carbon source has a significant effect on photosynthetic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...