Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Language
Publication year range
1.
Fungal Genet Biol ; 171: 103873, 2024 03.
Article in English | MEDLINE | ID: mdl-38266703

ABSTRACT

The Rho family of monomeric GTPases act as signaling proteins to establish and maintain cell polarity and other essential cellular processes. Rho3 is a GTPase of the Rho family that is exclusive of fungi that regulate cell polarity in yeast. However, studies have yet to explore its function in filamentous fungi. In this work, we investigated the role of RHO-3 in the model organism Neurospora crassa. Confocal microscopy analysis revealed that RHO-3 localizes in the outer region of the Spitzenkörper (Spk), in the plasma membrane from region II to the beginning of region III, and in the septa of mature hyphae. The phenotypic effect of the rho-3 deletion was analyzed. The results revealed that the rho-3 null strain showed severe defects in growth rate, aerial hyphae length, and conidia production. The organization of the Spk is also affected in the absence of RHO-3. Co-expression analysis of GFP-RHO-3 with glucan synthase 1 (GS-1-mChFP) and chitin synthase 1 (CHS-1-mChFP) revealed that RHO-3 localizes in the external region of the Spk in the macrovesicles zone. In summary, our results suggest that RHO-3 is not essential for the polarized growth of hyphae but plays a significant role in hyphal extension rate, conidiation, sexual reproduction and the integrity of the Spk, possibly regulating the delivery of macrovesicles to the apical dome.


Subject(s)
Fungal Proteins , Neurospora crassa , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae , Cell Membrane/metabolism , Saccharomyces cerevisiae/metabolism
2.
mBio ; 12(5): e0161521, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34607459

ABSTRACT

The endoplasmic reticulum (ER) is an elaborate organelle composed of distinct structural and functional domains. ER structure and dynamics involve membrane-shaping proteins of the reticulon and Yop1/DP1 families, which promote membrane curvature and regulate ER shaping and remodeling. Here, we analyzed the function of the reticulon (RTN1) and Yop1 proteins (YOP1 and YOP2) of the model fungus Podospora anserina and their contribution to sexual development. We found that RTN1 and YOP2 localize to the peripheral ER and are enriched in the dynamic apical ER domains of the polarized growing hyphal region. We discovered that the formation of these domains is diminished in the absence of RTN1 or YOP2 and abolished in the absence of YOP1 and that hyphal growth is moderately reduced when YOP1 is deleted in combination with RTN1 and/or YOP2. In addition, we found that RTN1 associates with the Spitzenkörper. Moreover, RTN1 localization is regulated during meiotic development, where it accumulates at the apex of growing asci (meiocytes) during their differentiation and at their middle region during the subsequent meiotic progression. Furthermore, we discovered that loss of RTN1 affects ascospore (meiotic spore) formation, in a process that does not involve YOP1 or YOP2. Finally, we show that the defects in ascospore formation of rtn1 mutants are associated with defective nuclear segregation and spindle dynamics throughout meiotic development. Our results show that sexual development in P. anserina involves a developmental remodeling of the ER that implicates the reticulon RTN1, which is required for meiotic nucleus segregation. IMPORTANCE Meiosis consists of a reductional cell division, which allows ploidy maintenance during sexual reproduction and which provides the potential for genetic recombination, producing genetic variation. Meiosis constitutes a process of foremost importance for eukaryotic evolution. Proper partitioning of nuclei during this process relies on accurate functioning and positioning of the spindle, the microtubule cytoskeletal apparatus that conducts chromosome segregation. In this research, we show that in the model fungus Podospora anserina this process requires a protein involved in structuring the endoplasmic reticulum (ER)-the reticulon RTN1. The ER is a complex organelle composed of distinct structural domains, including different peripheral domains and the nuclear envelope. Our findings suggest that spindle dynamics during meiosis relies on remodeling of the ER membrane, which involves the activity of RTN1. Our research discloses that the proteins implicated in shaping the ER are main contributors to the regulation of nuclear dynamics during the sexual cycle.


Subject(s)
Endoplasmic Reticulum/metabolism , Meiosis , Podospora/genetics , Podospora/physiology , Chromosome Segregation , Membrane Proteins/metabolism , Microtubules , Nuclear Envelope , Podospora/cytology , Spindle Apparatus/metabolism , Spores, Fungal
3.
Cell Surf ; 5: 100020, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32743136

ABSTRACT

The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, ß-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.

4.
Fungal Genet Biol ; 117: 30-42, 2018 08.
Article in English | MEDLINE | ID: mdl-29601947

ABSTRACT

In Neurospora crassa hyphae the localization of all seven chitin synthases (CHSs) at the Spitzenkörper (SPK) and at developing septa has been well analyzed. Hitherto, the mechanisms of CHSs traffic and sorting from synthesis to delivery sites remain largely unexplored. In Saccharomyces cerevisiae exit of Chs3p from the endoplasmic reticulum (ER) requires chaperone Chs7p. Here, we analyzed the role of CSE-7, N. crassa Chs7p orthologue, in the biogenesis of CHS-4 (orthologue of Chs3p). In a N. crassa Δcse-7 mutant, CHS-4-GFP no longer accumulated at the SPK and septa. Instead, fluorescence was retained in hyphal subapical regions in an extensive network of elongated cisternae (NEC) referred to previously as tubular vacuoles. In a complemented strain expressing a copy of cse-7 the localization of CHS-4-GFP at the SPK and septa was restored, providing evidence that CSE-7 is necessary for the localization of CHS-4 at hyphal tips and septa. CSE-7 was revealed at delimited regions of the ER at the immediacies of nuclei, at the NEC, and remarkably also at septa and the SPK. The organization of the NEC was dependent on the cytoskeleton. SEC-63, an extensively used ER marker, and NCA-1, a SERCA-type ATPase previously localized at the nuclear envelope, were used as markers to discern the nature of the membranes containing CSE-7. Both SEC-63 and NCA-1 were found at the nuclear envelope, but also at regions of the NEC. However, at the NEC only NCA-1 co-localized extensively with CSE-7. Observations by transmission electron microscopy revealed abundant rough ER sheets and distinct electron translucent smooth flattened cisternae, which could correspond collectively to the NEC, thorough the subapical cytoplasm. This study identifies CSE-7 as the putative ER receptor for its cognate cargo, the polytopic membrane protein CHS-4, and elucidates the complexity of the ER system in filamentous fungi.


Subject(s)
Chitin Synthase/genetics , Hyphae/genetics , Membrane Proteins/genetics , Molecular Chaperones/genetics , Neurospora crassa/genetics , Saccharomyces cerevisiae Proteins/genetics , Cell Nucleus/genetics , Cytoplasm/genetics , Endoplasmic Reticulum/genetics , Fungal Proteins/genetics , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Microtubules/genetics , Neurospora crassa/growth & development , Protein Transport/genetics , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
5.
Braz. j. microbiol ; Braz. j. microbiol;47(1): 266-269, Jan.-Mar. 2016. graf
Article in English | LILACS | ID: lil-775127

ABSTRACT

Abstract The Spitzenkörper is a dynamic and specialized multicomponent cell complex present in the tips of hyphal cells. The amphiphilic styryl dye FM4-64 was found to be ideal for imaging the dynamic changes of the apical vesicle cluster within growing hyphal tips. It is widely used as a marker of endocytosis and to visualize vacuolar membranes. Here we performed uptake experiments using FM4-64 to study the dynamic of the Spitzenkörper in Trichosporon asahii. We observed that Spitzenkörpers were present at the tip of the budding site of the spore, blastospore, and the germ tube of T. asahii. We also found that Spitzenkörpers were present at the tip of the hyphae as well as the subapical regions. Cytochalasin D, an inhibitor of actin polymerization, leads to abnormal Spitzenkörper formation and loss of cell polarity.


Subject(s)
Fluorescent Dyes/analysis , Hyphae/cytology , Organelles/metabolism , Pyridinium Compounds/analysis , Quaternary Ammonium Compounds/analysis , Staining and Labeling/methods , Trichosporon/cytology , Trichosporon/growth & development , Hyphae/growth & development , Microscopy, Fluorescence
6.
Braz J Microbiol ; 47(1): 266-9, 2016.
Article in English | MEDLINE | ID: mdl-26887254

ABSTRACT

The Spitzenkörper is a dynamic and specialized multicomponent cell complex present in the tips of hyphal cells. The amphiphilic styryl dye FM4-64 was found to be ideal for imaging the dynamic changes of the apical vesicle cluster within growing hyphal tips. It is widely used as a marker of endocytosis and to visualize vacuolar membranes. Here we performed uptake experiments using FM4-64 to study the dynamic of the Spitzenkörper in Trichosporon asahii. We observed that Spitzenkörpers were present at the tip of the budding site of the spore, blastospore, and the germ tube of T. asahii. We also found that Spitzenkörpers were present at the tip of the hyphae as well as the subapical regions. Cytochalasin D, an inhibitor of actin polymerization, leads to abnormal Spitzenkörper formation and loss of cell polarity.


Subject(s)
Fluorescent Dyes/analysis , Hyphae/cytology , Organelles/metabolism , Pyridinium Compounds/analysis , Quaternary Ammonium Compounds/analysis , Staining and Labeling/methods , Trichosporon/cytology , Trichosporon/growth & development , Hyphae/growth & development , Microscopy, Fluorescence
7.
Braz. J. Microbiol. ; 47(1): 266-269, 2016. ilus
Article in English | VETINDEX | ID: vti-688347

ABSTRACT

The Spitzenkörper is a dynamic and specialized multicomponent cell complex present in the tips of hyphal cells. The amphiphilic styryl dye FM4-64 was found to be ideal for imaging the dynamic changes of the apical vesicle cluster within growing hyphal tips. It is widely used as a marker of endocytosis and to visualize vacuolar membranes. Here we performed uptake experiments using FM4-64 to study the dynamic of the Spitzenkörper in Trichosporon asahii. We observed that Spitzenkörpers were present at the tip of the budding site of the spore, blastospore, and the germ tube of T. asahii. We also found that Spitzenkörpers were present at the tip of the hyphae as well as the subapical regions. Cytochalasin D, an inhibitor of actin polymerization, leads to abnormal Spitzenkörper formation and loss of cell polarity.(AU)


Subject(s)
Fungal Structures , Trichosporon , Fluorescent Dyes , Cytochalasin D , Endocytosis
8.
Fungal Genet Biol ; 82: 104-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26150287

ABSTRACT

The subcellular localization and dynamics of FKS-1, the putative catalytic subunit of the ß-1,3-glucan synthase complex, was analyzed in growing hyphae of Neurospora crassa by live confocal microscopy. GFP-tagged FKS-1 accumulated at the outer layer of the Spitzenkörper (Spk), and at the apical plasma membrane (PM). Fluorescence recovery after photobleaching analysis revealed arrival of FKS-1-containing carriers first at the immediate surroundings of the core region of the Spk, and thereafter to the Spk most outer region. The results obtained here and previous data suggest that FKS-1 is transported to the Spk in macrovesicles.


Subject(s)
Glucosyltransferases/metabolism , Hyphae/metabolism , Neurospora crassa/metabolism , Video Recording , beta-Glucans/metabolism
9.
Fungal Genet Biol ; 75: 30-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25596036

ABSTRACT

Chitin, one of the most important carbohydrates of the fungal cell wall, is synthesized by chitin synthases (CHS). Seven sequences encoding CHSs have been identified in the genome of Neurospora crassa. Previously, CHS-1, -3 and -6 were found at the Spitzenkörper(Spk) core and developing septa. We investigated the functional importance of each CHS in growth and development of N. crassa. The cellular distribution of each CHS tagged with fluorescent proteins and the impact of corresponding gene deletions on vegetative growth and sexual development were compared. CHS-2, -4, -5 and -7 were also found at the core of the Spk and in forming septa in vegetative hyphae. As the septum ring developed, CHS-2-GFP remained at the growing edge of the septum until it localized around the septal pore. In addition, all CHSs were located in cross-walls of conidiophores. A partial co-localization of CHS-1-m and CHS-5-GFP or CHS-2-GFP occurred in the Spk and septa. Analyses of deletion mutants suggested that CHS-6 has a role primarily in hyphal extension and ascospore formation, CHS-5 in aerial hyphae, conidia and ascospore formation, CHS-3 in perithecia development and CHS-7 in all of the aforementioned. We show that chs-7/csmB fulfills a sexual function and chs-6/chsG fulfills a vegetative growth function in N. crassa but not in Aspergillus nidulans, whereas vice versa chs-2/chsA fulfills a sexual function in A. nidulans but not in N. crassa. This suggests that different classes of CHSs can fulfill distinct developmental functions in various fungi. Immunoprecipitation followed by mass spectrometry of CHS-1-GFP, CHS-4-GFP and CHS-5-GFP identified distinct putative interacting proteins for each CHS. Collectively, our results suggest that there are distinct populations of chitosomes, each carrying specific CHSs, with particular roles during different developmental stages.


Subject(s)
Chitin Synthase/physiology , Neurospora crassa/growth & development , Neurospora crassa/genetics , Aspergillus nidulans/genetics , Cytoplasmic Vesicles/physiology , Fungal Proteins/genetics , Genotype , Green Fluorescent Proteins/genetics , Hyphae/growth & development , Hyphae/ultrastructure , Immunoprecipitation , Neurospora crassa/physiology , Spores, Fungal/growth & development , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL