Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters











Publication year range
1.
Infect Immun ; : e0013624, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133017

ABSTRACT

The food-borne pathogen Listeria monocytogenes uses actin-based motility to generate plasma membrane protrusions that mediate the spread of bacteria between host cells. In polarized epithelial cells, efficient protrusion formation by L. monocytogenes requires the secreted bacterial protein InlC, which binds to a carboxyl-terminal Src homology 3 (SH3) domain in the human scaffolding protein Tuba. This interaction antagonizes Tuba, thereby diminishing cortical tension at the apical junctional complex and enhancing L. monocytogenes protrusion formation and spread. Tuba contains five SH3 domains apart from the domain that interacts with InlC. Here, we show that human GTPase Dynamin 2 associates with two SH3 domains in the amino-terminus of Tuba and acts together with this scaffolding protein to control the spread of L. monocytogenes. Genetic or pharmacological inhibition of Dynamin 2 or knockdown of Tuba each restored normal protrusion formation and spread to a bacterial strain deleted for the inlC gene (∆inlC). Dynamin 2 localized to apical junctions in uninfected human cells and protrusions in cells infected with L. monocytogenes. Localization of Dynamin 2 to junctions and protrusions depended on Tuba. Knockdown of Dynamin 2 or Tuba diminished junctional linearity, indicating a role for these proteins in controlling cortical tension. Infection with L. monocytogenes induced InlC-dependent displacement of Dynamin 2 from junctions, suggesting a possible mechanism of antagonism of this GTPase. Collectively, our results show that Dynamin 2 cooperates with Tuba to promote intercellular tension that restricts the spread of ∆inlC Listeria. By expressing InlC, wild-type L. monocytogenes overcomes this restriction.

2.
Cells ; 13(2)2024 01 20.
Article in English | MEDLINE | ID: mdl-38275820

ABSTRACT

SRC homology 3 (SH3) domains are critical interaction modules that orchestrate the assembly of protein complexes involved in diverse biological processes. They facilitate transient protein-protein interactions by selectively interacting with proline-rich motifs (PRMs). A database search revealed 298 SH3 domains in 221 human proteins. Multiple sequence alignment of human SH3 domains is useful for phylogenetic analysis and determination of their selectivity towards PRM-containing peptides (PRPs). However, a more precise functional classification of SH3 domains is achieved by constructing a phylogenetic tree only from PRM-binding residues and using existing SH3 domain-PRP structures and biochemical data to determine the specificity within each of the 10 families for particular PRPs. In addition, the C-terminal proline-rich domain of the RAS activator SOS1 covers 13 of the 14 recognized proline-rich consensus sequence motifs, encompassing differential PRP pattern selectivity among all SH3 families. To evaluate the binding capabilities and affinities, we conducted fluorescence dot blot and polarization experiments using 25 representative SH3 domains and various PRPs derived from SOS1. Our analysis has identified 45 interacting pairs, with binding affinities ranging from 0.2 to 125 micromolar, out of 300 tested and potential new SH3 domain-SOS1 interactions. Furthermore, it establishes a framework to bridge the gap between SH3 and PRP interactions and provides predictive insights into the potential interactions of SH3 domains with PRMs based on sequence specifications. This novel framework has the potential to enhance the understanding of protein networks mediated by SH3 domain-PRM interactions and be utilized as a general approach for other domain-peptide interactions.


Subject(s)
Peptides , src Homology Domains , Humans , Amino Acid Sequence , GRB2 Adaptor Protein/metabolism , Protein Binding , Phylogeny , Peptides/metabolism , Proline/metabolism
3.
Genetics ; 226(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-37793087

ABSTRACT

Protein-protein interactions (PPIs) drive many cellular processes. Some interactions are directed by Src homology 3 (SH3) domains that bind proline-rich motifs on other proteins. The evolution of the binding specificity of SH3 domains is not completely understood, particularly following gene duplication. Paralogous genes accumulate mutations that can modify protein functions and, for SH3 domains, their binding preferences. Here, we examined how the binding of the SH3 domains of 2 paralogous yeast type I myosins, Myo3 and Myo5, evolved following duplication. We found that the paralogs have subtly different SH3-dependent interaction profiles. However, by swapping SH3 domains between the paralogs and characterizing the SH3 domains freed from their protein context, we find that very few of the differences in interactions, if any, depend on the SH3 domains themselves. We used ancestral sequence reconstruction to resurrect the preduplication SH3 domains and examined, moving back in time, how the binding preference changed. Although the most recent ancestor of the 2 domains had a very similar binding preference as the extant ones, older ancestral domains displayed a gradual loss of interaction with the modern interaction partners when inserted in the extant paralogs. Molecular docking and experimental characterization of the free ancestral domains showed that their affinity with the proline motifs is likely not the cause for this loss of binding. Taken together, our results suggest that a SH3 and its host protein could create intramolecular or allosteric interactions essential for the SH3-dependent PPIs, making domains not functionally equivalent even when they have the same binding specificity.


Subject(s)
Proteins , src Homology Domains , Amino Acid Sequence , Molecular Docking Simulation , Proteins/metabolism , Proline/chemistry , Protein Binding , Binding Sites/genetics
4.
Cells ; 12(16)2023 08 12.
Article in English | MEDLINE | ID: mdl-37626864

ABSTRACT

SRC homology 3 (SH3) domains are fundamental modules that enable the assembly of protein complexes through physical interactions with a pool of proline-rich/noncanonical motifs from partner proteins. They are widely studied modular building blocks across all five kingdoms of life and viruses, mediating various biological processes. The SH3 domains are also implicated in the development of human diseases, such as cancer, leukemia, osteoporosis, Alzheimer's disease, and various infections. A database search of the human proteome reveals the existence of 298 SH3 domains in 221 SH3 domain-containing proteins (SH3DCPs), ranging from 13 to 720 kilodaltons. A phylogenetic analysis of human SH3DCPs based on their multi-domain architecture seems to be the most practical way to classify them functionally, with regard to various physiological pathways. This review further summarizes the achievements made in the classification of SH3 domain functions, their binding specificity, and their significance for various diseases when exploiting SH3 protein modular interactions as drug targets.


Subject(s)
Alzheimer Disease , src Homology Domains , Humans , Phylogeny , Databases, Factual , Drug Delivery Systems
5.
Cell Commun Signal ; 21(1): 30, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36737758

ABSTRACT

BACKGROUND: C3G is a guanine nucleotide exchange factor (GEF) that activates Rap1 to promote cell adhesion. Resting C3G is autoinhibited and the GEF activity is released by stimuli that signal through tyrosine kinases. C3G is activated by tyrosine phosphorylation and interaction with Crk adaptor proteins, whose expression is elevated in multiple human cancers. However, the molecular details of C3G activation and the interplay between phosphorylation and Crk interaction are poorly understood. METHODS: We combined biochemical, biophysical, and cell biology approaches to elucidate the mechanisms of C3G activation. Binding of Crk adaptor proteins to four proline-rich motifs (P1 to P4) in C3G was characterized in vitro using isothermal titration calorimetry and sedimentation velocity, and in Jurkat and HEK293T cells by affinity pull-down assays. The nucleotide exchange activity of C3G over Rap1 was measured using nucleotide-dissociation kinetic assays. Jurkat cells were also used to analyze C3G translocation to the plasma membrane and the C3G-dependent activation of Rap1 upon ligation of T cell receptors. RESULTS: CrkL interacts through its SH3N domain with sites P1 and P2 of inactive C3G in vitro and in Jurkat and HEK293T cells, and these sites are necessary to recruit C3G to the plasma membrane. However, direct stimulation of the GEF activity requires binding of Crk proteins to the P3 and P4 sites. P3 is occluded in resting C3G and is essential for activation, while P4 contributes secondarily towards complete stimulation. Tyrosine phosphorylation of C3G alone causes marginal activation. Instead, phosphorylation primes C3G lowering the concentration of Crk proteins required for activation and increasing the maximum activity. Unexpectedly, optimal activation also requires the interaction of CrkL-SH2 domain with phosphorylated C3G. CONCLUSION: Our study revealed that phosphorylation of C3G by Src and Crk-binding form a two-factor mechanism that ensures tight control of C3G activation. Additionally, the simultaneous SH2 and SH3N interaction of CrkL with C3G, required for the activation, reveals a novel adaptor-independent function of Crk proteins relevant to understanding their role in physiological signaling and their deregulation in diseases. Video abstract.


Subject(s)
Guanine Nucleotide-Releasing Factor 2 , Nuclear Proteins , Humans , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide-Releasing Factor 2/metabolism , HEK293 Cells , Nuclear Proteins/metabolism , Nucleotides/metabolism , Proto-Oncogene Proteins c-crk/metabolism , src Homology Domains , Tyrosine/metabolism
6.
J Biol Chem ; 299(3): 102984, 2023 03.
Article in English | MEDLINE | ID: mdl-36739945

ABSTRACT

Biophysical characterization of protein-protein interactions involving disordered proteins is challenging. A common simplification is to measure the thermodynamics and kinetics of disordered site binding using peptides containing only the minimum residues necessary. We should not assume, however, that these few residues tell the whole story. Son of sevenless, a multidomain signaling protein from Drosophila melanogaster, is critical to the mitogen-activated protein kinase pathway, passing an external signal to Ras, which leads to cellular responses. The disordered 55 kDa C-terminal domain of Son of sevenless is an autoinhibitor that blocks guanidine exchange factor activity. Activation requires another protein, Downstream of receptor kinase (Drk), which contains two Src homology 3 domains. Here, we utilized NMR spectroscopy and isothermal titration calorimetry to quantify the thermodynamics and kinetics of the N-terminal Src homology 3 domain binding to the strongest sites incorporated into the flanking disordered sequences. Comparing these results to those for isolated peptides provides information about how the larger domain affects binding. The affinities of sites on the disordered domain are like those of the peptides at low temperatures but less sensitive to temperature. Our results, combined with observations showing that intrinsically disordered proteins become more compact with increasing temperature, suggest a mechanism for this effect.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Intrinsically Disordered Proteins , Animals , Binding Sites , Drosophila melanogaster/metabolism , Entropy , Intrinsically Disordered Proteins/chemistry , Peptides/metabolism , Protein Binding , src Homology Domains , Temperature , Son of Sevenless Protein, Drosophila/chemistry , Drosophila Proteins/chemistry
7.
J Biol Chem ; 298(10): 102384, 2022 10.
Article in English | MEDLINE | ID: mdl-35987383

ABSTRACT

Microtubule-associated protein 2 (MAP2) is an important neuronal target of extracellular signal-regulated kinase 2 (ERK2) involved in Raf signaling pathways, but mechanistic details of MAP2 phosphorylation are unclear. Here, we used NMR spectroscopy to quantitatively describe the kinetics of phosphorylation of individual serines and threonines in the embryonic MAP2 variant MAP2c. We carried out real-time monitoring of phosphorylation to discover major phosphorylation sites that were not identified in previous studies relying on specific antibodies. Our comparison with the phosphorylation of MAP2c by a model cyclin-dependent kinase CDK2 and with phosphorylation of the MAP2c homolog Tau revealed differences in phosphorylation profiles that explain specificity of regulation of biological functions of MAP2c and Tau. To probe the molecular basis of the regulatory effect of ERK2, we investigated the interactions of phosphorylated and unphosphorylated MAP2c by NMR with single-residue resolution. As ERK2 phosphorylates mostly outside the regions binding microtubules, we studied the binding of proteins other than tubulin, namely regulatory subunit RIIα of cAMP-dependent PKA, adapter protein Grb2, Src homology domain 3 of tyrosine kinases Fyn and Abl, and ERK2 itself. We found ERK2 phosphorylation interfered mostly with binding to proline-rich regions of MAP2c. Furthermore, our NMR experiments in SH-SY5Y neuroblastoma cell lysates showed that the kinetics of dephosphorylation are compatible with in-cell NMR studies and that residues targeted by ERK2 and PKA are efficiently phosphorylated in the cell lysates. Taken together, our results provide a deeper characterization of MAP2c phosphorylation and its effects on interactions with other proteins.


Subject(s)
Extracellular Signal-Regulated MAP Kinases , Microtubule-Associated Proteins , Proline-Directed Protein Kinases , Humans , Extracellular Signal-Regulated MAP Kinases/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Phosphorylation , Proline-Directed Protein Kinases/metabolism , Cell Line, Tumor
8.
Medicina (Kaunas) ; 59(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36676695

ABSTRACT

Background and objectives: It has been shown that electromagnetic fields (EMFs) have negative effects on the reproductive system. The biological effects of EMF on the male reproductive system are controversial and vary depending on the frequency and exposure time. Although a limited number of studies have focused on the structural and functional effects of EMF, the effects of prenatal and postnatal EMF exposure on testes are not clear. We aimed to investigate the effects of 50-Hz, 3-mT EMF exposure (5 days/wk, 4 h/day) during pre- and postnatal periods on testis development. Materials and Methods: Pups from three groups of Sprague-Dawley pregnant rats were used: Sham, EMF-28 (EMF-exposure applied during pregnancy and until postnatal day 28), EMF-42 (EMF-exposure applied during pregnancy and until postnatal day 42). The testis tissues and blood samples of male offspring were collected on the postnatal day 42. Results: Morphometric analyses showed a decrease in seminiferous tubule diameter as a result of testicular degeneration in the EMF-42 group. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were decreased in the EMF-42 group. Lipid peroxidation levels were increased in both EMF groups, while antioxidant levels were decreased only in the EMF-28 group. We found decreased levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the EMF-42 group, and decreased levels of the SRC homology 3 (SH3) and multiple ankyrin repeat domain (SHANK3) in the EMF-28 group in the testis tissue. Conclusions: EMF exposure during pre- and postnatal periods may cause deterioration in the structure and function of testis and decrease in growing factors that would affect testicular functions in male rat pups. In addition to the oxidative stress observed in testis, decreased SHANK3, VEGF, and IGF1 protein levels suggests that these proteins may be mediators in testis affected by EMF exposure. This study shows that EMF exposure during embryonic development and adolescence can cause apoptosis and structural changes in the testis.


Subject(s)
Electromagnetic Fields , Vascular Endothelial Growth Factor A , Pregnancy , Female , Rats , Animals , Male , Electromagnetic Fields/adverse effects , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , Testis/metabolism , Follicle Stimulating Hormone , Vitamins
9.
J Biol Chem ; 296: 100790, 2021.
Article in English | MEDLINE | ID: mdl-34019873

ABSTRACT

Deletion of c-Src, a ubiquitously expressed tyrosine kinase, results in osteoclast dysfunction and osteopetrosis, in which bones harden into "stone." In contrast, deletion of the genes encoding other members of the Src family kinase (SFK) fails to produce an osteopetrotic phenotype. This suggests that c-Src performs a unique function in the osteoclast that cannot be compensated for by other SFKs. We aimed to identify the molecular basis of this unique role in osteoclasts and bone resorption. We found that c-Src, Lyn, and Fyn were the most highly expressed SFKs in WT osteoclasts, whereas Hck, Lck, Blk, and Fgr displayed low levels of expression. Formation of the podosome belt, clusters of unique actin assemblies, was disrupted in src-/- osteoclasts; introduction of constitutively activated SFKs revealed that only c-Src and Fyn could restore this process. To identify the key structural domains responsible, we constructed chimeric Src-Hck and Src-Lyn constructs in which the unique, SH3, SH2, or catalytic domains had been swapped. We found that the Src unique, SH3, and kinase domains were each crucial to establish Src functionality. The SH2 domain could however be substituted with Lyn or Hck SH2 domains. Furthermore, we demonstrate that c-Src's functionality is, in part, derived from an SH3-proximal proline-rich domain interaction with c-Cbl, leading to phosphorylation of c-Cbl Tyr700. These data help clarify Src's unique functionality in the organization of the cytoskeleton in osteoclasts, required for efficient bone resorption and explain why c-Src cannot be replaced, in osteoclasts, by other SFKs.


Subject(s)
Osteoclasts/metabolism , Podosomes/metabolism , src Homology Domains , src-Family Kinases/metabolism , Animals , Bone Resorption/genetics , Bone Resorption/metabolism , Cell Differentiation , HEK293 Cells , Humans , Mice , Osteoclasts/cytology , src-Family Kinases/genetics
10.
Int J Mol Sci ; 22(8)2021 Apr 17.
Article in English | MEDLINE | ID: mdl-33920631

ABSTRACT

BACKGROUND: The adaptor protein Src homology 3 domain-binding protein 2 (SH3BP2) is widely expressed in immune cells. It controls intracellular signaling pathways. The present study was undertaken to investigate the role of SH3BP2 in a murine systemic lupus erythematosus model. METHODS: For the lupus model, we used Faslpr/lpr mice. Clinical and immunological phenotypes were compared between Faslpr/lpr and SH3BP2-deficient Faslpr/lpr mice. Splenomegaly and renal involvement were assessed. Lymphocyte subsets in the spleen were analyzed by flow cytometry. To examine the role of SH3BP2 in specific cells, B cell-specific SH3BP2-deficient lupus mice were analyzed; T cells and bone marrow-derived dendritic cells and macrophages were analyzed in vitro. RESULTS: SH3BP2 deficiency significantly reduced lupus-like phenotypes, presented as splenomegaly, renal involvement, elevated serum anti-dsDNA antibody, and increased splenic B220+CD4-CD8- T cells. Notably, SH3BP2 deficiency in B cells did not rescue the lupus-like phenotypes. Furthermore, SH3BP2 deficiency did not substantially affect the characteristics of T cells and macrophages in vitro. Interestingly, SH3BP2 deficiency suppressed the differentiation of dendritic cells in vitro and reduced the number of dendritic cells in the spleen of the lupus-prone mice. CONCLUSIONS: SH3BP2 deficiency ameliorated lupus-like manifestations. Modulating SH3BP2 expression could thus provide a novel therapeutic approach to autoimmune diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Lupus Erythematosus, Systemic/genetics , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Differentiation , Cells, Cultured , Dendritic Cells/cytology , Dendritic Cells/immunology , Female , Kidney/cytology , Kidney/immunology , Lupus Erythematosus, Systemic/immunology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Spleen/cytology , Spleen/immunology , T-Lymphocytes/immunology
11.
3 Biotech ; 11(4): 204, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33824847

ABSTRACT

Mycobacterium tuberculosis causes more than 1 million deaths every year, which is higher than any other bacterial pathogen. Its success depends on its interaction with the host and its ability to regulate the host's immune system for its own survival. Mycobacterium tuberculosis H37Rv (Mtb) proteome consists of unique PE_PGRS family proteins, which present a significant role in bacterial pathogenesis over the past years. Earlier evidence suggests that some PE_PGRS proteins display fibronectin-binding activity. In this manuscript, computational characterization of the PE_PGRS39 protein has indicated something peculiar about this protein. Investigation showed that PE_PGRS39 is an extracellular protein that, instead of acting as fibronectin-binding protein, might mimic fibronectin which binds to alpha-5 beta-1 (α5ß1) integrin. PE_PGRS39 protein additionally turned into proven pieces of evidence to have motifs such as DXXG and GGXGXD and PXXP that bind with guanosine triphosphate (GTP), calcium, and host Src homology 3 (SH3) domains, respectively, in conjunction with RGD-integrin binding. These interactions designate the direct role of PE_PGRS39 in bacterial pathogenesis via cell adhesion and signaling. Additionally, the analysis showed that PE_PGRS39 is an antigenic protein and epitope prediction provided functional regions of the protein that trigger a cellular immune response facilitated by T or B cells. Further, an experimental analysis could also open up new avenues for developing novel drugs by targeting signaling motifs or novel vaccines using functional epitopes that could evoke an immune response in the host.

12.
J Biol Chem ; 295(44): 15158-15171, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32862141

ABSTRACT

Antiretroviral therapy has revolutionized the treatment of AIDS, turning a deadly disease into a manageable chronic condition. Life-long treatment is required because existing drugs do not eradicate HIV-infected cells. The emergence of drug-resistant viral strains and uncertain vaccine prospects highlight the pressing need for new therapeutic approaches with the potential to clear the virus. The HIV-1 accessory protein Nef is essential for viral pathogenesis, making it a promising target for antiretroviral drug discovery. Nef enhances viral replication and promotes immune escape of HIV-infected cells but lacks intrinsic enzymatic activity. Instead, Nef works through diverse interactions with host cell proteins primarily related to kinase signaling pathways and endosomal trafficking. This review emphasizes the structure, function, and biological relevance of Nef interactions with host cell protein-tyrosine kinases in the broader context of Nef functions related to enhancement of the viral life cycle and immune escape. Drug discovery targeting Nef-mediated kinase activation has allowed identification of promising inhibitors of multiple Nef functions. Pharmacological inhibitors of Nef-induced MHC-I down-regulation restore the adaptive immune response to HIV-infected cells in vitro and have the potential to enhance immune recognition of latent viral reservoirs as part of a strategy for HIV clearance.


Subject(s)
Anti-HIV Agents/pharmacology , HIV-1/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , nef Gene Products, Human Immunodeficiency Virus/metabolism , CD4 Antigens/metabolism , Crystallography, X-Ray , Down-Regulation , HIV-1/pathogenicity , Immune Evasion , Major Histocompatibility Complex , Membrane Proteins/metabolism , Protein Kinases/drug effects , Protein Transport , Structure-Activity Relationship , nef Gene Products, Human Immunodeficiency Virus/chemistry
13.
J Biol Chem ; 295(23): 7992-8004, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32350116

ABSTRACT

Core fucose is an N-glycan structure synthesized by α1,6-fucosyltransferase 8 (FUT8) localized to the Golgi apparatus and critically regulates the functions of various glycoproteins. However, how FUT8 activity is regulated in cells remains largely unclear. At the luminal side and uncommon for Golgi proteins, FUT8 has an Src homology 3 (SH3) domain, which is usually found in cytosolic signal transduction molecules and generally mediates protein-protein interactions in the cytosol. However, the SH3 domain has not been identified in other glycosyltransferases, suggesting that FUT8's functions are selectively regulated by this domain. In this study, using truncated FUT8 constructs, immunofluorescence staining, FACS analysis, cell-surface biotinylation, proteomics, and LC-electrospray ionization MS analyses, we reveal that the SH3 domain is essential for FUT8 activity both in cells and in vitro and identified His-535 in the SH3 domain as the critical residue for enzymatic activity of FUT8. Furthermore, we found that although FUT8 is mainly localized to the Golgi, it also partially localizes to the cell surface in an SH3-dependent manner, indicating that the SH3 domain is also involved in FUT8 trafficking. Finally, we identified ribophorin I (RPN1), a subunit of the oligosaccharyltransferase complex, as an SH3-dependent binding protein of FUT8. RPN1 knockdown decreased both FUT8 activity and core fucose levels, indicating that RPN1 stimulates FUT8 activity. Our findings indicate that the SH3 domain critically controls FUT8 catalytic activity and localization and is required for binding by RPN1, which promotes FUT8 activity and core fucosylation.


Subject(s)
Fucose/metabolism , Fucosyltransferases/metabolism , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , HEK293 Cells , Humans , Proteasome Endopeptidase Complex/metabolism , Proteomics , src Homology Domains
14.
Biochim Biophys Acta Gen Subj ; 1864(7): 129596, 2020 07.
Article in English | MEDLINE | ID: mdl-32147455

ABSTRACT

BACKGROUND: Previous structural analyses showed that human α1,6-fucosyltransferase, FUT8 contains a catalytic domain along with two additional domains, N-terminal α-helical domain and C-terminal Src homology 3 domain, but these domains are unique to FUT8 among glycosyltransferases. The role that these domains play in formation of the active form of FUT8 has not been investigated. This study reports on attempts to determine the involvement of these domains in the functions of FUT8. METHODS: Based on molecular modeling, the domain mutants were constructed by truncation and site-directed mutagenesis, and were heterologously expressed in Sf21 or COS-1 cells. The mutants were analyzed by SDS-PAGE and assayed for enzymatic activity. In vivo cross-linking experiments by introducing disulfide bonds were also carried out to examine the orientation of the domains in the molecular assembly. RESULTS: Mutagenesis and molecular modeling findings suggest that human FUT8 potentially forms homodimer in vivo via intermolecular hydrophobic interactions involving α-helical domains. Truncation or site-directed mutagenesis findings indicated that α-helical and SH3 domains are all required for enzymatic activity. In addition, in vivo cross-linking experiments clearly indicated that the SH3 domain located in close proximity to the α-helical domain in an intermolecular manner. CONCLUSIONS: α-Helical and SH3 domains are required for a fully active enzyme, and are also involved in homophilic dimerization, which probably results in the formation of the active form of human FUT8. GENERAL SIGNIFICANCE: α-Helical and SH3 domains, which are not commonly found in glycosyltransferases, play roles in the formation of the functional quaternary structure of human FUT8.


Subject(s)
Fucosyltransferases/chemistry , src Homology Domains , Catalytic Domain , Fucosyltransferases/metabolism , Glycosyltransferases , Humans , Models, Molecular
15.
J Biol Chem ; 294(45): 16942-16952, 2019 11 08.
Article in English | MEDLINE | ID: mdl-31582563

ABSTRACT

The chemistry of protein-ligand binding is the basis of virtually every biological process. Ligand binding can be essential for a protein to function in the cell by stabilizing or altering the conformation of a protein, particularly for partially or completely unstructured proteins. However, the mechanisms by which ligand binding impacts disordered proteins or influences the role of disorder in protein folding is not clear. To gain insight into this question, the mechanism of folding induced by the binding of a Pro-rich peptide ligand to the SH3 domain of phosphatidylinositol 3-kinase unfolded in the presence of urea has been studied using kinetic methods. Under strongly denaturing conditions, folding was found to follow a conformational selection (CS) mechanism. However, under mildly denaturing conditions, a ligand concentration-dependent switch in the mechanism was observed. The folding mechanism switched from being predominantly a CS mechanism at low ligand concentrations to being predominantly an induced fit (IF) mechanism at high ligand concentrations. The switch in the mechanism manifests itself as an increase in the reaction flux along the IF pathway at high ligand concentrations. The results indicate that, in the case of intrinsically disordered proteins too, the folding mechanism is determined by the concentration of the ligand that induces structure formation.


Subject(s)
Protein Unfolding , Kinetics , Ligands , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding/drug effects , Protein Unfolding/drug effects , Urea/pharmacology , src Homology Domains
16.
J Biol Chem ; 294(52): 19852-19861, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31527084

ABSTRACT

B-cell adaptor protein (BCAP) is a multimodular, multifunctional signal transducer that regulates signal transduction pathways in leukocytes, including macrophages, B-cells, and T-cells. In particular, BCAP suppresses inflammatory signaling by Toll-like receptors (TLRs). However, how BCAP itself is regulated and what its interaction partners are is unclear. Here, using human immune cell lines, including THP-1 cells, we characterized the complex phosphorylation patterns of BCAP and used a novel protein complex trapping strategy, called virotrap, to identify its interaction partners. This analysis identified known interactions of BCAP with phosphoinositide 3-kinase (PI3K) p85 subunit and NCK adaptor protein (NCK), together with previously unknown interactions of BCAP with Src homology 2 (SH2) and SH3 domain-containing adaptor proteins, notably growth factor receptor-bound protein 2 (GRB2) and CRK-like proto-oncogene, adaptor protein (CRKL). We show that the SH3 domain of GRB2 can bind to BCAP independently of BCAP phosphorylation status, suggesting that the SH2 domains mediate interactions with activated receptor tyrosine kinase complexes including the CD19 subunit of the B-cell receptor. Our results also suggested that the PI3K p85 subunit binds to BCAP via SH3 domains forming an inactive complex that is then activated by sequential binding with the SH2 domains. Taken together, our results indicate that BCAP is a complex hub that processes signals from multiple pathways in diverse cell types of the immune system.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , GRB2 Adaptor Protein/metabolism , Adaptor Proteins, Signal Transducing/genetics , Agammaglobulinaemia Tyrosine Kinase/metabolism , Amino Acid Motifs , Binding Sites , Cell Line, Tumor , Genes, Reporter , HEK293 Cells , Humans , Mass Spectrometry , Oncogene Proteins/metabolism , Peptides/analysis , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Mas , src Homology Domains
17.
J Biol Chem ; 294(42): 15480-15494, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31484725

ABSTRACT

T-cell activation requires stimulation of specific intracellular signaling pathways in which protein-tyrosine kinases, phosphatases, and adapter proteins interact to transmit signals from the T-cell receptor to the nucleus. Interactions of LCK proto-oncogene, SRC family tyrosine kinase (LCK), and the IL-2-inducible T cell kinase (ITK) with the T cell-specific adapter protein (TSAD) promotes LCK-mediated phosphorylation and thereby ITK activation. Both ITK and LCK interact with TSAD's proline-rich region (PRR) through their Src homology 3 (SH3) domains. Whereas LCK may also interact with TSAD through its SH2 domain, ITK interacts with TSAD only through its SH3 domain. To begin to understand on a molecular level how the LCK SH3 and ITK SH3 domains interact with TSAD in human HEK293T cells, here we combined biochemical analyses with NMR spectroscopy. We found that the ITK and LCK SH3 domains potentially have adjacent and overlapping binding sites within the TSAD PRR amino acids (aa) 239-274. Pulldown experiments and NMR spectroscopy revealed that both domains may bind to TSAD aa 239-256 and aa 257-274. Co-immunoprecipitation experiments further revealed that both domains may also bind simultaneously to TSAD aa 242-268. Accordingly, NMR spectroscopy indicated that the SH3 domains may compete for these two adjacent binding sites. We propose that once the associations of ITK and LCK with TSAD promote the ITK and LCK interaction, the interactions among TSAD, ITK, and LCK are dynamically altered by ITK phosphorylation status.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/chemistry , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , HEK293 Cells , Humans , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics , Phosphorylation , Protein Binding , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Mas , src Homology Domains
18.
Biochem Biophys Res Commun ; 516(4): 1190-1195, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31296381

ABSTRACT

Growth arrest specific 7 (Gas7) protein is a cytoskeleton regulator playing a crucial role in neural cell development and function, and has been implicated in Alzheimer disease, schizophrenia and cancers. In human, three Gas7 isoforms can be expressed from a single Gas7 gene, while only the longest isoform, hGas7c, possesses an SH3 domain at the N-terminus. To date, the structure and function of hGas7 SH3 domain are still unclear. Here, we reported the solution NMR structure of hGas7 SH3 domain (hGas7-SH3), which displays a typical SH3 ß-barrel fold comprising five ß-strands and one 310-helix. Structural and sequence comparison showed that hGas7-SH3 shares high similarity with Abl SH3 domain, which binds to a high-affinity proline-rich peptide P41 in a canonical SH3-ligand binding mode through two hydrophobic pockets and a specificity site in the RT-loop. However, unlike Abl-SH3, only six residues in the RT-loop and two residues adjacent to but not in the two hydrophobic pockets of hGas7-SH3 showed significant chemical shift perturbations in NMR titrations, suggesting a low affinity and a non-canonical binding mode of hGas7-SH3 for P41. Furthermore, four peptides selected from phage-displayed libraries also bound weakly to hGas7-SH3, and the binding region of hGas7-SH3 was mainly located in the RT-loop as well. The ligand identifications through structural similarity searching and peptide library screening in this study imply that although hGas7-SH3 adopts a typical SH3 fold, it probably possesses distinctive ligand-binding specificity.


Subject(s)
Nerve Tissue Proteins/chemistry , src Homology Domains , Amino Acid Sequence , Binding Sites , Humans , Ligands , Models, Molecular , Nerve Tissue Proteins/metabolism , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Folding , Sequence Alignment
19.
3 Biotech ; 9(6): 235, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31139550

ABSTRACT

One of the most important rapidly emerging mosquito-borne alphavirus is Chikungunya virus (CHIKV). There is a necessity to develop anti-CHIKV therapeutics, as neither antiviral drug nor vaccines have been licensed yet. Several CHIKV proteins are being studied worldwide, but non-structural protein 3 (nsP3) has been less explored. This protein consists of three domains: macrodomain, alphavirus unique domain (AUD) and hypervariable region (HVR). The proline-rich regions of HVR contain SRC homology 3 (SH3)-binding domain which is essential for its functionality. Interaction of these motifs with host amphiphysin protein is crucial for viral RNA replication. Restricting the interactions of HVR could lead to inhibition of viral life cycle. Therefore, the present study focuses on purification of HVR protein and its structural and functional assay for therapeutic intervention in future use. In order to obtain purified protein, HVR region was amplified from TOPO clones of nsP3 of IND-06-Guj strain and cloned into expression vector. Expression and solubilization of the protein were optimized at various conditions of salt, detergent and imidazole before purification. The soluble recombinant HVR (His-HVR) protein was purified using affinity chromatography. Purified protein was analyzed for structural studies and functional assays. Circular dichroism of His-HVR protein was performed for structural study, and it was observed that it consists of mostly random coils. For functional assay, co-pull down of His-HVR protein was performed with endogenous amphiphysin-I protein of N2a cells and was analyzed using Western blotting. This purified protein obtained could be used as a potential target reagent for novel therapeutic interventions in the future.

20.
Exp Ther Med ; 17(4): 2746-2756, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30936956

ABSTRACT

Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) have exhibited a marked increase in incidence in previous decades and are the most common malignancies in Caucasian populations. Src homology 3 and multiple ankyrin repeat domains protein-associated RH domain-interacting protein (SHARPIN) has been identified as a commonly overexpressed proto-oncogene in several types of visceral cancer. However, to the best of our knowledge, the functions of SHARPIN in nonmelanoma skin cancer (NMSC) have not been described. The present study aimed to investigate the expression of SHARPIN protein and SHARPIN mutations in NMSC. A total of 85 BCC, 77 SCC and 21 keratoacanthoma (KA) formalin-fixed paraffin-embedded (FFPE) samples were collected. SHARPIN expression was detected using immunohistochemistry. DNA was extracted from the FFPE samples, and the sequences of SHARPIN were analyzed using polymerase chain reaction. In addition, high and moderate expression levels of SHARPIN were observed in normal skin tissues and KA samples. However, the expression of SHARPIN was absent in cancer nests and was significantly low in precancerous NMSC lesions. The total mutation frequency of SHARPIN was 21.8% in BCC and 17.0% in SCC. These data indicate that SHARPIN may serve a tumor-suppressing role and be a promising diagnostic, prognostic and therapeutic biomarker in NMSC.

SELECTION OF CITATIONS
SEARCH DETAIL