Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 285
Filter
1.
Biotechnol Biofuels Bioprod ; 17(1): 127, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369245

ABSTRACT

BACKGROUND: The efficient use of softwood in biorefineries is hampered by its recalcitrance to enzymatic saccharification. In the present study, the fungus Thermothielavioides terrestris LPH172 was cultivated on three steam-pretreated spruce materials (STEX180°C/auto, STEX210°C/auto, and STEX210°C/H2SO4), characterized by different hemicellulose content and structure, as well as on untreated biomass. The aim of the study was to map substrate-induced changes in the secretome of T. terrestris grown on differently treated spruce materials and to evaluate the hydrolytic efficiency of the secretome as supplement for a commercial enzyme mixture. RESULTS: The cultivation of T. terrestris was monitored by endo-cellulase, endo-xylanase, endo-mannanase, laccase, and peroxidase activity measurements. Proteomic analysis was performed on the secretomes induced by the spruce materials to map the differences in enzyme production. Growth of T. terrestris on STEX180°C/auto and STEX210°C/auto induced higher expression level of mannanases and mannosidases of the GH5_7 CAZy family compared to cultivation on the other materials. Cultivation on untreated biomass led to overexpression of GH47, GH76, and several hemicellulose debranching enzymes compared to the cultivation on the pretreated materials. T. terrestris grown on untreated, STEX180°C/auto and STEX210°C/auto induced three arabinofuranosidases of the GH43 and GH62 families; while growth on STEX210°C/H2SO4 induced a GH51 arabinofuranosidase and a GH115 glucuronidase. All secretomes contained five lytic polysaccharide monooxygenases of the AA9 family. Supplementation of Celluclast® + Novozym188 with the secretome obtained by growing the fungus grown on STEX180°C/auto achieved a twofold higher release of mannose from spruce steam-pretreated with acetic acid as catalyst, compared to the commercial enzyme cocktail alone. CONCLUSIONS: Minor changes in the structure and composition of spruce affect the composition of fungal secretomes, with differences in some classes explaining an increased hydrolytic efficiency. As demonstrated here, saccharification of spruce biomass with commercial enzyme cocktails can be further enhanced by supplementation with tailor-made secretomes.

2.
Int J Biol Macromol ; 280(Pt 2): 135766, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39299434

ABSTRACT

Tremella fuciformis (TF) is a mushroom with rich nutritional and medicinal value. This study aimed to develop an efficient extraction technique for TF polysaccharide (TFP) to enhance its health benefits. TF was subjected to steam explosion (SE) pretreatment at 0.5, 1.0, and 1.5 MPa for 60 s, followed by polysaccharide extraction. The extraction yield of TFP increased from 15.42 % to 50.16 % at 1.0 MPa. SE disrupted the dense structure of TFP, significantly improving total sugar and uronic acid contents, monosaccharide molar percentages of mannose and glucose, specific surface area, and ζ potential by 0.16, 0.4, 0.01, 0.83, 0.19, and 0.26 times at 0.5 MPa (P < 0.05). With increasing SE pressure, the thermal stability of TFP was enhanced, while its elasticity, viscosity, molecular weight, and particle size were reduced. TFP at 0.5 MPa significantly extended the lifespan of Drosophila melanogaster, with Tmax reaching 74 d for females and 60 d for males at a dosage of 0.015625 %, indicating a 0.32-fold enhancement. TFP enhanced climbing ability and antioxidant stress resistance, increased antioxidant enzyme activities and total antioxidant capacity, and reduced malondialdehyde levels, indicating its anti-aging effects. These findings provide theoretical and technical support for the high-value development and utilization of TFP.

3.
Food Chem X ; 24: 101826, 2024 Dec 30.
Article in English | MEDLINE | ID: mdl-39328376

ABSTRACT

Steam explosion was found to be the most effective preparation method for donkey bone powder, compared with non-treatment, autoclave and steam processing. And the effect of steam-exploded donkey bone powder (SEDBP) on the quality characteristics of whole wheat cookies was evaluated. Compared with untreated powder, particle size of SEDBP was reduced by 55.60 %, while oil- and water-holding capacity, water solubility and ABTS radical-scavenging rate significantly increased by 13.94 %, 26.86 %, 298.26 % and 91.47 %, respectively. Steam explosion enhanced protein digestibility from 32.17 % to 71.43 %, increased the Ca2+ release rate from 37.47 % to 47.82 %, and increased the release of 11 amino acids during digestion. SEDBP reduced the solvent retention capacity of flour blends and improved the color, hardness and spread ratio of whole wheat cookies. Cookies with 30 % SEDBP addition had better flavor, texture and scored the highest on overall acceptability. The results will help expand animal bone applications and develop nutrition-fortified foods.

4.
Food Chem ; 463(Pt 3): 141410, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39326311

ABSTRACT

Recalcitrant structure of cell walls restricts the extraction of bioactive components from edible plants. In this study, the impacts of steam explosion (SE) on the release and transformation of flavonoids in Astragali Radix (AR) were evaluated. Results revealed that SE destroyed the compact structure of cell walls. Furthermore, the porous network was reformed due to the degradation of hemicelluloses and water-soluble components. The maximum extraction contents of ethanol-soluble and water-soluble flavonoids of 6.34 and 1.48 mg/g were obtained from the pretreated AR (1.5 MPa, 5 min), which were 5.22 and 2.88 times higher than those obtained from the untreated AR, respectively. SE not only released bound flavonoids from cell walls by cleaving glycoside or ester bonds, but also transformed some flavonoid glycosides into aglycones through deglycosylation. In conclusion, SE can reduce mass transfer hindrance and facilitate flavonoid transformation, thus providing a green and facile processing method for traditional edible plants.

5.
Int J Biol Macromol ; 278(Pt 2): 134758, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39151846

ABSTRACT

Steam explosion (SE) is a potential method to modify pectin structure, which might be connected to its emulsifying characteristics and the bioavailability of encapsulated polymethoxyflavone like nobiletin. However, the relationship between SE-modified pectin and the bioavailability of encapsulated nobiletin is still unclear. In this study, nobiletin-loaded emulsion was fabricated using citrus pectin modified with SE (0.15-0.9 MPa, 3 min) as emulsifier for in vitro digestion study, and the transport and absorption of nobiletin in Caco-2 cells to investigate the bioavailability-promoting effect. The results showed that SE treatment lowered the droplet size of emulsion from 21.38 ± 2.30 µm to 2.14 ± 0.12 µm, enhanced the nobiletin encapsulation efficiency from 23.73 ± 0.78% to 86.27 ± 3.81%, improved the nobiletin bioaccessibility in vitro from 2.48 ± 0.10% to 25.42 ± 0.10% and increased the intracellular accumulation of nobiletin by over 10 times, even higher than that of Tween 80. In conclusion, pectin from SE-treated citrus peel exhibited good emulsion properties and bioavailability-promoting effect in vitro of nobiletin.


Subject(s)
Biological Availability , Citrus , Emulsions , Flavones , Pectins , Steam , Flavones/chemistry , Flavones/pharmacology , Flavones/pharmacokinetics , Pectins/chemistry , Pectins/pharmacology , Humans , Emulsions/chemistry , Caco-2 Cells , Citrus/chemistry
6.
Food Res Int ; 192: 114747, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39147484

ABSTRACT

Adlay bran is known for its nutrient-rich profile and multifunctional properties, and steam explosion (SE) is an emerging physical modification technique. However, the specific effects of SE on the activity composition and antioxidant capacity of adlay bran soluble dietary fiber (SDF) during in vitro digestion, as well as its influence on gut microbiota during in vitro fermentation, remain inadequately understood. This paper reports the in vitro digestion and fermentation characteristics of soluble dietary fiber from adlay bran modified by SE (SE-SDF). Compared with the untreated samples (0-SDF), most of the phenolic compounds and antioxidant capacity were significantly increased in the SE-SDF digests. Additionally, SE was beneficial for adlay bran SDF to increase the content of acetic acid, propionic acid and total short-chain fatty acids (SCFAs) in fermentation broth during in vitro fermentation. SE-SDF could promote the growth of beneficial bacteria while inhibiting the proliferation of pathogenic microbes. Our research indicates that SE-SDF shows strong antioxidant properties after in vitro digestion and plays a pivotal role in regulating gut microbiota during in vitro fermentation, ultimately enhancing human intestinal health.


Subject(s)
Antioxidants , Coix , Dietary Fiber , Digestion , Fatty Acids, Volatile , Fermentation , Gastrointestinal Microbiome , Steam , Dietary Fiber/metabolism , Gastrointestinal Microbiome/physiology , Antioxidants/metabolism , Antioxidants/analysis , Fatty Acids, Volatile/metabolism , Fatty Acids, Volatile/analysis , Coix/chemistry , Humans , Propionates/metabolism , Food Handling/methods
7.
Int J Biol Macromol ; 279(Pt 1): 134920, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39173808

ABSTRACT

Green tea residues are the by-product of tea processing and they contain a large number of bioactive ingredients. Steam explosion has been recognized as one of the most innovative pretreatments for modifying the physicochemical characteristic of polysaccharides from lignocellulosic materials. However, the comparison of biological activity of steam exploded (SE-GTR) and unexploded (UN-GTR) green tea residue polysaccharides was still unclear, which prompted the determination of the efficacy of steam explosion in tea residue resource utilization. In this study, the effects of two extracted polysaccharides UN-GTR and SE-GTR on human gut microbiota in vitro fermentation were conducted. The results showed that after steam explosion pretreatment, SE-GTR displayed more loose and porous structures, resulting in higher polysaccharide content (2483.44±0.5 µg/mg) compared to UN-GTR (1903.56±2.6 µg/mg). In addition, after 24 h fermentation, gut microbiota produced more beneficial metabolites by SE-GTR. The largest SCFAs produced among samples was acetic acid, propionic acid and butyric acid. Furthermore, SE-GTR could regulate the composition and diversity of microbial community, increasing the abundance of beneficial bacteria, such as Bifidobacterium. These results revealed that steam explosion pretreatment could be a promising and efficient approach to enhance the antioxidant activity and bioavailability of polysaccharides isolated from tea residues.

8.
J Sci Food Agric ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953304

ABSTRACT

BACKGROUND: Laminaria japonica polysaccharide, which is an important bioactive substance of Laminaria japonica with anti-inflammatory and antioxidant effects. In this study, the molecular weight, functional groups and surface morphology were investigated to evaluate the digestive properties of Laminaria japonica polysaccharide before and after steam explosion. RESULTS: The results indicated that the Laminaria japonica polysaccharide entered the large intestine to be utilized by the gut microbiota after passing through the oral, gastric and small intestinal. Meanwhile, Laminaria japonica polysaccharide of steam explosion promoted the growth of beneficial bacteria Phascolarctobacterium and Intestinimonas, and increased the content of acetic, propionic and butyric acids, which was 2.29-folds, 2.60-folds and 1.63-folds higher than the control group after 48 h of fermentation. CONCLUSION: This study reveals that the effect of steam explosion pretreatment on the digestion in vitro and gut microbiota of Laminaria japonica polysaccharide will provide a basic theoretical basis for the potential application of Laminaria japonica polysaccharide as a prebiotic in the food industry. © 2024 Society of Chemical Industry.

9.
Carbohydr Polym ; 342: 122411, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39048203

ABSTRACT

We propose a closed-loop pretreatment process, wherein volatiles produced during steam explosion pretreatment were recovered and reintroduced as acid catalysts into the pretreatment system. The volatiles were separated through a drastic decompression process followed by a steam explosion process and recovered as a liquified catalyst (LFC) through a heat exchanger. The LFC effectively served as an acid catalyst for hemicellulose hydrolysis, significantly decreasing residence time from 90 min to 30 min to achieve 80 % conversion yield at 170 °C. Hydrolysates with high content of lower molecular weight oligomeric sugars were obtained using LFC, and were considered advantageous for application as prebiotics. These results are attributed to the complementary features of acetic acid and furfural contained within the LFC. Computational simulation using Aspen Plus was used to investigate the effects of recycling on LFC, and it demonstrated the feasibility of the catalyst-recirculating system. A validation study was conducted based on simulation results to predict the actual performance of the proposed pretreatment system. Based on these results, the recirculating system was predicted to improve the conversion yield and low-molecular weight oligomers yield by 1.5-fold and 1.6-fold, respectively.


Subject(s)
Avena , Glucuronates , Oligosaccharides , Steam , Catalysis , Hydrolysis , Oligosaccharides/chemistry , Avena/chemistry , Glucuronates/chemistry , Polysaccharides/chemistry
10.
Biotechnol Biofuels Bioprod ; 17(1): 102, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39020440

ABSTRACT

BACKGROUND: 2-Naphthol, a carbocation scavenger, is known to mitigate lignin condensation during the acidic processing of lignocellulosic biomass, which may benefit downstream processing of the resulting materials. Consequently, various raw materials have demonstrated improved enzymatic saccharification yields for substrates pretreated through autohydrolysis and dilute acid hydrolysis in the presence of 2-naphthol. However, 2-naphthol is toxic to ethanol-producing organisms, which may hinder its potential application. Little is known about the implications of 2-naphthol in combination with the pretreatment of softwood bark during continuous steam explosion in an industrially scalable system. RESULTS: The 2-naphthol-pretreated softwood bark was examined through spectroscopic techniques and subjected to separate hydrolysis and fermentation along with a reference excluding the scavenger and a detoxified sample washed with ethanol. The extractions of the pretreated materials with water resulted in a lower aromatic content in the extracts and stronger FTIR signals, possibly related to guaiacyl lignin, in the nonextractable residue when 2-naphthol was used during pretreatment. In addition, cyclohexane/acetone (9:1) extraction revealed the presence of pristine 2-naphthol in the extracts and increased aromatic content of the nonextractable residue detectable by NMR for the scavenger-pretreated materials. Whole-slurry enzymatic saccharification at 12% solids loading revealed that elevated saccharification recoveries after 48 h could not be achieved with the help of the scavenger. Glucose concentrations of 16.9 (reference) and 15.8 g/l (2-naphthol) could be obtained after 48 h of hydrolysis. However, increased inhibition during fermentation of the scavenger-pretreated hydrolysate, indicated by yeast cell growth, was slight and could be entirely overcome by the detoxification stage. The ethanol yields from fermentable sugars after 24 h were 0.45 (reference), 0.45 (2-naphthol), and 0.49 g/g (2-naphthol, detoxified). CONCLUSION: The carbocation scavenger 2-naphthol did not increase the saccharification yield of softwood bark pretreated in an industrially scalable system for continuous steam explosion. On the other hand, it was shown that the scavenger's inhibitory effects on fermenting microorganisms can be overcome by controlling the pretreatment conditions to avoid cross-inhibition or detoxifying the substrates through ethanol washing. This study underlines the need to jointly optimize all the main processing steps.

11.
Heliyon ; 10(12): e32192, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39021920

ABSTRACT

Aflatoxin is one of the most toxic biotoxins found in contaminated agricultural products. It has strong mutagenicity, carcinogenesis and teratogenicity to humans and animals. In this study, instant catapult steam explosion combined with ammonia water was examined for its potential to degrade aflatoxin B1 in peanut cake in order to improve its utilization as a toxic-free animal feed. Incubation of AFB1-containing peanut cake followed by processing with Instant Catapult Steam Explosion (ICSE) led to approximately 79.03 % degradation of AFB1, while the degradation of AFB1 was up to 91.48 % under the treatment of ICSE combined with 4 % NH3·H2O at 1.2 MPa in 200 s of process time. After treatment, nutrients in peanut cake were not significantly changed. The toxicity of AFB1 degradation products was evaluated and the results showed that the toxicity of these products were found to be substantially less than that possessed by AFB1. A low chemical pollution, efficient and toxic-free technology system of AFB1 degradation was established, which detoxify aflatoxin-contaminated biomass for sustainable and safe utilization of agricultural biomass as animal feed.

12.
Food Chem X ; 22: 101438, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38846796

ABSTRACT

This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.

13.
J Food Sci Technol ; 61(7): 1215-1237, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38910923

ABSTRACT

Protein has become an increasingly valuable food component with high global demand. Consequently, unconventional sources, such as industrial and agroindustrial wastes and by-products, emerge as interesting alternatives to meet this demand, considering the UN Sustainable Development Goals and the transition to a circular economy. In this context, this work presents a review of the use of Steam Explosion (SE), a green technique that can be employed as a pretreatment for various waste materials, including bones, hide/leather, feathers, and wool, aimming the extraction of protein compounds, such as low molecular weight biopeptides, gelatin, and keratin, as well as to enhance the protein functionality of grains and meals. The SE technique and the main factors affecting the process's efficiency were detailed. Promising experimental studies are discussed, along with the mechanisms responsible for protein extraction and functionality improvement, as well as the main reported and suggested applications. In general, steam explosion favored yields in subsequent extraction processes, ranging from 27 to 95%, in addition to enhancing solubility and functional protein properties. Nonetheless, it is crucial to maintain the continuity of research on this topic to drive advancements in ensuring the safety of the extracted compounds for use in consumable products and oral ingestion.

14.
Foods ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38928802

ABSTRACT

In this work, steam explosion (SE) was applied to prompt the rapid extraction of ergosterol and polysaccharides from Flammulina velutipes root (FVR) waste. Ultrasound-assisted saponification extraction (UASE) followed by water extraction was used to prepare ergosterol and polysaccharides. The results indicated that SE destroyed the complicated structure of FVR and increased its internal porosity and surface roughness. SE caused the thermal degradation of FVR's structural components and increased the polysaccharide content 0.97-fold. As a result, the extraction yield and efficiency of ergosterol and polysaccharides were improved. The theoretical maximum extraction concentration (C∞) and diffusion coefficient (D) were increased by 34.10% and 78.04% (ergosterol) and 27.69% and 48.67% (polysaccharides), respectively. The extraction yields obtained within 20-30 min of extraction time exceeded those of untreated samples extracted after several hours. For polysaccharides, SE led to a significant reduction in the average molecular weight, increased the percentage of uronic acids and decreased the neutral sugar percentage. The monosaccharide composition was changed by SE, with an increase in the molar ratio of glucose of 64.06% and some reductions in those of other monosaccharides. This work provides an effective method for the processing of fungi waste and adds to its economic value, supporting its high-value utilization in healthcare products.

15.
J Sci Food Agric ; 104(13): 7965-7976, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38822620

ABSTRACT

BACKGROUND: Java tea is widely consumed and has multiple health effects. This study established a steam explosion (SE) pretreatment method to prepare Java tea-leaf powders. The physicochemical, functional properties, phenolic extraction, and antioxidant activity of Java tea-leaf powders produced by simple and SE-assisted milling methods were investigated. RESULTS: In comparison with simple milling, SE pretreatment broke the cell wall effectively and reduced the particle size of Java tea-leaf powders. Steam explosion-treated powders showed higher values for sensory signals, bulk and tap density, and for the water solubility index. After SE treatment, the adsorption capacities to glucose, soybean oil, and cholesterol of leaf powders were increased by up to 55, 95, and 80% respectively. The extracts from SE-treated powders also showed higher total polyphenol content and antioxidant activity. CONCLUSION: Steam explosion treatment is helpful for the improvement of functional properties and antioxidant activity, which can benefit the development and application of Java tea-leaf powders. © 2024 Society of Chemical Industry.


Subject(s)
Antioxidants , Particle Size , Plant Extracts , Plant Leaves , Powders , Steam , Antioxidants/chemistry , Antioxidants/analysis , Powders/chemistry , Plant Leaves/chemistry , Plant Extracts/chemistry , Food Handling/methods , Polyphenols/chemistry , Polyphenols/analysis , Solubility
16.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794559

ABSTRACT

A plantain pseudostem was harvested and processed on the same day. The process began with manually separating the sheaths (80.85%) and the core (19.14%). The sheaths were subjected to a mechanical shredding process using paddles, extracting 2.20% of lignocellulosic fibers and 2.12% of sap, compared to the fresh weight of the sheaths. The fibers were washed, dried, combed, and spun in their native state and subjected to a steam explosion treatment, while the sap was subjected to filtration and evaporation. In the case of the core, it was subjected to manual cutting, drying, grinding, and sieving to separate 12.81% of the starch and 6.39% of the short lignocellulosic fibers, compared to the fresh weight of the core. The surface modification method using steam explosion succeeded in removing a low proportion of hemicellulose and lignin in the fibers coming from the shims, according to what was shown by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC), achieving increased σmax and ε from the tensile test and greater thermal stability compared to its native state. The sap presented hygroscopic behavior by FT-IR and the highest thermal stability from TGA, while the starch from the core presented the lowest hygroscopic character and thermal stability. Although the pseudostem supplied two types of fibers, lower lignin content was identified in those from the core. Finally, the yarns were elaborated by using the fibers of the sheaths in their native and steam-exploded states, identifying differences in the processing and their respective physical and mechanical properties.

17.
Food Res Int ; 187: 114310, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763627

ABSTRACT

Rice bran was modified by steam explosion (SE) treatment to investigate the impact of different steam pressure (0.4, 0.8, 1.2, 1.6, and 2.0 MPa) with rice bran through 60 mesh and rice bran pulverization (60, 80, and 100 mesh) with the steam pressure of 1.2 MPa on the structure, thermal stability, physicochemical and functional characteristics of insoluble dietary fiber (IDF) extracted from rice bran. IDF with SE treatment from scanning electron microscopy images showed a porous honeycomb structure, and lamellar shape in IDF became obvious with the increase of steam pressure. The relative crystallinity and polymerization degree of crystalline regions in IDF from rice bran with SE treatment from X-ray diffraction analysis were decreased. Differential scanning calorimetry results showed that thermal stability of IDF with SE treatment increased with the increase of crushing degree. The results of FT-IR also suggested that some glycosidic and hydrogen bonds in IDF could be broken, and some cellulose and hemicellulose were degraded during SE process. The physicochemical and functional characteristics of IDF, including water-holding capacity, oil-holding, glucose adsorption capacity, α-amylase and pancreatic lipase inhibition capacity were decreased with the increase of steam pressure and crushing degree. The swelling and nitrite adsorption capacities of IDF were increased first and then decreased with the increase of steam pressure. The physicochemical and functional characteristics of IDF from rice bran were improved after SE treatment, which might provide references for the utilization of IDF from rice bran with SE treatment.


Subject(s)
Dietary Fiber , Oryza , Particle Size , Pressure , Steam , Oryza/chemistry , Dietary Fiber/analysis , Food Handling/methods , Solubility , X-Ray Diffraction , Hot Temperature , Spectroscopy, Fourier Transform Infrared , Microscopy, Electron, Scanning , Calorimetry, Differential Scanning
18.
Bioresour Technol ; 400: 130698, 2024 May.
Article in English | MEDLINE | ID: mdl-38615967

ABSTRACT

The growing textile industry produces large volumes of hazardous wastewater containing dyes, which stresses the need for cheap, efficient adsorbing technologies. This study investigates a novel preprocessing method for producing activated carbons from abundantly available softwood bark. The preprocessing involved a continuous steam explosion preconditioning step, chemical activation with ZnCl2, pyrolysis at 600 and 800 °C, and washing. The activated carbons were subsequently characterized by SEM, XPS, Raman and FTIR prior to evaluation for their effectiveness in adsorbing reactive orange 16 and two synthetic dyehouse effluents. Results showed that the steam-exploded carbon, pyrolyzed at 600 °C, obtained the highest BET specific surface area (1308 m2/g), the best Langmuir maximum adsorption of reactive orange 16 (218 mg g-1) and synthetic dyehouse effluents (>70 % removal) of the tested carbons. Finally, steam explosion preconditioning could open up new and potentially more sustainable process routes for producing functionalized active carbons.


Subject(s)
Azo Compounds , Charcoal , Plant Bark , Steam , Adsorption , Plant Bark/chemistry , Azo Compounds/chemistry , Charcoal/chemistry , Coloring Agents/chemistry , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Water Purification/methods , Water Pollutants, Chemical , Wastewater/chemistry , Spectrum Analysis, Raman
19.
Foods ; 13(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38672901

ABSTRACT

Pleurotus eryngii (PE) has been sought after for its various health benefits and high content of phenolic compounds. This study explored the feasibility of steam explosion (SE)-assisted extraction of polysaccharides with high antioxidant capacities from PE. An orthogonal experimental design (OED) was used to optimize the SE-assisted extraction of PE. The influence of the optimized SE-assisted extraction on the physicochemical properties of PE polysaccharides was determined by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), monosaccharide compositional analysis and antioxidant capacity assays. Under optimal SE conditions, SE-assisted extraction increased the polysaccharide yield by 138% compared to extraction without SE-assistance. In addition, SEM demonstrated that SE-assisted extraction markedly altered the spatial structure of Pleurotus eryngii polysaccharides (PEP), and monosaccharide compositional analysis revealed that this pretreatment significantly increased the proportions of some monosaccharides, such as glucose, rhamnose and arabinose, in the isolated PEP. FTIR spectra indicated no change in the major chemical functional groups of PEP. PEP extracted by SE-assisted extraction had significantly increased free radical scavenging and antioxidant capacities. In conclusion, SE-assisted extraction appears to be a novel polysaccharide extraction technology, which markedly increases extraction yields and efficiency and can increase the biological activity of polysaccharide extracts.

20.
Bioresour Technol ; 400: 130675, 2024 May.
Article in English | MEDLINE | ID: mdl-38608786

ABSTRACT

In this article we can observe the scanning by the literature for the pretreatment of steam explosion applied to lignocellulose biomass. A comparison of the chemical and physical characterization of potato peel as a lignocellulose biomass. Besides, the innovative design of a continuous reactor for the potato peel steam explosion process is shown, with specific temperature and pressure conditions on a pilot scale, detailing its parts. Finally, a finite element analysis was performed where stress results were obtained from the reactor material, severity factor, structural analysis and thermal analysis, providing a panorama of the reactor's behavior with the conditions specific.


Subject(s)
Solanum tuberosum , Steam , Solanum tuberosum/chemistry , Lignin/chemistry , Equipment Design , Temperature , Biomass , Finite Element Analysis , Pressure , Biotechnology/methods , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL