Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41.038
Filter
1.
J Physiol ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949035

ABSTRACT

Ageing induces a decline in GABAergic intracortical inhibition, which seems to be associated not only with decremental changes in well-being, sleep quality, cognition and pain management but also with impaired motor control. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. Therefore, the present study investigated whether age-related cortical dis-inhibition could be reversed after 6 months of balance learning and whether improvements in postural control correlated with the extent of reversed dis-inhibition. The results demonstrated that intracortical inhibition can be upregulated in elderly subjects after long-term balance learning and revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition and may therefore be seminal for many pathologies in which the equilibrium between inhibitory and excitatory neurotransmitters is disturbed. KEY POINTS: Ageing induces a decline in GABAergic intracortical inhibition. So far, little is known regarding whether targeted interventions can prevent the decline of intracortical inhibition in the primary motor cortex in the elderly. After 6 months of balance learning, intracortical inhibition can be upregulated in elderly subjects. The results of this study also revealed a correlation between changes in balance performance and intracortical inhibition. This is the first study to show physical activity-related upregulation of GABAergic inhibition in a population with chronic dis-inhibition.

2.
J Gerontol Soc Work ; : 1-14, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949381

ABSTRACT

Cognitive Stimulation Therapy (CST) is an evidence-based, non-pharmacological intervention for older adults with mild to moderate dementia. While CST has been adapted in various ways, this study explored the impact of adding a spiritual dimension to CST. Participants (N = 34) were divided into spiritual and traditional CST groups based on their residence. After a 14-session intervention involving interactive conversations, the spiritual CST group showed significantly lower depression scores (M = 2.7) compared to traditional CST (M = 6.5). With the global increase in dementia-related disorders, non-pharmacological interventions like CST offer crucial support for addressing memory loss. Social workers are uniquely positioned to deliver CST to diverse populations who value spirituality or faith in their daily lives.

3.
J Phys Ther Sci ; 36(7): 378-381, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38952462

ABSTRACT

[Purpose] This study aimed to determine whether applying electrical stimulation to the deltoid and extensor digitorum muscles could lead to a reduction in fixation force during shoulder joint adduction and grip strength. [Participants and Methods] Fifteen healthy adult males participated in this study. In the shoulder adduction force experiment, the middle fibers of the deltoid muscle of the dominant arm were electrically stimulated. In the grip strength experiment, the extensor digitorum muscle of the dominant arm was electrically stimulated. The forces exerted with and without the electrical stimulation were measured. [Results] The torque of the shoulder adduction force decreased significantly with electrical stimulation, while no significant change was observed in normalized grip strength with electrical stimulation. [Conclusion] The response of antagonist muscles to electrical stimulation varied according to location.

4.
Netw Neurosci ; 8(2): 517-540, 2024.
Article in English | MEDLINE | ID: mdl-38952817

ABSTRACT

Contemplative neuroscience has increasingly explored meditation using neuroimaging. However, the brain mechanisms underlying meditation remain elusive. Here, we implemented a mechanistic framework to explore the spatiotemporal dynamics of expert meditators during meditation and rest, and controls during rest. We first applied a model-free approach by defining a probabilistic metastable substate (PMS) space for each condition, consisting of different probabilities of occurrence from a repertoire of dynamic patterns. Moreover, we implemented a model-based approach by adjusting the PMS of each condition to a whole-brain model, which enabled us to explore in silico perturbations to transition from resting-state to meditation and vice versa. Consequently, we assessed the sensitivity of different brain areas regarding their perturbability and their mechanistic local-global effects. Overall, our work reveals distinct whole-brain dynamics in meditation compared to rest, and how transitions can be induced with localized artificial perturbations. It motivates future work regarding meditation as a practice in health and as a potential therapy for brain disorders.


Our work explores brain dynamics in a group of expert meditators and controls. First, we characterized meditation and rest with a repertoire of brain patterns, each with its distinct probability of occurrence. Then, we generated whole-brain models of each condition, which enabled us to artificially perturb the systems to induce transitions between rest and meditation. Our results open new avenues in meditation research as a practice in health and disease.

5.
Cureus ; 16(5): e61469, 2024 May.
Article in English | MEDLINE | ID: mdl-38953093

ABSTRACT

Deep brain stimulation (DBS) has emerged as an important therapeutic option for several movement disorders; however, the management of acute complications, such as acute subdural hematoma (ASDH), remains challenging. This is the case of a 71-year-old woman with Parkinson's disease who developed ASDH 12 years after bilateral DBS placement. On admission with altered consciousness, imaging revealed significant displacement of the DBS electrodes because of the hematoma. Emergent craniotomy with endoscopic evacuation was performed with preservation of the DBS system. Postoperatively, complete evacuation of the hematoma was confirmed, and the patient experienced significant clinical improvement. ASDH causes significant electrode displacement in patients undergoing DBS. After hematoma evacuation, the electrodes were observed to return to their proper position, and the patient exhibited a favorable clinical response to stimulation. To preserve the DBS electrodes, endoscopic hematoma evacuation via a small craniotomy may be useful.

6.
Neurol Res ; : 1-7, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953309

ABSTRACT

BACKGROUND: Navigated transcranial magnetic stimulation (nTMS) has been established as a preoperative diagnostic procedure in glioma surgery, increasing the extent of resection and preserving functional outcome. nTMS motor mapping for the resection of motor eloquent meningiomas has not been evaluated in a comparative analysis, yet. METHODS: We conducted a retrospective matched-pair analysis for tumor location and size in meningioma patients with tumors located over or close to the primary motor cortex. Half of the study population received nTMS motor mapping preoperatively (nTMS-group). The primary endpoint were permanent surgery-related motor deficits. Additional factors associated with new motor deficits were evaluated apart from nTMS. RESULTS: 62 patients (mean age 62 ± 15.8 years) were evaluated. 31 patients received preoperative nTMS motor mapping. In this group, motor thresholds (rMT) corresponded with tumor location and preoperative motor status, but could not predict motor outcome. No patient with preoperative intact motor function had a surgery-related permanent deficit in the nTMS group whereas four patients in the non-TMS group with preoperative intact motor status harbored from permanent deficits. 13 patients (21.3%) had a permanent motor deficit postoperatively with no difference between the nTMS and the non-TMS-group. Worsening in motor function was associated with higher patient age (p = 0.01) and contact to the superior sagittal sinus (p = 0.027). CONCLUSION: nTMSmotor mapping did not lead to postoperative preservation in motorfunction. nTMS data corresponded well with the preoperative motorstatus and were associated with postoperative permanent deficits if tumors were located over the motor hotspot according to nTMS.

7.
Int Urogynecol J ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953997

ABSTRACT

INTRODUCTION AND HYPOTHESIS: Transcranial direct current stimulation (tDCS) can enhance muscle function in healthy individuals. However, it is unknown if tDCS associated with pelvic floor muscle training (PFMT) can improve pelvic floor muscle function (PFMF) in healthy women. The aim of this study was to investigate the acute effect of a single session of tDCS in PFMF compared with sham-tDCS in healthy women. METHODS: A double-blind, cross-over, randomized clinical trial was conducted with healthy, nulliparous and sexually active women. PFMF was assessed by bidigital palpation (PERFECT scale) and intravaginal pressure by a manometer (Peritron™). Participants randomly underwent two tDCS sessions (active and sham) 7 days apart. The electrode was positioned equal for both protocols, the anode electrode in the supplementary motor area (M1) and the cathode electrode in the right supraorbital frontal cortex (Fp2). The current was applied for 20 min at 2 mA in active stimulation and for 30 s in sham-tDCS. The tDCS applications were associated with verbal instructions to PFMT in a seated position. After each tDCS session PFMF was reevaluated. RESULTS: Twenty young healthy women (aged 23.4 ± 1.7 years; body mass index 21.7 ± 2.2 kg/m2) were included. No difference was observed in power, endurance, and intravaginal pressure of PFMF (p > 0.05). The number of sustained contractions improved from 3.0 (2.0-3.5) to 4.0 (3.0-5.0) after active-tDCS (p = 0.0004) and was superior to sham-tDCS (p = 0.01). CONCLUSION: The number of sustained contractions of PFM improved immediately after a single active-tDCS session, with a difference compared with the post-intervention result of sham-tDCS in healthy young women.

8.
Pain Ther ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954217

ABSTRACT

INTRODUCTION: Closed-loop spinal cord stimulation (CL-SCS) is a recently introduced system that records evoked compound action potentials (ECAPs) from the spinal cord elicited by each stimulation pulse and uses this information to automatically adjust the stimulation strength in real time, known as ECAP-controlled SCS. This innovative system compensates for fluctuations in the distance between the epidural leads and the spinal cord by maintaining the neural response (ECAP) at a predetermined target level. This data collection study was designed to assess the performance of the first CL-SCS system in a real-world setting under normal conditions of use in multiple European centers. The study analyzes and presents clinical outcomes and electrophysiological and device data and compares these findings with those reported in earlier pre-market studies of the same system. METHODS: This prospective, multicenter, observational study was conducted in 13 European centers and aimed to gather electrophysiological and device data. The study focused on the real-world application of this system in treating chronic pain affecting the trunk and/or limbs, adhering to standard conditions of use. In addition to collecting and analyzing basic demographic information, the study presents data from the inaugural patient cohort permanently implanted at multiple European centers. RESULTS: A significant decrease in pain intensity was observed for overall back or leg pain scores (verbal numerical rating score [VNRS]) between baseline (mean ± standard error of the mean [SEM]; n = 135; 8.2 ± 0.1), 3 months (n = 93; 2.3 ± 0.2), 6 months (n = 82; 2.5 ± 0.3), and 12 months (n = 76; 2.5 ± 0.3). Comparison of overall pain relief (%) to the AVALON and EVOKE studies showed no significant differences at 3 and 12 months between the real-world data release (RWE; 71.3%; 69.6%) and the AVALON (71.2%; 73.6%) and EVOKE (78.1%; 76.7%) studies. Further investigation was undertaken to objectively characterize the physiological parameters of SCS therapy in this cohort using the metrics of percent time above ECAP threshold (%), dose ratio, and dose accuracy (µV), according to previously described methods. Results showed that a median of 90% (40.7-99.2) of stimuli were above the ECAP threshold, with a dose ratio of 1.3 (1.1-1.4) and dose accuracy of 4.4 µV (0.0-7.1), based on data from 236, 230, and 254 patients, respectively. Thus, across all three metrics, the majority of patients had objective therapy metrics corresponding to the highest levels of pain relief in previously reported studies (usage over threshold > 80%, dose ratio > 1.2, and error < 10 µV). CONCLUSIONS: In conclusion, this study provides valuable insights into the real-world application of the ECAP-controlled CL-SCS system, highlighting its potential for maintaining effective pain relief and objective neurophysiological therapy metrics at levels seen in randomized control trials, and potential for quantifying patient burden associated with SCS system use via patient-device interaction metrics. CLINICAL TRIAL REGISTRATION: In the Netherlands, the study is duly registered on the International Clinical Trials Registry Platform (Trial NL7889). In Germany, the study is duly registered as NCT05272137 and in the United Kingdom as ISCRTN27710516 and has been reviewed by the ethics committee in both countries.

9.
Article in English | MEDLINE | ID: mdl-38955871

ABSTRACT

Previous research has indicated that the left dorsolateral prefrontal cortex (DLPFC) exerts an influence on attentional bias toward visual emotional information. However, it remains unclear whether the left DLPFC also play an important role in attentional bias toward natural emotional sounds. The current research employed the emotional spatial cueing paradigm, incorporating natural emotional sounds of considerable ecological validity as auditory cues. Additionally, high-definition transcranial direct current stimulation (HD-tDCS) was utilized to examine the impact of left dorsolateral prefrontal cortex (DLPFC) on attentional bias and its subcomponents, namely attentional engagement and attentional disengagement. The results showed that (1) compared to sham condition, anodal HD-tDCS over the left DLPFC reduced the attentional bias toward positive and negative sounds; (2) anodal HD-tDCS over the left DLPFC reduced the attentional engagement toward positive and negative sounds, whereas it did not affect attentional disengagement away from natural emotional sounds. Taken together, the present study has shown that left DLPFC, which was closely related with the top-down attention regulatory function, plays an important role in auditory emotional attentional bias.

10.
Cureus ; 16(6): e61511, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38957262

ABSTRACT

BACKGROUND AND OBJECTIVES: Cerebral palsy is a neurodevelopmental condition that results in impaired movement and posture, often accompanied by disturbances in balance and functional abilities. Recent advances in neurorehabilitation, including whole-body vibration therapy (WBVT), functional electrical stimulation, and transcranial direct current stimulation, show promise in enhancing traditional interventions and fostering neuroplasticity. However, the efficacy of their conjunct effects remains largely uncharted territory and warrants further exploration. The objective of the study was to compare the conjunct effects of functional electrical stimulation (FES) and WBVT with transcranial direct current stimulation (tDCS) and WBVT on lower extremity range of motion (ROM), dynamic balance, functional mobility, isometric muscle strength and hand grip strength in children with spastic cerebral palsy. METHODS: A randomized clinical trial was carried out on 42 children of both genders with spastic cerebral palsy, aged 5-15 years. The children were divided at random into three groups (14 in each group). In Group A, there were three (21.42%) males and 11 (78.57%) females, in Group B, eight (57.14%) were males and six (42.85%) were females, and in Group C, six (42.85%) children were males and eight (57.14%) were females. Group A received WBVT only, Group B received WBVT and FES, and Group C received WBVT and tDCS. The intervention was applied four times a week for four consecutive weeks. The data was collected two times before and immediately after four weeks of intervention. Lower extremity ROM was measured by a goniometer, functional mobility or dynamic balance was measured by a Time Up and Go test, isometric muscle strength was measured by a digital force gauge, and hand grip strength was assessed by a digital hand-held dynamometer. IBM SPSS Statistics for Windows, Version 27.0 (Released 2020; IBM Corp., Armonk, New York, United States) was utilized for statistical analysis. RESULTS: The mean age of the children in groups A, B, and C was 12.21±2.11 years, 11.71±2.01, and 11.07±2.01 years respectively. Intergroup analysis revealed a statistically significant difference (p<0.05) in the lower extremity range of motion, and functional mobility. Hand grip strength and isometric muscle strength between three groups. Post hoc analysis revealed that WBVT with transcranial direct current stimulation combined showed the most improvement. CONCLUSION: The study concluded that positive effects were seen in all three groups but tDCS with WBVT was found to be most effective in improving lower extremity ROM, functional mobility or dynamic balance, isometric muscle strength, and hand grip strength in children with spastic CP. The differences between the groups were statistically significant. The effect size was substantial enough to surpass established clinical benchmarks, indicating that the observed improvements are likely to have meaningful and beneficial impacts on patient outcomes.

11.
Neurosurg Focus Video ; 11(1): V2, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957417

ABSTRACT

Vagus nerve stimulation (VNS) is a neuromodulatory treatment involving chronic intermittent electrical stimulation of the left vagus nerve, administered through a programmable pulse generator implanted subcutaneously in the chest. This generator connects to a bipolar lead, with electrodes wrapped around the vagus nerve in the neck. Primarily used as an adjunct therapy for patients with refractory epilepsy who cannot undergo or have not benefitted from resective surgery, VNS is generally well tolerated with few severe side effects. Herein is presented an educational surgical video providing a detailed, step-by-step technical description of VNS implantation. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID244.

12.
Neurosurg Focus Video ; 11(1): V10, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957423

ABSTRACT

Neurostimulation is an increasingly common treatment option for medically intractable epilepsy. SANTE (Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy) and Responsive Neurostimulation (RNS) System are landmark neurostimulation trials that utilized either duty cycle or a responsive stimulation paradigm. A seizure-free outcome is rarely observed with responsive and duty cycle neurostimulation devices. Chronic subthreshold cortical stimulation (CSCS) is a promising treatment for adult drug-resistant epilepsy involving eloquent cortex and has demonstrated safety and efficacy. Herein, the authors describe the surgical technique as well as details of stimulation programming involved in CSCS placement to facilitate the adoption of this promising treatment. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID2422.

13.
Neurosurg Focus Video ; 11(1): V18, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38957429

ABSTRACT

The centromedian (CM) nucleus of the thalamus is a promising target for a range of brain diseases including drug-resistant generalized and multifocal epilepsy. CM is highly connected to cortical and subcortical regions including frontoparietal/sensorimotor cortex, striatum, brainstem, and cerebellum, which are involved in some generalized epilepsy syndromes like Lennox-Gastaut syndrome (LGS). In this video, the authors describe their methodology for targeting CM for deep brain stimulation (DBS). Delineation of an optimal and consistent target will expand the efficacy of neuromodulation of CM in intractable epilepsy. The video can be found here: https://stream.cadmore.media/r10.3171/2024.4.FOCVID245.

14.
Burns Trauma ; 12: tkae013, 2024.
Article in English | MEDLINE | ID: mdl-38957661

ABSTRACT

The unique ability of piezoelectric materials to generate electricity spontaneously has attracted widespread interest in the medical field. In addition to the ability to convert mechanical stress into electrical energy, piezoelectric materials offer the advantages of high sensitivity, stability, accuracy and low power consumption. Because of these characteristics, they are widely applied in devices such as sensors, controllers and actuators. However, piezoelectric materials also show great potential for the medical manufacturing of artificial organs and for tissue regeneration and repair applications. For example, the use of piezoelectric materials in cochlear implants, cardiac pacemakers and other equipment may help to restore body function. Moreover, recent studies have shown that electrical signals play key roles in promoting tissue regeneration. In this context, the application of electrical signals generated by piezoelectric materials in processes such as bone healing, nerve regeneration and skin repair has become a prospective strategy. By mimicking the natural bioelectrical environment, piezoelectric materials can stimulate cell proliferation, differentiation and connection, thereby accelerating the process of self-repair in the body. However, many challenges remain to be overcome before these concepts can be applied in clinical practice, including material selection, biocompatibility and equipment design. On the basis of the principle of electrical signal regulation, this article reviews the definition, mechanism of action, classification, preparation and current biomedical applications of piezoelectric materials and discusses opportunities and challenges for their future clinical translation.

15.
Clin Neurophysiol ; 165: 64-75, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38959537

ABSTRACT

OBJECTIVE: Investigating the optimal interstimulus interval (ISI) and the 24-hour test-retest reliability for intrahemispheric dorsal premotor cortex (PMd) - primary motor cortex (M1) connectivity using dual-site transcranial magnetic stimulation (dsTMS). METHODS: In 21 right-handed adults, left intrahemispheric PMd-M1 connectivity has been investigated with a stacked-coil dsTMS setup (conditioning stimulus: 75% of resting motor threshold; test stimulus: eliciting MEPs of 1-1.5 mV) at ISIs of 3, 5-8, and 10 ms. Additionally, M1-M1 short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were investigated to assess comparability to standard paired-pulse setups. RESULTS: Conditioning PMd led to significant inhibition of M1 output at ISIs of 3 and 5 ms, whereas 10 ms resulted in facilitation (all, p < 0.001), with a fair test-retest reliability for 3 (ICC: 0.47) and 6 ms (ICC: 0.44) ISIs. Replication of SICI (p < 0.001) and ICF (p = 0.017) was successful, with excellent test-retest reliability for SICI (ICC: 0.81). CONCLUSION: This dsTMS setup can probe the inhibitory and facilitatory PMd-M1 connections, as well as reliably replicate SICI and ICF paradigms. SIGNIFICANCE: The stacked-coil dsTMS setup for investigating intrahemispheric PMd-M1 connectivity offers promising possibilities to better understand motor control.

16.
Clin Neurophysiol ; 165: 44-54, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38959535

ABSTRACT

OBJECTIVE: This study aimed to evaluate whether auditory brainstem response (ABR) using a paired-click stimulation paradigm could serve as a tool for detecting cochlear synaptopathy (CS). METHODS: The ABRs to single-clicks and paired-clicks with various inter-click intervals (ICIs) and scores for word intelligibility in degraded listening conditions were obtained from 57 adults with normal hearing. The wave I peak amplitude and root mean square values for the post-wave I response within a range delayed from the wave I peak (referred to as the RMSpost-w1) were calculated for the single- and second-click responses. RESULTS: The wave I peak amplitudes did not correlate with age except for the second-click responses at an ICI of 7 ms, and the word intelligibility scores. However, we found that the RMSpost-w1 values for the second-click responses significantly decreased with increasing age. Moreover, the RMSpost-w1 values for the second-click responses at an ICI of 5 ms correlated significantly with the scores for word intelligibility in degraded listening conditions. CONCLUSIONS: The magnitude of the post-wave I response for the second-click response could serve as a tool for detecting CS in humans. SIGNIFICANCE: Our findings shed new light on the analytical methods of ABR for quantifying CS.

17.
Complement Ther Clin Pract ; 57: 101881, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38959564

ABSTRACT

INTRODUCTION: To investigate the effect of physical exercise alone and in combination with cognitive stimulation on cognition, physical function, and quality of life in patients with Alzheimer's Disease (PwAD). METHODS: The study was a randomized controlled, single-blinded trial with pre-and post-treatment and follow-up assessments conducted at the private hospital and home environment in PwAD. Seventy-five (N = 75) participants diagnosed with AD were enrolled, but sixty (N = 60) participants (mean age 77.8 years, standard deviation (SD) 6.7) were randomized as physical exercise group (PEG) (n = 20), physical exercise and cognitive stimulation group (PE + CSG) (n = 20) and control group (CG) (n = 20). Participants in PEG and PE + CSG performed an online supervised physical exercise program (SPEP) given biweekly for 12 weeks. Additionally, the cognitive stimulation (CS) program was offered for at least three or five days for 12 weeks for PE + CSG. No treatment was given for the CG. The primary outcome measures were cognition, balance, functional mobility (FM), upper extremity muscle strength (UEMS) and lower extremity muscle strength (LEMS), and quality of life (QoL). Furthermore, depression, basic activities of daily living (BADL) and instrumental activities of daily living (IADL) were measured secondarily. RESULTS: PE + CSG demonstrated significant improvement in cognition, balance, FM, UEMS, IADL and reduction in depression compared to the CG (p < 0.05). Besides, participants in the PE + CSG had statistically superior QoL and IADL than the PEG (p < 0.05). CONCLUSIONS: The addition of CS to the SPEP was a safe and effective method to gain statistically significant improvements in cognition, balance, FM, UEMS, IADL, and reduction in depression in PwAD.

18.
Parkinsonism Relat Disord ; 125: 107048, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38959686

ABSTRACT

INTRODUCTION: Huntington's disease (HD) is a hereditary condition caused by the expansion of the CAG trinucleotide in the huntingtin gene on chromosome 4, resulting in motor, cognitive, and psychiatric disorders that significantly impact patients' quality of life. Despite the lack of effective treatments for the disease, various surgical strategies have been explored to alleviate symptoms and slow its progression. METHODOLOGY: A comprehensive systematic literature review was conducted, including MeSH terms, yielding only 38 articles that were categorized based on the surgical procedure. The study aimed to describe the types of surgeries performed and their efficacy in HD patients. RESULTS: Deep brain stimulation (DBS) involved 41 predominantly male patients with bilateral implantation in the globus pallidus, showing a preoperative Unified Huntington's Disease Rating Scale (UHDRS) score of 60.25 ± 16.13 and a marked postoperative value of 48.54 ± 13.93 with a p < 0.018 at one year and p < 0.040 at three years. Patients experienced improvement in hyperkinesia but worsening of bradykinesia. Additionally, cell transplantation in 119 patients resulted in a lower preoperative UHDRS score of 34.61 ± 14.61 and a significant postoperative difference of 32.93 ± 15.87 (p < 0.016), respectively, in the first to third years of following. Some now, less used procedures were crucial for understanding brain function, such as pallidotomies in 3 patients, showing only a 25 % difference from their baseline. CONCLUSION: Despite advancements in technology, there is still no curative treatment, only palliative options. Promising treatments like trophic factor implantation offer new prospects for the future.

19.
Article in English | MEDLINE | ID: mdl-38959871

ABSTRACT

Biocompatible polymer-based scaffolds hold great promise for neural repair, especially when they are coupled with electrostimulation to induce neural differentiation. In this study, a combination of polyacrylonitrile/polyaniline (PAN/PANI) and Carbon Nanotubes (CNTs) were used to fabricate three different biomimetic electrospun scaffolds (samples 1, 2 and 3 containing 0.26 wt%, 1 wt% and 2 wt% of CNTs, respectively). These scaffolds underwent thorough characterization for assessing electroconductivity, tensile strength, wettability, degradability, swelling, XRD, and FTIR data. Notably, scanning electron microscopy (SEM) images revealed a three-dimensional scaffold morphology with aligned fibers ranging from 60 nm to 292 nm in diameter. To comprehensively investigate the impact of electrical stimulation on the nervous differentiation of the stem cells seeded on these scaffolds, cell morphology and adhesion were assessed based on SEM images. Additionally, scaffold biocompatibility was studied through MTT assay. Importantly, Real-Time PCR results indicated the expression of neural markers-Nestin, ß-tubulin III, and MAP2-by the cells cultured on these samples. In comparison with the control group, samples 1 and 2 exhibited significant increases in Nestin marker expression, indicating early stages of neuronal differentiation, while ß-tubulin III expression was significantly reduced and MAP2 expression remained statistically unchanged. In contrast, sample 3 did not display a statistically significant upturn in Nestin maker expression, while showcasing remarkable increases in the expression of both MAP2 and ß-tubulin III, as markers of the end stages of differentiation, leading to postmitotic neurons. These results could be attributed to the higher electroconductivity of S3 compared to other samples. Our findings highlight the biomimetic potential of the prepared scaffolds for neural repair, illustrating their effectiveness in guiding stem cell differentiation toward a neural lineage.

20.
Article in English | MEDLINE | ID: mdl-38959873

ABSTRACT

OBJECTIVE: Recent innovative neurostimulators allow recording local field potentials (LFPs) while performing motor tasks monitored by wearable sensors. Inertial sensors can provide quantitative measures of motor impairment in people with subthalamic nucleus deep brain stimulation. To the best of our knowledge, there is no validated method to synchronize inertial sensors and neurostimulators without an additional device. This study aims to define a new synchronization method to analyze disease-related brain activity patterns during specific motor tasks and evaluate how LFPs are affected by stimulation and medication. Approach: Twelve male subjects treated with subthalamic nucleus deep brain stimulation were recruited to perform motor tasks in four different medication and stimulation conditions. In each condition, a synchronization protocol was performed consisting of taps on the implanted device, which produces artifacts in the LFPs that an inertial sensor can simultaneously record. Main results: In 64% of the recruited subjects, induced artifacts were detected at least once. Among those subjects, 83% of the recordings could be correctly synchronized offline. The remaining recordings were synchronized by video analysis. Significance: The proposed synchronization method does not require an external system and can be easily integrated into clinical practice. The procedure is simple and can be carried out in a short time. A proper and simple synchronization will also be useful to analyze subthalamic neural activity in the presence of specific events (e.g., freezing of gait events) to identify predictive biomarkers. .

SELECTION OF CITATIONS
SEARCH DETAIL
...