Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Tree Physiol ; 43(12): 2085-2097, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37672256

ABSTRACT

Polylepis trees occur throughout the Andean mountain region, and it is the tree genus that grows at the highest elevation worldwide. In the humid Andes where moisture is rarely limiting, Polylepis trees must adapt to extreme environmental conditions, especially rapid fluctuations in temperature, ultraviolet radiation and vapor pressure deficit (VPD). However, Polylepis' water-use patterns remain largely unknown despite the importance of understanding their response to microclimate variation to determine their capacity to maintain resilience under future environmental change. We conducted a study in a Polylepis reticulata Kunth forest in the Ecuadorian Andes to evaluate its tree water-use dynamics and to identify the main environmental drivers of transpiration. Tree sap flow was monitored simultaneously with soil volumetric water content (VWC) and microclimate during 2 years for trees growing in forest edge and interior locations. We found that sap flow was primarily controlled by VPD and that VWC exerted a secondary role in driving sap flow dynamics. The highest values for sap flow rates were found when VPD > 0.15 kPa and VCW < 0.73 cm3 cm-3, but these threshold conditions only occurred during brief periods of time and were only found in 11% of our measurements. Moreover, these brief windows of more favorable conditions occurred more frequently in forest edge compared with forest interior locations, resulting in edge trees maintaining 46% higher sap flow compared with interior trees. Our results also suggest that P. reticulata has a low stomatal control of transpiration, as the sap flow did not decline with increasing VPD. This research provides valuable information about the potential impacts of projected future increases in VPD due to climate change on P. reticulata water-use dynamics, which include higher sap flow rates leading to greater transpirational water loss due to this species' poor stomatal control.


Subject(s)
Trees , Water , Trees/physiology , Water/physiology , Altitude , Ultraviolet Rays , Plant Transpiration/physiology , Forests , Soil
2.
New Phytol ; 239(2): 533-546, 2023 07.
Article in English | MEDLINE | ID: mdl-37235688

ABSTRACT

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Subject(s)
Plant Leaves , Trees , Trees/physiology , Plant Leaves/physiology , Xylem/physiology , Water/physiology , Droughts , Fluid Therapy
3.
J Exp Bot ; 74(3): 1004-1021, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36350081

ABSTRACT

The synergy between drought-responsive traits across different organs is crucial in the whole-plant mechanism influencing drought resilience. These organ interactions, however, are poorly understood, limiting our understanding of drought response strategies at the whole-plant level. Therefore, we need more integrative studies, especially on herbaceous species that represent many important food crops but remain underexplored in their drought response. We investigated inflorescence stems and rosette leaves of six Arabidopsis thaliana genotypes with contrasting drought tolerance, and combined anatomical observations with hydraulic measurements and gene expression studies to assess differences in drought response. The soc1ful double mutant was the most drought-tolerant genotype based on its synergistic combination of low stomatal conductance, largest stomatal safety margin, more stable leaf water potential during non-watering, reduced transcript levels of drought stress marker genes, and reduced loss of chlorophyll content in leaves, in combination with stems showing the highest embolism resistance, most pronounced lignification, and thickest intervessel pit membranes. In contrast, the most sensitive Cvi ecotype shows the opposite extreme of the same set of traits. The remaining four genotypes show variations in this drought syndrome. Our results reveal that anatomical, ecophysiological, and molecular adaptations across organs are intertwined, and multiple (differentially combined) strategies can be applied to acquire a certain level of drought tolerance.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Droughts , Plant Leaves/metabolism , Adaptation, Physiological , Acclimatization
4.
Sci Total Environ ; 854: 158802, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36115397

ABSTRACT

In recent year, widespread declines of Populus bolleana Lauche trees (P. bolleana, which dieback from the top down) and Haloxylon ammodendron shrubs (H. ammodendron, which dieback starting from their outer canopy) have occurred. To investigate how both intra-canopy hydraulic changes and plasticity in hydraulic properties create differences in vulnerability between these two species, we conducted a drought simulation field experiment. We analyzed branch hydraulic vulnerability, leaf water potential (Ψ), photosynthesis (A), stomatal conductance (gs), non-structural carbohydrate (NSCs) contents and morphological traits of the plants as the plants underwent a partial canopy dieback. Our results showed that: (1) the hydraulic architecture was very different between the two life forms; (2) H. ammodendron exhibited a drought tolerance response with weak stomatal control, and thus a sharp decline in Ψ while P. bolleana showed a drought avoidance response with tighter stomatal control that maintained a relatively stable Ψ; (3) the Ψ of H. ammodendron showed relative consistent symptoms of drought stress with increasing plant stature, but the Ψ of P. bolleana showed greater drought stress in higher portions of the crown; (4) prolonged drought caused P. bolleana to consume and H. ammodendron to accumulate NSCs in the branches of their upper canopy. Thus, the prolonged drought caused the shoots of the upper canopy of P. bolleana to experience greater vulnerability leading to dieback of the upper branches first, while all the twigs of the outer canopy of H. ammodendron experienced nearly identical degrees of vulnerability, and thus dieback occurred uniformly. Our results indicate that intra-canopy hydraulic change and their plasticity under drought was the main cause of the observed canopy dieback patterns in both species. However, more work is needed to further establish that hydraulic limitation as a function of plant stature was the sole mechanism for causing the divergent canopy dieback patterns.


Subject(s)
Droughts , Trees , Trees/physiology , Plant Leaves/physiology , Water/physiology , Wood , Carbohydrates
5.
Tree Physiol ; 42(5): 922-938, 2022 05 09.
Article in English | MEDLINE | ID: mdl-33907798

ABSTRACT

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from -0.003 to -0.065 µmol CO2 m-2 s-1 day-1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees.


Subject(s)
Ecosystem , Trees , Carbon Dioxide , Photosynthesis , Plant Leaves
6.
Glob Chang Biol ; 28(5): 1870-1883, 2022 03.
Article in English | MEDLINE | ID: mdl-34927360

ABSTRACT

Droughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13 C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13 C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.


Subject(s)
Droughts , Ecosystem , Carbon Isotopes , Climate Change , Forests
7.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Article in English | MEDLINE | ID: mdl-34506038

ABSTRACT

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Subject(s)
Carbohydrate Metabolism , Droughts , Hot Temperature , Juniperus/physiology , Photosynthesis , Pinus/physiology , Plant Leaves/physiology , Juniperus/growth & development , Pinus/growth & development , Plant Leaves/growth & development
8.
Plant Signal Behav ; 16(7): 1917169, 2021 07 03.
Article in English | MEDLINE | ID: mdl-33879022

ABSTRACT

Exogenous application of methyl jasmonate (MeJA) has been extensively used to study jasmonate-dependent signaling events triggered by biotic stresses. MeJA application leads to complex jasmonate-dependent physiological responses, including changes in stomatal openness and induction of emissions of a multitude of volatile compounds. Whether the alterations in stomatal conductance and emissions of MeJA-induced volatiles are quantitatively associated with MeJA dose, and whether the induced volatile emissions are regulated by modifications in stomatal conductance had been poorly known until recently. Our latest studies highlighted a biphasic kinetics of jasmonate-dependent volatile emissions induced by MeJA treatment in the model species cucumber (Cucumis sativus), indicating induction of an immediate stress response and subsequent gene-expression level response. Both the immediate and delayed responses were MeJA dose-dependent. The studies further demonstrated that stomata modulated the kinetics of emissions of water-soluble volatiles in a MeJA dose-dependent manner. These studies contribute to understanding of plant short- and long-term responses to different biotic stress severities as simulated by treatments with a range of MeJA doses corresponding to mild to acute stress.


Subject(s)
Acetates/pharmacology , Cucumis sativus/drug effects , Cyclopentanes/pharmacology , Oxylipins/pharmacology , Photosynthesis/drug effects , Plant Stomata/physiology , Cucumis sativus/physiology , Dose-Response Relationship, Drug , Kinetics , Stress, Physiological , Volatile Organic Compounds/metabolism
9.
New Phytol ; 230(6): 2226-2245, 2021 06.
Article in English | MEDLINE | ID: mdl-33521942

ABSTRACT

Trees partition biomass in response to resource limitation and physiological activity. It is presumed that these strategies evolved to optimize some measure of fitness. If the optimization criterion can be specified, then allometry can be modeled from first principles without prescribed parameterization. We present the Tree Hydraulics and Optimal Resource Partitioning (THORP) model, which optimizes allometry by estimating allocation fractions to organs as proportional to their ratio of marginal gain to marginal cost, where gain is net canopy photosynthesis rate, and costs are senescence rates. Root total biomass and profile shape are predicted simultaneously by a unified optimization. Optimal partitioning is solved by a numerically efficient analytical solution. THORP's predictions agree with reported tree biomass partitioning in response to size, water limitations, elevated CO2 and pruning. Roots were sensitive to soil moisture profiles and grew down to the groundwater table when present. Groundwater buffered against water stress regardless of meteorology, stabilizing allometry and root profiles as deep as c. 30 m. Much of plant allometry can be explained by hydraulic considerations. However, nutrient limitations cannot be fully ignored. Rooting mass and profiles were synchronized with hydrological conditions and groundwater even at considerable depths, illustrating that the below ground shapes whole-tree allometry.


Subject(s)
Trees , Xylem , Biomass , Photosynthesis , Plant Leaves , Water
11.
New Phytol ; 227(2): 311-325, 2020 07.
Article in English | MEDLINE | ID: mdl-32248532

ABSTRACT

Optimal stomatal control models have shown great potential in predicting stomatal behavior and improving carbon cycle modeling. Basic stomatal optimality theory posits that stomatal regulation maximizes the carbon gain relative to a penalty of stomatal opening. All models take a similar approach to calculate instantaneous carbon gain from stomatal opening (the gain function). Where the models diverge is in how they calculate the corresponding penalty (the penalty function). In this review, we compare and evaluate 10 different optimization models in how they quantify the penalty and how well they predict stomatal responses to the environment. We evaluate models in two ways. First, we compare their penalty functions against seven criteria that ensure a unique and qualitatively realistic solution. Second, we quantitatively test model against multiple leaf gas-exchange datasets. The optimization models with better predictive skills have penalty functions that meet our seven criteria and use fitting parameters that are both few in number and physiology based. The most skilled models are those with a penalty function based on stress-induced hydraulic failure. We conclude by proposing a new model that has a hydraulics-based penalty function that meets all seven criteria and demonstrates a highly predictive skill against our test datasets.


Subject(s)
Plant Leaves , Plant Stomata , Carbon , Carbon Dioxide , Water
12.
Plant Cell Environ ; 43(3): 532-547, 2020 03.
Article in English | MEDLINE | ID: mdl-31873942

ABSTRACT

Understanding stomatal regulation is fundamental to predicting the impact of changing environmental conditions on vegetation. However, the influence of soil temperature (ST) and soil water content (SWC) on canopy conductance (gs ) through changes in belowground hydraulic conductance (kbg ) remains poorly understood, because kbg has seldom been measured in field conditions. Our aim was to (a) examine the dependence of kbg on ST and SWC, (b) examine the dependence of gs on kbg and (c) test a recent stomatal optimization model according to which gs and soil-to-leaf hydraulic conductance are strongly coupled. We estimated kbg from continuous sap flow and xylem diameter measurements in three boreal species. kbg increased strongly with increasing ST when ST was below +8°C, and typically increased with increasing SWC when ST was not limiting. gs was correlated with kbg in all three species, and modelled and measured gs were well correlated in Pinus sylvestris (a model comparison was only possible for this species). These results imply an important role for kbg in mediating linkages between the soil environment and leaf gas exchange. In particular, our finding that ST strongly influences kbg in mature trees may help us to better understand tree behaviour in cold environments.


Subject(s)
Gases/metabolism , Plant Leaves/physiology , Soil , Temperature , Water/metabolism , Alnus/physiology , Models, Biological , Pinus/physiology , Plant Stems/physiology , Species Specificity , Tilia/physiology , Time Factors , Xylem/physiology
13.
Plant Cell Environ ; 43(1): 28-39, 2020 01.
Article in English | MEDLINE | ID: mdl-31677177

ABSTRACT

Vapour pressure deficit is a major driver of seasonal changes in transpiration, but photoperiod also modulates leaf responses. Climate warming might enhance transpiration by increasing atmospheric water demand and the length of the growing season, but photoperiod-sensitive species could show dampened responses. Here, we document that day length is a significant driver of the seasonal variation in stomatal conductance. We performed weekly gas exchange measurements across a common garden experiment with 12 oak species from contrasting geographical origins, and we observed that the influence of day length was of similar strength to that of vapour pressure deficit in driving the seasonal pattern. We then examined the generality of our findings by incorporating day-length regulation into well-known stomatal models. For both angiosperm and gymnosperm species, the models improved significantly when adding day-length dependences. Photoperiod control over stomatal conductance could play a large yet underexplored role on the plant and ecosystem water balances.


Subject(s)
Plant Stomata/physiology , Quercus/physiology , Seasons , Cycadopsida/physiology , Magnoliopsida/physiology , Photoperiod , Plant Leaves/physiology , Plant Transpiration/physiology , Trees/physiology , Vapor Pressure
14.
Tree Physiol ; 39(8): 1416-1427, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30949697

ABSTRACT

Modeling stomatal control is critical for predicting forest responses to the changing environment and hence the global water and carbon cycles. A trait-based stomatal control model that optimizes carbon gain while avoiding hydraulic risk has been shown to perform well in response to drought. However, the model's performance against changes in atmospheric CO2, which is rising rapidly due to human emissions, has yet to be evaluated. The present study tested the gain-risk model's ability to predict the stomatal response to CO2 concentration with potted water birch (Betula occidentalis Hook.) saplings in a growth chamber. The model's performance in predicting stomatal response to changes in atmospheric relative humidity and soil moisture was also assessed. The gain-risk model predicted the photosynthetic assimilation, transpiration rate and leaf xylem pressure under different CO2 concentrations, having a mean absolute percentage error (MAPE) of 25%. The model also predicted the responses to relative humidity and soil drought with a MAPE of 21.9% and 41.9%, respectively. Overall, the gain-risk model had an MAPE of 26.8% compared with the 37.5% MAPE obtained by a standard empirical model of stomatal conductance. Importantly, unlike empirical models, the optimization model relies on measurable physiological traits as inputs and performs well in predicting responses to novel environmental conditions without empirical corrections. Incorporating the optimization model in larger scale models has the potential for improving the simulation of water and carbon cycles.


Subject(s)
Carbon Dioxide , Droughts , Photosynthesis , Plant Leaves , Plant Stomata , Plant Transpiration , Water , Xylem
15.
New Phytol ; 220(3): 836-850, 2018 11.
Article in English | MEDLINE | ID: mdl-29998567

ABSTRACT

Empirical models of plant drought responses rely on parameters that are difficult to specify a priori. We test a trait- and process-based model to predict environmental responses from an optimization of carbon gain vs hydraulic risk. We applied four drought treatments to aspen (Populus tremuloides) saplings in a research garden. First we tested the optimization algorithm by using predawn xylem pressure as an input. We then tested the full model which calculates root-zone water budget and xylem pressure hourly throughout the growing season. The optimization algorithm performed well when run from measured predawn pressures. The per cent mean absolute error (MAE) averaged 27.7% for midday xylem pressure, transpiration, net assimilation, leaf temperature, sapflow, diffusive conductance and soil-canopy hydraulic conductance. Average MAE was 31.2% for the same observations when the full model was run from irrigation and rain data. Saplings that died were projected to exceed 85% loss in soil-canopy hydraulic conductance, whereas surviving plants never reached this threshold. The model fit was equivalent to that of an empirical model, but with the advantage that all inputs are specific traits. Prediction is empowered because knowing these traits allows knowing the response to climatic stress.


Subject(s)
Carbon/metabolism , Droughts , Models, Biological , Plant Stomata/physiology , Populus/physiology , Water/metabolism , Pressure
16.
Plant Physiol Biochem ; 125: 13-26, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29413627

ABSTRACT

Water deficit is one of the main environmental constraints that limit plant growth. Accordingly, plants evoke rather complex strategies to respond and/or acclimate to such frustrating circumstances. Due to insufficient understandings of acclimatory mechanisms of plants' tolerance to persistent water deficit, a desert shrub of an ancient origin, Ammopiptanthus mongolicus, has recently attracted growing attentions. Differed from Arabidopsis, the opening of stomata of A. mongolicus is constrained by low external K+ concentration of the guard cells. Although as a general consequence, a raised level of ABA is also induced in A. mongolicus following water deficit, this does not accordingly result in efficient stomatal closure. In consistent with this phenomenon, the expression of genes coding for the negative regulators of the ABA signaling cascade-the type 2C protein phosphatases (PP2Cs) are notably induced, whereas the transcription of the downstream SnRK2 protein kinase genes or the destination ion fluxing channel genes remain almost unaffected under water deficit treatments. Therefore, in term of stomatal control in response to water deficit, A. mongolicus seemingly employs an unusual strategy: a constrained stomatal opening controlled by extracellular K+ concentrations rather than a prompt stomatal closure triggered by ABA-induced signaling pathway. Additionally, an acute accumulation of proline is induced by water deficit which may partly compromise the activation of antioxidant enzymes in A. mongolicus. Such strategy of stomatal control found in A. mongolicus may in certain extents, reflect the acclimatory divergence for plants' coping with persistent stress of water deficit.


Subject(s)
Fabaceae/physiology , Plant Proteins/metabolism , Plant Stomata/physiology , Signal Transduction/physiology , Desert Climate
17.
An. acad. bras. ciênc ; 89(4): 3015-3029, Oct.-Dec. 2017. tab, graf
Article in English | LILACS | ID: biblio-886874

ABSTRACT

ABSTRACT Castor bean is one of the crops with potential to provide raw material for production of oils for biodiesel. This species possess adaptive mechanisms for maintaining the water status when subjected to drought stress. A better understanding these mechanisms under field conditions can unravel the survival strategies used by this species. This study aimed to compare the physiological adaptations of Ricinus communis (L.) in two regions with different climates, the semi-arid and semi-humid subject to water stress. The plants showed greater vapor pressure deficit during the driest hours of the day, which contributed to higher values of the leaf temperature and leaf transpiration, however, the VPD(leaf-air) had the greatest effect on plants in the semi-arid region. In both regions, between 12:00 p.m. and 2:00 p.m., the plants presented reduction in the rates of photosynthesis and intracellular CO2 concentration in response to stomatal closure. During the dry season in the semi-arid region, photoinhibition occurred in the leaves of castor bean between 12:00 p.m. and 2:00 p.m. These results suggest that castor bean plants possess compensatory mechanisms for drought tolerance, such as: higher stomatal control and maintenance of photosynthetic capacity, allowing the plant to survive well in soil with low water availability.


Subject(s)
Photosynthesis/physiology , Ricinus/physiology , Stress, Physiological/physiology , Adaptation, Physiological/physiology , Water , Seasons , Tropical Climate , Plant Transpiration , Desert Climate , Droughts , Humidity
18.
Tree Physiol ; 37(7): 851-868, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28338800

ABSTRACT

Trees must simultaneously balance their CO2 uptake rate via stomata, photosynthesis, the transport rate of sugars and rate of sugar utilization in sinks while maintaining a favourable water and carbon balance. We demonstrate using a numerical model that it is possible to understand stomatal functioning from the viewpoint of maximizing the simultaneous photosynthetic production, phloem transport and sink sugar utilization rate under the limitation that the transpiration-driven hydrostatic pressure gradient sets for those processes. A key feature in our model is that non-stomatal limitations to photosynthesis increase with decreasing leaf water potential and/or increasing leaf sugar concentration and are thus coupled to stomatal conductance. Maximizing the photosynthetic production rate using a numerical steady-state model leads to stomatal behaviour that is able to reproduce the well-known trends of stomatal behaviour in response to, e.g., light, vapour concentration difference, ambient CO2 concentration, soil water status, sink strength and xylem and phloem hydraulic conductance. We show that our results for stomatal behaviour are very similar to the solutions given by the earlier models of stomatal conductance derived solely from gas exchange considerations. Our modelling results also demonstrate how the 'marginal cost of water' in the unified stomatal conductance model and the optimal stomatal model could be related to plant structural and physiological traits, most importantly, the soil-to-leaf hydraulic conductance and soil moisture.


Subject(s)
Models, Theoretical , Photosynthesis , Plant Stomata/physiology , Plant Transpiration , Carbon Dioxide , Phloem/physiology , Trees/physiology , Water/physiology , Xylem/physiology
20.
New Phytol ; 211(3): 819-27, 2016 08.
Article in English | MEDLINE | ID: mdl-27214852

ABSTRACT

Stomatal regulation of plant carbon uptake and water loss under changing environmental conditions was a crucial evolutionary step in the colonization of land by plants. There are currently two conflicting models describing the nature of stomatal regulation across terrestrial vascular plants: the first is characterized by a fundamental mechanistic similarity across all lineages, and the second is characterized by the evolution of major differences in angiosperms compared with more ancient lineages. Specifically, the second model posits that stomata of ferns lack a response to elevated atmospheric CO2 concentration (ca ) and therefore cannot regulate leaf intercellular CO2 concentration (ci ). We compared stomatal sensitivity to changes in ca in three distantly related fern species and a representative angiosperm species. Fern and angiosperm stomata responded strongly and similarly to changes in ca . As a result, ci /ca was maintained within narrow limits during ca changes. Our results challenge the model in which stomata of ferns generally lack a response to elevated ca and that angiosperms evolved new dynamic mechanisms for regulating leaf gas exchange that differ fundamentally from ferns. Instead, the results are consistent with a universal stomatal control mechanism that is fundamentally conserved across ferns and angiosperms, and therefore likely all vascular plant divisions.


Subject(s)
Carbon Dioxide/pharmacology , Ferns/physiology , Plant Stomata/physiology , Atmosphere/chemistry , Ferns/drug effects , Magnoliopsida/physiology , Plant Stomata/drug effects , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...