Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.787
Filter
1.
J Environ Manage ; 367: 121849, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059312

ABSTRACT

Due to their small size and high anthropogenic pressure, small watercourses are particularly prone to severe siltation and are densely overgrown with macrophytes. Many of these watercourses are subject to regular maintenance works (RMW), consisting of seasonal desilting and vegetation clearance, in order to ensure unobstructed water flow. The aim of the study was to assess the impact of three types of maintenance works: dredging and mud removal (DMR), river channel vegetation removal (RCVR) and river bank vegetation removal (RBVR) on taxa species richness, macroinvertebrate density and the Shannon-Wiener diversity index, as well as their changes and long-term benthic recolonization one and two years after completion of the works. The study was carried out in 21 habitats on eight rivers in the European Central Plains Ecoregion. A total of 107 zoobenthic taxa were found at all sites, and their species composition was characteristic of highly hydrophytic waters with low hydrological and hydrochemical quality parameters. A significant decrease in macroinvertebrate taxa richness was observed one year after the works, as the average number of taxa had dropped from thirteen to eight, with a further fall to seven taxa two years after the RMW. The same was true for density, which had decreased from an average of 2496 to 786 individuals per square meter one year after the RMW, while, a gradual recolonization was recorded two years after the RMW, with an average density of 1295 individuals per square meter. The Shannon-Wiener index, which had averaged 2.528 before the RMW, also decreased, falling to 1.982 and 1.832 one and two years after. BACI statistical analyses showed that of the three types of maintenance work, desilting and bottom sediment removal had the largest negative impact, significantly reducing taxonomic composition (by an average of 53%), density (by an average of 43%), and ecological index values (by an average of 40%). Over-frequent maintenance can prevent macroinvertebrate populations from recovering, thus depleting the environment of valuable taxa, including those that provide food for fish and other vertebrates.

2.
Sci Total Environ ; 948: 174906, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39034000

ABSTRACT

Tropical stream ecosystems are under increasing human pressure, making the development of effective restoration approaches and expanding knowledge in this field urgent. This study evaluated the impact of riparian vegetation restoration and environmental context on stream ecosystem functioning by measuring key ecosystem functions - gross primary production (GPP), ecosystem respiration (ER), and nutrient uptake of ammonium and soluble reactive phosphorus - across ten tropical streams in southeastern Brazil. The streams represented a gradient from clearcut areas (impacted reaches) to relatively pristine conditions (reference reaches), including intermediate stages of vegetation recovery (restored reaches). In the short-term (~15-20 years after restoration), restoration led to reduced GPP akin to reference reaches. Yet, ER did not show the anticipated increase, suggesting a longer timeframe is necessary for restored streams to emulate the functional characteristics of reference reaches. Additionally, the restored reaches did not achieve the nutrient uptake efficiencies observed in both impacted and reference reaches, pointing to a partial recovery of ecosystem function. This study suggests that while riparian vegetation restoration contributes positively to certain aspects of stream function, environmental variables less related to this type of restoration, such as discharge and hydromorphology, significantly influence stream ecosystem functioning, highlighting the importance of considering environmental context in restoration efforts. A more holistic approach, possibly encompassing broader hydromorphological and habitat enhancements, is needed to fully restore ecological processes in these vital ecosystems. These insights are critical for informing future tropical stream restoration projects, advocating the use of ecosystem function metrics as comprehensive indicators of ecological recovery and restoration success.

3.
Neuropsychologia ; : 108960, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39032629

ABSTRACT

Congenital amusia is a neurodevelopmental disorder characterized by deficits of music perception and production, which are related to altered pitch processing. The present study used a wide variety of tasks to test potential patterns of processing impairment in individuals with congenital amusia (N=18) in comparison to matched controls (N=19), notably classical pitch processing tests (i.e., pitch change detection, pitch direction of change identification, and pitch short-term memory tasks) together with tasks assessing other aspects of pitch-related auditory cognition, such as emotion recognition in speech, sound segregation in tone sequences, and speech-in-noise perception. Additional behavioral measures were also collected, including text reading/copying tests, visual control tasks, and a subjective assessment of hearing abilities. As expected, amusics' performance was impaired for the three pitch-specific tasks compared to controls. This deficit of pitch perception had a self-perceived impact on amusics' quality of hearing. Moreover, participants with amusia were impaired in emotion recognition in vowels compared to controls, but no group difference was observed for emotion recognition in sentences, replicating previous data. Despite pitch processing deficits, participants with amusia did not differ from controls in sound segregation and speech-in-noise perception. Text reading and visual control tests did not reveal any impairments in participants with amusia compared to controls. However, the copying test revealed more numerous eye-movements and a smaller memory span. These results allow us to refine the pattern of pitch processing and memory deficits in congenital amusia, thus contributing further to understand pitch-related auditory cognition. Together with previous reports suggesting a comorbidity between congenital amusia and dyslexia, the findings call for further investigation of language-related abilities in this disorder even in the absence of neurodevelopmental language disorder diagnosis.

4.
Comput Med Imaging Graph ; 116: 102414, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38981250

ABSTRACT

The use of multi-modality non-contrast images (i.e., T1FS, T2FS and DWI) for segmenting liver tumors provides a solution by eliminating the use of contrast agents and is crucial for clinical diagnosis. However, this remains a challenging task to discover the most useful information to fuse multi-modality images for accurate segmentation due to inter-modal interference. In this paper, we propose a dual-stream multi-level fusion framework (DM-FF) to, for the first time, accurately segment liver tumors from non-contrast multi-modality images directly. Our DM-FF first designs an attention-based encoder-decoder to effectively extract multi-level feature maps corresponding to a specified representation of each modality. Then, DM-FF creates two types of fusion modules, in which a module fuses learned features to obtain a shared representation across multi-modality images to exploit commonalities and improve the performance, and a module fuses the decision evidence of segment to discover differences between modalities to prevent interference caused by modality's conflict. By integrating these three components, DM-FF enables multi-modality non-contrast images to cooperate with each other and enables an accurate segmentation. Evaluation on 250 patients including different types of tumors from two MRI scanners, DM-FF achieves a Dice of 81.20%, and improves performance (Dice by at least 11%) when comparing the eight state-of-the-art segmentation architectures. The results indicate that our DM-FF significantly promotes the development and deployment of non-contrast liver tumor technology.

5.
J Gen Fam Med ; 25(4): 206-213, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38966654

ABSTRACT

Background: We aimed to aid the appropriate use of antimicrobial agents by determining the timing of secondary bacteremia and validating and updating clinical prediction models for bacteremia in patients with COVID-19. Methods: We performed a retrospective cohort study on all hospitalized patients diagnosed with COVID-19 who underwent blood culture tests from January 1, 2020, and September 30, 2021, at an urban teaching hospital in Japan. The primary outcome measure was secondary bacteremia in patients with COVID-19. Results: Of the 507 patients hospitalized with COVID-19, 169 underwent blood culture tests. Eleven of them had secondary bacteremia. The majority of secondary bacteremia occurred on or later than the 9th day after symptom onset. Positive blood culture samples collected on day 9 or later after disease onset had an odds ratio of 22.4 (95% CI 2.76-181.2, p < 0.001) compared with those collected less than 9 days after onset. The area under the receiver operating characteristic curve of the modified Shapiro rule combined with blood culture collection on or after the 9th day from onset was 0.919 (95% CI, 0.843-0.995), and the net benefit was high according to the decision curve analysis. Conclusions: The timings of symptom onset and hospital admission may be valuable indicators for making a clinical decision to perform blood cultures in patients hospitalized with COVID-19.

6.
Int J Pharm ; 661: 124478, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39019300

ABSTRACT

Continuous manufacturing has the potential to offer several benefits for the production of oral solid dosage forms, including reduced costs, low-scale equipment, and the application of process analytical technology (PAT) for real-time process control. This study focuses on the implementation of a stream sampler to develop a near infrared (NIR) calibration model for blend uniformity monitoring in a continuous manufacturing mixing process. Feeding and mixing characterizations were performed for three loss-in-weight feeders and a commercial continuous mixer to prepare powder blends of 2.5-7.5 % w/w ibuprofen DC 85 W with a total throughput of 33 kg/h. The NIR spectral acquisition was performed after the mixing stage using a stream sampler for flowing powders. A continuous mixer shaft speed of 250 RPM was selected to operate the mixing process based on a variability analysis developed with in-line spectral data acquired using the stream sampler at 6 RPM. A partial least squares regression (PLS-R) model was performed and evaluated, yielding a root-mean-square error of prediction (RMSEP) of 0.39 % w/w and a bias of 0.05 % w/w. An independent experimental run conducted two days later revealed that the continuous mixing process and the NIR calibration model presented low day-to-day variation. The minimum practical error (MPE) and sill values through variographic analysis showed low variance associated with the sampling process using the stream sampler. Results demonstrated the promising capacity of the stream sampler coupled to an NIR probe to be implemented within continuous manufacturing processes for the real-time determination of API concentration.

7.
J Hydrol X ; 23(1): 1-16, 2024 May 01.
Article in English | MEDLINE | ID: mdl-39026600

ABSTRACT

Over the past century, water temperatures in many streams across the Pacific Northwest (PNW) have steadily risen, shrinking endangered salmonid habitats. The warming of PNW stream reaches can be further accelerated by wildfires burning forest stands that provide shade to streams. However, previous research on the effect of wildfires on stream water temperatures has focused on individual streams or burn events, limiting our understanding of the diversity in post-fire thermal responses across PNW streams. To bridge this knowledge gap, we assessed the impact of wildfires on daily summer water temperatures across 31 PNW stream sites, where 10-100% of their riparian area burned. To ensure robustness of our results, we employed multiple approaches to characterize and quantify fire effects on post-fire stream water temperature changes. Averaged across the 31 burned sites, wildfires corresponded to a 0.3 - 1°C increase in daily summer water temperatures over the subsequent three years. Nonetheless, post-fire summer thermal responses displayed extensive heterogeneity across burned sites where the likelihood and rate of a post-fire summer water temperature warming was higher for stream sites with greater proportion of their riparian area burned under high severity. Also, watershed features such as basin area, post-fire weather, bedrock permeability, pre-fire riparian forest cover, and winter snowpack depth were identified as strong predictors of the post-fire summer water temperature responses across burned sites. Our study offers a multi-site perspective on the effect of wildfires on summer stream temperatures in the PNW, providing insights that can inform freshwater management efforts beyond individual streams and basins.

8.
Biol Lett ; 20(7): 20230394, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38982850

ABSTRACT

Urban stream syndrome alters stream habitat complexity. We define habitat complexity as the degree of variation in physical habitat structure, with increasing variation equating to higher complexity. Habitat complexity affects species composition and shapes animal ecology, physiology, behaviour and cognition. We used a delayed detour test to measure whether cognitive processes (motor self-regulation) and behaviour (risk-taking) of female Western mosquitofish, Gambusia affinis, varied with habitat structural complexity (low, moderate and high) that was quantified visually for nine populations. We predicted that motor self-regulation and risk-taking behaviour would increase with increasing habitat complexity, yet we found support for the opposite. Lower complexity habitats offer less refuge potentially leading to higher predation pressure and selecting for greater risk-taking by fish with higher motor self-regulation. Our findings provide insight into how habitat complexity can shape cognitive processes and behaviour and offers a broader understanding of why some species may tolerate conditions of urbanized environments.


Subject(s)
Behavior, Animal , Cognition , Cyprinodontiformes , Ecosystem , Animals , Cyprinodontiformes/physiology , Female , Risk-Taking , Rivers
9.
Sci Total Environ ; 948: 174597, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986691

ABSTRACT

The spatial pattern of toxic metals plays a major role in watershed diffuse metal non-point source pollution, particularly during stream sediment transportation at hills mines. This study investigated a typical hilly mine area to quantitatively analyze the characteristics, sensitivities, and influencing factors of toxic elements transported in stream sediments through field research and Geodetector models. The results showed that the spatial patterns of toxic elements in stream sediment transportation at the hills mine area were significantly influenced by water erosion and sulfate. Water erosion and sulfate promoted the transport differences of stream sediment metals from upstream to downstream at the hills mine area. Arsenic, cadmium, mercury, and antimony in the stream sediments at the hills mine exhibited higher coefficients of variation (101 % to 397 %) than those in plain and basin topographies. Potential ecological risks of arsenic and cadmium were assessed as high-risk levels, at 19 % and 64 %, respectively. Metal import in the midstream sediments of the hills mine area was accelerated by strong water erosion. Sulfate and dissolved organic matter (DOM) were highly enriched in stream sediments, with sulfate showing a strong correlation with toxic metals (24 %). Positive responses were observed between arsenic, mercury, antimony, and sulfate in sediments, with sensitivities of 41 %, 25 %, and 16 %, respectively, while cadmium was associated with DOM, with a sensitivity of 46 %. Importantly, water erosion interactions with functional type of mine significantly influenced on the spatial transportation patterns of toxic metals in stream sediments. The interactive influences of sulfate combined with bicarbonate on arsenic, mercury, and antimony and bicarbonate combined with DOM on cadmium were enhanced compared to individual factors (>20 %). This study elucidates the spatial patterns of metals during stream sediment transportation in hills mine and offers the novel insights for developing effective watershed metal management strategies in hilly mine environments.

10.
Med Phys ; 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39003592

ABSTRACT

BACKGROUND: Magnetoencephalography (MEG) and magnetic resonance imaging (MRI) are non-invasive imaging techniques that offer effective means for disease diagnosis. A more straightforward and optimized method is presented for designing gradient coils which are pivotal parts of the above imaging systems. PURPOSE: A novel design method based on stream function combining an optimization algorithm is proposed to obtain highly linear gradient coil. METHODS: Two-dimensional Fourier expansion of the current field on the surface where the coil is located and the equipotential line of the expansion term superposition according to the number of turns of the coil are used to represent the coil shape. Particle swarm optimization is utilized to optimize the coil shape while linearity and field uniformity are used as parameters to evaluate the coil performance. Through this method, the main parameters such as input current distribution region, coil turns, desired magnetic field strength, expansion order and iteration times can be combined in a given solution space to optimize coil design. RESULTS: Simulation results show that the maximum linearity spatial deviation of the designed bi-planar x-gradient coil compared with that of target field method is reduced from 14% to 0.54%, and that of the bi-planar z-gradient coil is reduced from 8.98% to 0.52%. Similarly, that of the cylindrical x-gradient coil is reduced from 2% to 0.1%, and that of the cylindrical z-gradient coil is reduced from 0.87% to 0.45%. The similar results are found in the index of inhomogeneity error. Moreover, it has also been verified experimentally that the result of measured magnetic field is consist with simulated result. CONCLUSIONS: The proposed method provides a straightforward way that simplifies the design process and improves the linearity of designed gradient coil, which could be beneficial to realize better magnetic field in engineering applications.

11.
Ecol Appl ; : e3015, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010722

ABSTRACT

Stream drying is increasing globally, with widespread impacts on stream ecosystems. Here, we investigated how the impacts of drying on stream ecosystem connectivity might depend on stream network size and the location of drying within the stream network. Using 11 stream networks from across the United States, we simulated drying scenarios in which we varied the location and spatial extent of drying. We found that the rate of connectivity loss varied with stream network size, such that larger stream networks lost connectivity more rapidly than smaller stream networks. We also found that the rate of connectivity loss varied with the location of drying. When drying occurred in the mainstem, even small amounts of drying resulted in rapid losses in ecosystem connectivity. When drying occurred in headwater reaches, small amounts of drying had little impact on connectivity. Beyond a certain threshold, however, connectivity declined rapidly with further increases in drying. Given the increasing stream drying worldwide, our findings underscore the need for managers to be particularly vigilant about fragmentation when managing at large spatial scales and when stream drying occurs in mainstem reaches.

12.
Cortex ; 178: 91-103, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38986277

ABSTRACT

In a sentence reading ERP study in Swedish we investigated the roles of the N400 and P600 components. By manipulating ease of lexical retrieval and discourse integration of the critical words in four conditions (contextually primed/non-primed and degree of contextual fit), we explored these components from a sentence processing perspective. The results indicate that the N400 indexes lexical retrieval and access of stored conceptual knowledge, whereas the P600 component indexes pragmatic processes, such as integration of a word into the discourse context, or the information structural status of the word. The results support single-stream models of sentence processing where lexical retrieval and integration do not take place in parallel, as in multi-stream models.

13.
Infection ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995551

ABSTRACT

OBJECTIVES: Advancements in Artificial Intelligence(AI) have made platforms like ChatGPT increasingly relevant in medicine. This study assesses ChatGPT's utility in addressing bacterial infection-related questions and antibiogram-based clinical cases. METHODS: This study involved a collaborative effort involving infectious disease (ID) specialists and residents. A group of experts formulated six true/false, six open-ended questions, and six clinical cases with antibiograms for four types of infections (endocarditis, pneumonia, intra-abdominal infections, and bloodstream infection) for a total of 96 questions. The questions were submitted to four senior residents and four specialists in ID and inputted into ChatGPT-4 and a trained version of ChatGPT-4. A total of 720 responses were obtained and reviewed by a blinded panel of experts in antibiotic treatments. They evaluated the responses for accuracy and completeness, the ability to identify correct resistance mechanisms from antibiograms, and the appropriateness of antibiotics prescriptions. RESULTS: No significant difference was noted among the four groups for true/false questions, with approximately 70% correct answers. The trained ChatGPT-4 and ChatGPT-4 offered more accurate and complete answers to the open-ended questions than both the residents and specialists. Regarding the clinical case, we observed a lower accuracy from ChatGPT-4 to recognize the correct resistance mechanism. ChatGPT-4 tended not to prescribe newer antibiotics like cefiderocol or imipenem/cilastatin/relebactam, favoring less recommended options like colistin. Both trained- ChatGPT-4 and ChatGPT-4 recommended longer than necessary treatment periods (p-value = 0.022). CONCLUSIONS: This study highlights ChatGPT's capabilities and limitations in medical decision-making, specifically regarding bacterial infections and antibiogram analysis. While ChatGPT demonstrated proficiency in answering theoretical questions, it did not consistently align with expert decisions in clinical case management. Despite these limitations, the potential of ChatGPT as a supportive tool in ID education and preliminary analysis is evident. However, it should not replace expert consultation, especially in complex clinical decision-making.

14.
Pediatr Hematol Oncol ; : 1-17, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38975680

ABSTRACT

Bloodstream infections (BSI) are one of the leading causes of morbidity and mortality in children and young adults receiving chemotherapy for malignancy or undergoing hematopoietic stem cell transplantation (HSCT). Antibiotic prophylaxis is commonly used to decrease the risk of BSI; however, antibiotics carry an inherent risk of complications. The aim of this manuscript is to review levofloxacin prophylaxis in pediatric oncology patients and HSCT recipients. We reviewed published literature on levofloxacin prophylaxis to prevent BSI in pediatric oncology patients and HSCT recipients. Nine manuscripts were identified. The use of levofloxacin is indicated in neutropenic children and young adults receiving intensive chemotherapy for leukemia or undergoing HSCT. These results support the efficacy of levofloxacin in pediatric patients with leukemia receiving intensive chemotherapy and should be considered in pediatric patients undergoing HSCT prior to engraftment.

15.
Microbiol Resour Announc ; : e0113023, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990023

ABSTRACT

Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla.

16.
Biol Psychiatry ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38996901

ABSTRACT

Posttraumatic stress disorder (PTSD) is widely recognized as involving disruption of core neurocircuitry that underlies processing, regulation, and response to threat. In particular, the prefrontal cortex - hippocampal - amygdala circuit is a major contributor to posttraumatic dysfunction. However, the functioning of core threat neurocircuitry is partially dependent on sensorial inputs and previous research demonstrates that dense, reciprocal connections exist between threat circuits and the ventral visual stream. Further, emergent evidence suggests that trauma exposure and resultant PTSD symptoms are associated with altered structure and function of the ventral visual stream. The present review discusses evidence that both threat and visual circuitry together are an integral part of PTSD pathogenesis. An overview of the relevance of visual processing to PTSD is discussed in the context of both basic and translational research, highlighting the impact of stress on affective-visual circuitry. This review further synthesizes emergent literature to suggest potential timing-dependent effects of traumatic stress on threat and visual circuits that may contribute to PTSD development. We conclude with recommendations for future research to accelerate the field towards a more complete understanding of PTSD neurobiology.

17.
J Environ Manage ; 366: 121836, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39018841

ABSTRACT

Microplastic (MP) pollution has become a pressing concern in global freshwater ecosystems because rivers serve as essential channels for the transport of terrestrial debris to the ocean. The current researches mostly focus on the large catchments, but the impact on the small catchments remains underexplored. In this study, we employed Strahler's stream order classification to delineate the catchment structure of the Beijiang River in South China. The distribution pattern of MP contamination and the factors influencing the distribution pattern, were assessed across the streams at different orders. We found that the Beijiang River was moderately polluted compare to other rivers in China, with an average MP abundance of 2.15 ± 1.65 items/L. MP abundance ranged from 3.17 to 1.45 items/L in the streams at different orders, and significantly decreased with increasing stream order (R2 = 0.93). This highlights the key role of small rivers as the channels for the transport of MPs from watersheds to main streams. The high abundance of PP and PE fibers, the high correlation between the stream order and the resin proportion (R2 = 0.89), and the significant correlation between MP abundance and proximity to urban centers (P = 0.02), indicated that MP pollution across the streams at different orders was predominantly influenced by anthropogenic activities, rather than natural environmental factors. By integrating MP data with hydrographic information, the annual MP loads for the streams at Orders 1 to Order 5 were estimated to be 4.63, 39.38, 204.63, 503.06, and 1137.88 tons/yr, respectively. Additionally, an ecological risk assessment indicates that MP pollution led to a low risk in the Beijiang River. Our findings deepen the understanding of MP pollution within freshwater river networks, and emphasize the crucial role of tributary systems in transporting MPs to main river channels.

18.
BMC Infect Dis ; 24(1): 697, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004725

ABSTRACT

BACKGROUND: This case report presents a unique instance of abscesses with an uncommon pathogen isolated from blood cultures. CASE PRESENTATION: We present the case of a perianal abscess in a 50-year-old man with a history of cocaine abuse and bilateral hip replacements. The rapid progression led to septic shock and multi-organ failure, requiring intensive care unit admission, surgery including protective transversostomy. Blood cultures showed growth of Butyricimonas spp. with resistance to penicillin and piperacillin-tazobactam. The immediate switch to meropenem led to a significant improvement in the patient's condition. The patient was discharged after 40 days of hospitalization in good general condition and the reversal of the transversostomy was performed six months later. CONCLUSION: The identification of Butyricimonas faecihominis, a rarely reported pathogen, emphasizes the challenges of diagnosing and treating unusual infections. This case emphasizes the importance of rapid microbiological diagnosis, interdisciplinary collaboration, and targeted antibiotic therapy in the treatment of abscesses and sepsis.


Subject(s)
Abscess , Anti-Bacterial Agents , Humans , Male , Middle Aged , Abscess/microbiology , Abscess/drug therapy , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Meropenem/therapeutic use
19.
Ecol Evol ; 14(7): e11663, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994213

ABSTRACT

Several theoretical models have been proposed as the underlying mechanisms behind occupancy frequency distribution (OFD) patterns. For instance, the metapopulation dynamic model predicts bimodal OFD pattern indicating the dominance of dispersal processes in structuring the assemblages, while the niche-based model predicts unimodal right-skewed OFD pattern, and thus assemblages are driven mostly by niche processes. However, it is well known that the observed OFD pattern reflects the interplay of several other factors (e.g. habitat heterogeneity, species specificity and sampling protocol parameters). It follows that the individual contribution of each factor to the OFD pattern is rather complicated to explore. Our main objective was to examine the role of the spatial extent of the sampling and the dispersal strategies of species in shaping OFD pattern. For this, we collected samples of stream insect assemblages inhabiting near-natural streams in the Pannon Ecoregion. We formed groups of species representing contrasting dispersal strategies (referred to as dispersal groups). Applying a computer program algorithm, we produced samples with different spatial extent. We found that with increasing spatial extent, the OFD pattern changed from bimodal to unimodal for active dispersers. Insect groups with different dispersal strategies differed in the strength of support for OFD patterns within all spatial extent. Furthermore, the strength of support for OFD patterns varied across dispersal groups differently as the spatial extent increased. Our results reflected underlying changes in mechanisms structuring assemblages along an increasing spatial extent. We also assumed that the stream insect dispersal strategy influences the relative role of dispersal and niche processes particularly as spatial extent increases from stream reaches to the extent of adjacent valleys. We could define spatial extents and dispersal strategies within which unique metacommunity processes could underlie the organisation of assemblages.

20.
Sensors (Basel) ; 24(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39066043

ABSTRACT

Human activity recognition (HAR) is pivotal in advancing applications ranging from healthcare monitoring to interactive gaming. Traditional HAR systems, primarily relying on single data sources, face limitations in capturing the full spectrum of human activities. This study introduces a comprehensive approach to HAR by integrating two critical modalities: RGB imaging and advanced pose estimation features. Our methodology leverages the strengths of each modality to overcome the drawbacks of unimodal systems, providing a richer and more accurate representation of activities. We propose a two-stream network that processes skeletal and RGB data in parallel, enhanced by pose estimation techniques for refined feature extraction. The integration of these modalities is facilitated through advanced fusion algorithms, significantly improving recognition accuracy. Extensive experiments conducted on the UTD multimodal human action dataset (UTD MHAD) demonstrate that the proposed approach exceeds the performance of existing state-of-the-art algorithms, yielding improved outcomes. This study not only sets a new benchmark for HAR systems but also highlights the importance of feature engineering in capturing the complexity of human movements and the integration of optimal features. Our findings pave the way for more sophisticated, reliable, and applicable HAR systems in real-world scenarios.


Subject(s)
Algorithms , Human Activities , Humans , Image Processing, Computer-Assisted/methods , Movement/physiology , Posture/physiology , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...