Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.220
Filter
1.
Arch Oral Biol ; 165: 106009, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38838513

ABSTRACT

OBJECTIVE: The objective was to measure the thickness of Streptococcus mutans (S. mutans) biofilms forming in an oral biofilm reactor (OBR) by using a noninvasive swept-source optical coherence tomography (SS-OCT) system at every 4 h time interval until 20 h and analyze the correlations with the amounts of biofilms. METHODS: S. mutans biofilms were formed on square-shaped bovine enamel blocks inside an OBR. Biofilms were analyzed at every 4 h stage (4 h, 8 h, 12 h, 16 h and 20 h) using a SS-OCT system and a laser scanning confocal microscope (LSCM). The amounts of biofilms were measured at each stage by separating the water insoluble glucan (WIG) and bacterial cells. Co-relationships between the SS-OCT measured biofilm thickness and the amounts of adhered biofilms were analyzed. RESULTS: The thickness of biofilms detected on SS-OCT images at 4 h stage was 0.059 ± 0.029 (Av ± SD) mm which increased time-dependently in a linear fashion after 8 h stage and reached to 0.435 ± 0.159 mm at 20 h stage and the correlation coefficient was about 0.89. The amounts of biofilms; bacterial optical density (OD) and WIG concentration increased time-dependently were 0.035 ± 0.008 / mm2 and 10.328 ± 2.492 µg/ mm2 respectively at 20 h stage. Correlation coefficients of 0.66 between 'the amounts of bacteria' and 'biofilm thickness on OCT' and 0.67 between 'the amounts of WIG' and 'biofilm thickness on OCT' were obtained, suggesting that there was a relatively positive correlation between them. CONCLUSION: The SS-OCT can be a useful tool to measure time-dependent growth of biofilms. Further studies are needed in order to assess biofilms using SS-OCT more accurately.

2.
Article in English | MEDLINE | ID: mdl-38842123

ABSTRACT

Dental caries is a widespread bacterial infectious disease that imposes a significant public health burden globally. The primary culprits in caries development are cariogenic bacteria, notably Streptococcus mutans (S. mutans), due to their robust biofilm-forming capabilities. To address this issue, a series of cationic pyridinium-substituted photosensitizers with aggregation-induced emission have been designed. All of these aggregation-induced emission luminogens (AIEgens) exhibit outstanding microbial visualization and photodynamic killing of S. mutans, thanks to their luminous fluorescence and efficient singlet oxygen generation ability. Notably, one of the membrane-anchored AIEgens (TDTPY) can inactivate planktic S. mutans and its biofilm without causing significant cytotoxicity. Importantly, application of TDTPY-mediated photodynamic treatment on in vivo rodent models has yielded commendable imaging results and effectively slowed down caries progression with assured biosafety. Unlike traditional single-mode anticaries materials, AIEgens integrate the dual functions of detecting and removing S. mutans and are expected to build a new caries management diagnosis and treatment platform. To the best of our knowledge, this is also the first report on the use of AIEgens for anticaries studies both in vitro and in vivo.

3.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Article in English | MEDLINE | ID: mdl-38836053

ABSTRACT

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Subject(s)
Gastrointestinal Microbiome , Methylamines , Mice, Inbred C57BL , Oxygenases , Porphyromonas gingivalis , Animals , Male , Methylamines/metabolism , Methylamines/blood , Humans , Mice , Oxygenases/metabolism , Porphyromonas gingivalis/metabolism , Fusobacterium nucleatum/metabolism , Metabolic Networks and Pathways , Hep G2 Cells , Lipid Metabolism , Disease Models, Animal , Periodontitis/microbiology , Periodontitis/metabolism , Liver/metabolism , RNA, Ribosomal, 16S/genetics , Tandem Mass Spectrometry , Mouth/microbiology
4.
FEMS Microbes ; 5: xtae017, 2024.
Article in English | MEDLINE | ID: mdl-38860142

ABSTRACT

Biofilm formation is a critical step in the pathogenesis of difficult-to-treat Gram-positive bacterial infections. We identified that YajC, a conserved membrane protein in bacteria, plays a role in biofilm formation of the clinically relevant Enterococcus faecium strain E1162. Deletion of yajC conferred significantly impaired biofilm formation in vitro and was attenuated in a rat endocarditis model. Mass spectrometry analysis of supernatants of washed ΔyajC cells revealed increased amounts in cytoplasmic and cell-surface-located proteins, including biofilm-associated proteins, suggesting that proteins on the surface of the yajC mutant are only loosely attached. In Streptococcus mutans YajC has been identified in complex with proteins of two cotranslational membrane protein-insertion pathways; the signal recognition particle (SRP)-SecYEG-YajC-YidC1 and the SRP-YajC-YidC2 pathway, but its function is unknown. In S. mutans mutation of yidC1 and yidC2 resulted in impaired protein insertion in the cell membrane and secretion in the supernatant. The E. faecium genome contains all homologous genes encoding for the cotranslational membrane protein-insertion pathways. By combining the studies in S. mutans and E. faecium, we propose that YajC is involved in the stabilization of the SRP-SecYEG-YajC-YidC1 and SRP-YajC-Yid2 pathway or plays a role in retaining proteins for proper docking to the YidC insertases for translocation in and over the membrane.

5.
BMC Oral Health ; 24(1): 662, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840232

ABSTRACT

OBJECTIVE: To provide an overview of the available scientific evidence from in vitro studies regarding the effect induced by the flavonoids contained in grape seed extracts (GSE) and cranberry on the microbiological activity of Streptococcus mutans (S. mutans). METHODS: This systematic review was performed following the parameters of the PRISMA statement (Preferred Reporting Items for Systematic Reviews and Meta-Analysis). Electronic and manual searches were conducted using PubMed, ScienceDirect, Web of Science, EBSCO, and Cochrane databases. Reference lists of selected articles were reviewed to identify relevant studies. The search was not limited by year and was conducted solely in English. Eligible studies comprised publications describing in vitro studies that evaluated the effect of flavonoids derived from GSE and cranberry extracts on the microbiological activity of S. mutans. Common variables were identified to consolidate the data. Authors of this review independently screened search results, extracted data, and assessed the risk of bias. RESULTS: Of the 420 studies identified from the different databases, 22 publications were finally selected for review. The risk of bias was low in 13 articles and moderate in 9. The studies analyzed in this review revealed that cranberry extract has an inhibitory effect on the bacterial growth of S. mutans in ranges from 0.5 mg/mL to 25 mg/mL, and GSE exerts a similar effect from 0.5 mg/mL to 250 mg/mL. Additionally, the extracts or their fractions showed reduced biofilm formation capacity, decreased polymicrobial biofilm biomass, deregulation of glycosyltransferases (Gtf) B and C expression, and buffering of pH drop. In addition to adequate antioxidant activity related to polyphenol content. CONCLUSIONS: The overall results showed that the extracts of cranberry and grape seed were effective in reducing the virulence factors of the oral pathogen. According to the data, proanthocyanidins are the active components in cranberry and grape seed that effectively resist S. mutans. They can inhibit the formation of insoluble polysaccharides in the extracellular matrix and prevent glycan-mediated adhesion, cohesion, and aggregation of the proteins in S. mutans. This suggests that these natural extracts could play an important role in the prevention of cariogenic bacterial colonization, as well as induce a decrease in their microbiological activity.


Subject(s)
Flavonoids , Grape Seed Extract , Plant Extracts , Streptococcus mutans , Vaccinium macrocarpon , Streptococcus mutans/drug effects , Vaccinium macrocarpon/chemistry , Plant Extracts/pharmacology , Flavonoids/pharmacology , Grape Seed Extract/pharmacology , Biofilms/drug effects , Humans , Vitis , Proanthocyanidins/pharmacology
6.
J Pharm Bioallied Sci ; 16(Suppl 2): S1453-S1455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882781

ABSTRACT

Background: Nature has given us an enormous number of medicines for every disease that affects people. Aim: To compare the antimicrobial efficacy of an herbal and 0.2% chlorhexidine gluconate mouthrinse against Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis. Materials and Methods: The antimicrobial effectiveness (zone of inhibition) of a herbal mouthrinse and 0.2% chlorhexidine mouthrinse were determined by agar well-diffusion method. Results: At 50% concentration, the experimental mouthrinse inhibits the growth of Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis. Conclusion: Against the three strains, chlorhexidine mouthrinse (0.2%) performs better in terms of antimicrobial effectiveness.

7.
J Oral Sci ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866551

ABSTRACT

PURPOSE: This study aimed to evaluate the surface properties and bacterial adhesion of computer-aided design-computer-aided manufacturing (CAD-CAM) restorative materials. METHODS: Four CAD-CAM resin-based blocks (Vita Enamic, Shofu block HC, Cerasmart [CS] and Lava Ultimate [LU]) and a leucite-reinforced glass ceramic block (IPS Empress CAD) were used in the present study. Specimens prepared with dimensions of 10 × 10 × 1 mm were polished. Surface characteristics were assessed with hydrophobicity and surface free energy (SFE) analysis. Surface roughness was measured using a profilometer, and elemental and topographic evaluations were performed with SEM-EDX analysis. After being kept in artificial saliva for 1 h, Streptococcus mutans (S. mutans) and Streptococcus mitis (S. mitis) were incubated separately in 5% CO2 atmosphere at 37°C for 24 h. The adhered bacteria were counted as ×108 CFU/mL. RESULTS: Surface roughness, contact angle and SFE measurement values were found to be in the range of 0.144-0.264 Ra, 28.362°-70.074° and 39.65-63.62 mN/m, respectively. The highest adhered amount of S. mutans was found in CS and the lowest in LU, while there was no significant difference between the amounts of adhered S. mitis. CONCLUSION: Despite differences in the surface properties of the materials used for the study, the materials exhibited identical properties with respect to bacterial adhesion.

8.
Dent Mater ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38876828

ABSTRACT

OBJECTIVES: This study aimed to assess antimicrobial efficacy, cytotoxicity, and cytokine release (IL-1b, IL-6, IL-10, TNF-α) from human dental pulp stem cells (hDPSCs) of chitosan (CH) and hydroxyapatite (HAp)-modified glass ionomer cements (GIC). METHODS: GICs with varied CH and HAp concentrations (0 %, 0.16 %, 2 %, 5 %, 10 %) were tested against S. mutans for 24 h or 7 days. Antimicrobial activity was measured using an MTT test. Cytotoxicity evaluation followed for optimal concentrations, analyzing mitochondrial activity and apoptosis in hDPSCs. Cytokine release was assessed with MAGPIX. Antimicrobial analysis used Shapiro-Wilk, Kruskal-Wallis, and Dunnett tests. Two-way ANOVA, Tukey, and Dunnett tests were applied for hDP metabolism and cytokine release. RESULTS: CH 2 % and HAp 5 % significantly enhanced GIC antimicrobial activity, especially after seven days. In immediate analysis, all materials showed reduced mitochondrial activity compared to the control. After 24 h, CH demonstrated mitochondrial metabolism similar to the control. All groups exhibited mild cytotoxicity (∼30 % cell death). Only IL-6 was influenced, with reduced release in experimental groups. SIGNIFICANCE: CH 2 % and HAp 5 % were most effective for antibacterial effects. GIC-CH 2 % emerged as the most promising formula, displaying significant antibacterial effects with reduced hDPSC toxicity.

9.
Prog Orthod ; 25(1): 24, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38880839

ABSTRACT

INTRODUCTION: Metallic and elastomeric ligatures are widely used in orthodontics to secure the archwire within the bracket slots, but elastomeric ligatures have traditionally been associated with increased microbial colonization, which could adversely affect periodontal health. AIM: This systematic review compares the periodontal effects of elastomeric and steel ligatures used for orthodontic fixed appliances. METHODS: Unrestricted literature search of 7 databases (MEDLINE, Scopus, Web of Science, Embase, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Virtual Health Library) up to July 2023 were performed for randomized / non-randomized clinical studies on humans comparing the two ligation methods during fixed-appliance therapy. After duplicate study selection, data extraction, and risk-of-bias assessment with the Risk of Bias (RoB) 2 or the Risk Of Bias In Non-randomized Studies - of Interventions (ROBINS-I) tool, random-effects meta-analyses of Mean Differences (MD) or Standardized Mean Differences (SMD) and their 95% confidence intervals (CIs) were carried out, followed by assessment of certainty of existing evidence with the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. RESULTS: A total of 11 studies (3 randomized / 8 non-randomized) with 354 patients (mean age 14.7 years and 42% male) were included. No statistically significant differences were seen for plaque index (5 studies; SMD = 0.48; 95% CI = -0.03 to 1.00; P = 0.07), gingival index (2 studies; MD = 0.01; 95% CI = -0.14 to 0.16; P = 0.89), probing pocket depth (2 studies; MD = 0; 95% CI = -0.17 to 0.16; P = 0.97), or Streptococcus mutans counts (4 studies; SMD = 0.40; 95% CI=-0.41 to 1.20; P = 0.21). Elastomeric ligatures were associated with moderately increased total bacterial load (3 studies; SMD = 0.43; 95% CI = 0.10 to 0.76; P = 0.03). Confidence in these estimates was low in all instances due to the inclusion of non-randomized studies with high risk of bias. CONCLUSIONS: Existing low quality evidence indicates that ligature method does not seem to influence the periodontal health during fixed treatment, even if elastomeric ligatures are associated with a moderate increase of bacterial load. REGISTRATION: PROSPERO (CRD42023444383).


Subject(s)
Elastomers , Orthodontic Appliances, Fixed , Humans , Steel , Periodontal Index , Orthodontic Brackets , Ligation
10.
Article in English | MEDLINE | ID: mdl-38881638

ABSTRACT

Background: In recent years, fluoride concentrations in toothpaste for children and adults have increased. However, the effects of different concentrations on bacterial activity have rarely been compared. We aimed to investigate and compare the antibacterial activity of children's and adults' toothpaste containing 500, 1000‒1100, and 1450‒1500 ppm fluoride. Methods: Three strains of bacteria (Streptococcus mutans, Streptococcus salivarius, and Lactobacillus casei) were cultured in brain heart infusion agar. Thirty commercially available toothpaste products for children and adults containing 500, 1000‒1100, and 1450‒1500 ppm fluoride were selected and tested. Toothpaste's ability to inhibit bacterial growth was evaluated by agar diffusion assay, in which plates were incubated for 24 hours, and then the diameter of the microbial inhibition zone was measured. Comparisons between children's and adults' fluoride toothpastes were made using the Mann-Whitney U test. The association between bacterial growth inhibition and sodium lauryl sulfate (SLS) was analyzed by the chi-square test. A P value of <0.05 was considered statistically significant. Results: No difference in the inhibition zone was observed for different fluoride concentrations. However, there were significant differences between toothpastes for children and adults, with higher inhibition zones for adults' toothpastes. Most toothpastes for adults contained SLS, which was associated with antibacterial activity. Conclusion: Fluoride concentrations ranging from 500 to 1500 ppm did not affect bacterial growth. The antibacterial activity of toothpastes for adults was significantly higher than that of toothpastes for children, which was mainly attributed to the SLS usually added to adult formulations.

11.
BMC Microbiol ; 24(1): 151, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702601

ABSTRACT

BACKGROUND: Fluoride-resistant Streptococcus mutans (S. mutans) strains have developed due to the wide use of fluoride in dental caries prevention. However, the metabolomics of fluoride-resistant S. mutans remains unclear. OBJECTIVE: This study aimed to identify metabolites that discriminate fluoride-resistant from wild-type S. mutans. MATERIALS AND METHODS: Cell supernatants from fluoride-resistant and wild-type S. mutans were collected and analyzed by liquid chromatography-mass spectrometry. Principal components analysis and partial least-squares discriminant analysis were performed for the statistical analysis by variable influence on projection (VIP > 2.0) and p value (Mann-Whitney test, p < 0.05). Metabolites were assessed qualitatively using the Human Metabolome Database version 2.0 ( http://www.hmdb.ca ), or Kyoto Encyclopedia of Genes and Genomes ( http://www.kegg.jp ), and Metaboanalyst 6.0 ( https://www.metaboanalyst.ca ). RESULTS: Fourteen metabolites differed significantly between fluoride-resistant and wild-type strains in the early log phase. Among these metabolites, 5 were identified. There were 32 differential metabolites between the two strains in the stationary phase, 13 of which were identified. The pyrimidine metabolism for S. mutans FR was matched with the metabolic pathway. CONCLUSIONS: The fructose-1,6-bisphosphate concentration increased in fluoride-resistant strains under acidic conditions, suggesting enhanced acidogenicity and acid tolerance. This metabolite may be a promising target for elucidating the cariogenic and fluoride resistant mechanisms of S. mutans.


Subject(s)
Drug Resistance, Bacterial , Fluorides , Fructosediphosphates , Metabolomics , Streptococcus mutans , Streptococcus mutans/drug effects , Streptococcus mutans/genetics , Streptococcus mutans/metabolism , Metabolomics/methods , Fluorides/metabolism , Fluorides/pharmacology , Fructosediphosphates/metabolism , Humans , Metabolome/drug effects , Dental Caries/microbiology , Chromatography, Liquid
12.
Contemp Clin Dent ; 15(1): 10-16, 2024.
Article in English | MEDLINE | ID: mdl-38707673

ABSTRACT

Background: Early childhood caries is one of the most serious and high-priced oral health conditions among young children. With advancing dental sciences, the focus of dental caries treatment is shifted from restorative procedures to preventive measures, and a modality grabbing attention is probiotics. Probiotics exert their effects in many ways as chemical inhibition of pathogenic bacteria and stimulation of the immune response through the production of immunoglobulin A and many more. Objective: This systematic review aims to explore the efficacy and safety of probiotics in dental caries in preschool children. Methodology: The study was registered in the PROSPERO International Prospective Register of Systematic Reviews (registration number: CRD42020159058). The search was done for randomized control trials in electronic databases such as Cochrane, PubMed, ClinicalTrials.gov, Medline, and Embase. It has further included manual searches of journals, conference abstracts, and books. Three reviewers done the selection of the study as per the criteria and also did the risk of bias assessment independently and wherever required, a fourth reviewer resolved the discrepancy in case of disagreement. Results: The nine randomized control trials were included in the study, and the pooled analysis revealed probiotics as an effective intervention in preschool children with dental caries. Conclusion: The results about the efficacy of probiotics in the prevention of dental caries are very encouraging, though the level of evidence is still inadequate.

13.
J Contemp Dent Pract ; 25(3): 260-266, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690700

ABSTRACT

AIM AND BACKGROUND: This study aimed to explore the potential synergistic interaction of virgin coconut oil (VCO) and virgin olive oil (VOO) mixture against Streptococcus sanguinis, Streptococcus mutans, and Lactobacillus casei in a single and mixture species through the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), antiadherence, and antibiofilm activities. MATERIALS AND METHODS: The broth microdilution technique was used to individually determine the MIC of both oils and an oil mixture (in the ratio of 1:1) in a 96-well microtiter plate. As for the MBC, the subcultured method was used. The fractional inhibitory concentration index (ΣFIC) was determined to identify the interaction types between both oils. The oil mixture at its MIC was then tested on its antibiofilm and antiadherence effect. RESULTS: The MIC of the oil mixture against the tested microbiota was 50-100%. The oil mixture was bactericidal at 100% concentration for all the mentioned microbes except S. mutans. The ΣFIC value was 2 to 4, indicating that the VCO and VOO acted additively against the microbiota. Meanwhile, the oil mixture at MIC (50% for S. sanguinis and L. casei; 100% for S. mutans and mixture species) exhibited antiadherence and antibiofilm activity toward the microbiota in mixture species. CONCLUSION: The oil mixture possesses antibacterial, antibiofilm, and antiadherence properties toward the tested microbiota, mainly at 50-100% concentration of oil mixture. There was no synergistic interaction found between VCO and VOO. CLINICAL SIGNIFICANCE: Children and individuals with special care may benefit from using the oil mixture, primarily to regulate the biofilm formation and colonization of the bacteria. Furthermore, the oil mixture is natural and nontoxic compared to chemical-based oral healthcare products. How to cite this article: Ng YM, Sockalingam SNMP, Shafiei Z, et al. Biological Activities of Virgin Coconut and Virgin Olive Oil Mixture against Oral Primary Colonizers: An In Vitro Study. J Contemp Dent Pract 2024;25(3):260-266.


Subject(s)
Biofilms , Coconut Oil , Lacticaseibacillus casei , Microbial Sensitivity Tests , Olive Oil , Streptococcus mutans , Streptococcus sanguis , Olive Oil/pharmacology , Streptococcus mutans/drug effects , Biofilms/drug effects , Coconut Oil/pharmacology , In Vitro Techniques , Streptococcus sanguis/drug effects , Lacticaseibacillus casei/drug effects , Humans , Anti-Bacterial Agents/pharmacology , Bacterial Adhesion/drug effects
14.
J Oral Microbiol ; 16(1): 2344272, 2024.
Article in English | MEDLINE | ID: mdl-38698893

ABSTRACT

Objective: To explore the manifestations of bacteriophages in different oral disease ecologies, including periodontal diseases, dental caries, endodontic infections, and oral cancer, as well as to propel phage therapy for safer and more effective clinical application in the field of dentistry. Methods: In this literature review, we outlined interactions between bacteriophages, bacteria and even oral cells in the oral ecosystem, especially in disease states. We also analyzed the current status and future prospects of phage therapy in the perspective of different oral diseases. Results: Various oral bacteriophages targeting at periodontal pathogens as Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola and Aggregatibacter actinomycetemcomitans, cariogenic pathogen Streptococcus mutans, endodontic pathogen Enterococcus faecalis were predicted or isolated, providing promising options for phage therapy. In the realm of oral cancer, aside from displaying tumor antigens or participating in tumor-targeted therapies, phage-like particle vaccines demonstrated the potential to prevent oral infections caused by human papillomaviruses (HPVs) associated with head-and-neck cancers. Conclusion: Due to their intricate interactions with bacteria and oral cells, bacteriophages are closely linked to the progression and regression of diverse oral diseases. And there is an urgent need for research to explore additional possibilities of bacteriophages in the management of oral diseases.

15.
Clin Oral Investig ; 28(6): 323, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761310

ABSTRACT

OBJECTIVES: White spot lesions are the most common iatrogenic effect observed during orthodontic treatment. This study aimed to compare the surface characteristics and antibacterial action of uncoated and coated orthodontic brackets. MATERIALS AND METHODS: Sixty commercially available stainless steel brackets were coated with TiO2 nanotubes and methacryloyloxyethylphosphorylcholine. The sample was divided into Group 1: uncoated orthodontic brackets, Group 2: Stainless steel brackets with TiO2 nanotubes coating, Group 3: Stainless steel brackets with methacryloyloxyethylphosphorylcholine coating, and Group 4: Stainless steel brackets with TiO2 nanotubes combined with methacryloyloxyethylphosphorylcholine coating. Surface characterization was assessed using atomic force microscopy and scanning electron microscopy. Streptococcus mutans was selected to test the antibacterial ability of the orthodontic brackets, total bacterial adhesion and bacterial viability were assessed. The brackets were subjected to scanning electron microscopy to detect the presence of biofilm. RESULTS: The surface roughness was the greatest in Group 1 and least in Group 2 followed by Group 4 and Group 3 coated brackets. The optical density values were highest in Group 1 and lowest in Group 4. Comparison of colony counts revealed high counts in Group 1 and low counts in Group 4. A positive correlation between surface roughness and colony counts was obtained, however, was not statistically significant. CONCLUSIONS: The coated orthodontic brackets exhibited less surface roughness than the uncoated orthodontic brackets. Group 4 coated orthodontic brackets showed the best antibacterial properties. CLINICAL RELEVANCE: Coated orthodontic brackets prevent adhesion of streptococcus mutans and reduces plaque accumulation around the brackets thereby preventing formation of white spot lesions during orthodontic treatment.


Subject(s)
Anti-Bacterial Agents , Bacterial Adhesion , Microscopy, Electron, Scanning , Nanotubes , Orthodontic Brackets , Phosphorylcholine , Streptococcus mutans , Surface Properties , Titanium , Titanium/chemistry , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/pharmacology , Phosphorylcholine/chemistry , Streptococcus mutans/drug effects , Anti-Bacterial Agents/pharmacology , Nanotubes/chemistry , Bacterial Adhesion/drug effects , Microscopy, Atomic Force , Materials Testing , Stainless Steel/chemistry , Methacrylates/pharmacology , Methacrylates/chemistry , Biofilms/drug effects , Coated Materials, Biocompatible/pharmacology , Coated Materials, Biocompatible/chemistry
16.
Article in English | MEDLINE | ID: mdl-38724869

ABSTRACT

PURPOSE: This study aimed to evaluate the antibacterial and cytotoxic effects of reinforced zinc oxide-eugenol (rZOE) incorporated with different concentrations of silver nanoparticles (AgNPs). METHODS: The pastes of rZOE alone or mixed with AgNPs at concentrations of 1%, 2%, and 5% of weight were prepared. In vitro antimicrobial activity of prepared materials against Streptococcus (S.) mutans and Lactobacillus (L.) acidophilus were evaluated after 2, 4, and 6 h of contact times using direct contact test (DCT) and also following 24 h incubation by well-diffusion test (WDT). The cytotoxicity of the tested materials on human dental pulp stem cells was also determined by MTT assay. RESULTS: The DCT demonstrated that the time-dependent reductions of the colony numbers of both bacteria by three different concentrations of AgNPs incorporated into rZOE were equal but steeper than the rZOE alone (P < 0.05). The increases in growth inhibition zones of S. mutans and L. acidophilus were associated with the increasing concentration of AgNPs mixed with rZOE in the WDT; however, statistical analysis did not show any significant differences (P = 0.092). The MTT assay revealed a significantly lower percentage of cell viability after 1 day of culture only with the rZOE + AgNP5% in comparison to the rZOE alone (P = 0.011) and the control medium (P = 0.001). CONCLUSION: Since the antimicrobial activities of three different concentrations of AgNPs incorporated into rZOE were equal and AgNPs had lower toxicity at lower concentrations, using AgNPs at 1% concentration is suggested to be mixed with rZOE.

17.
Cureus ; 16(5): e61025, 2024 May.
Article in English | MEDLINE | ID: mdl-38800772

ABSTRACT

Background Chlorhexidine (CHX) is a widely used antimicrobial agent known for its ability to inhibit cariogenic bacteria, reduce plaque formation, neutralize acidity, and promote remineralization. However, the effectiveness of oxy-ionic solutions at different pH levels as an alternative antimicrobial treatment requires further exploration. This study aims to compare the antimicrobial effects of oxy-ionic solutions at various pH levels with those of CHX and fluoride. Methodology This study employed disc diffusion tests to measure the inhibition zone diameters of each solution and broth dilution assays to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results The oxy-ionic solutions exhibited varying degrees of antimicrobial effectiveness depending on their pH levels. The solution at pH 5 demonstrated the best antimicrobial performance among the oxy-ionic solutions, with inhibition zones comparable to those of CHX. The MIC and MBC values indicated that oxy-ionic solutions in mildly acidic environments generally resulted in better antimicrobial activity. Conclusions The study concludes that while CHX remains highly effective against cariogenic bacteria, oxy-ionic solutions, particularly at pH 5, offer a promising alternative. The antimicrobial efficacy of oxy-ionic solutions is influenced by their pH levels. Further research is recommended to explore the long-term effects and clinical applications of oxy-ionic solutions in maintaining oral health and preventing disease.

18.
Int J Paediatr Dent ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803013

ABSTRACT

BACKGROUND: Lysosomal storage diseases (LSDs), a group of inborn errors of metabolism, include various subtypes, for example, mucopolysaccharidosis (MPS) and Gaucher disease (GD). Besides the physical/mental disabilities, they suffer from several oral deteriorations. AIM: To evaluate the oral health status of Egyptian children with LSD. DESIGN: Thirty LSD children and thirty non-LSD children were enrolled for this study according to the inclusion and exclusion criteria. Dental indices were used to assess caries prevalence and periodontal status. Saliva samples were collected from all enrolled children to estimate interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), and protein levels as well as Streptococcus mutans and Lactobacilli colony counts. RESULTS: Children with MPS and GD showed non-significant differences in decayed, missing, or filled teeth (DMFT) scores (p = .115). Scores of dmft showed a significant increase in MPS, but not in GD children (p = .020, p = .127). Children with LSD showed significantly increased Modified Gingival Index (MGI), Plaque Index (PI), Oral Hygiene Index (OHI-s) scores (p < .001) and salivary IL-6 and TNF-α (p = .007, p = .001, p < .0001, p = .002, respectively) and salivary total proteins (p = .001) levels. Unexpectedly, non-significant differences were observed in salivary Streptococcus mutans or Lactobacilli counts in children with MPS and GD (p = .058, p = .420, p = .502, p = .053, respectively). CONCLUSION: To our knowledge, this is the first article that evaluates Egyptian children with LSD. We demonstrated high caries prevalence in primary teeth, not permanent teeth, in children with MPS and poor gingival/hygiene status in children with MPS and GD, which triggered a state of inflammation. The daily supplement intake prevented oral bacterial growth. The most probable cause of oral alterations is decreased salivary flow rate, as deduced from a significantly increased salivary protein.

19.
Pharmaceuticals (Basel) ; 17(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794173

ABSTRACT

BACKGROUND: This study aimed to investigate the antibacterial and cytotoxic potential of Phellodendron amurense Ruprecht (PAR) extract against Streptococcus mutans (S. mutans) and explore the possibility of using PAR extract as an anticariogenic agent. METHODS: Mixed extracts were prepared at 0, 1.25, 2.5, and 5 mg/mL concentrations, and an S. mutans-containing solution of 100 µL was inoculated into the medium. The survival rate of human keratinocyte (HaCaT) cells was assessed to confirm stability. One-way ANOVA was performed to evaluate the antibacterial activity against S. mutans and the proliferation of HaCaT cells. RESULTS: Higher concentrations of the PAR extract showed more growth inhibition of S. mutans over time, with the complete inactivation of S. mutans at 5 mg/mL. HaCaT cell density was reduced at a PAR extract concentration of 1.25 mg/mL, but IC50 was not observed, confirming that the concentration used did not affect the cytotoxicity and proliferation. CONCLUSIONS: Results showed that the PAR extract was excellent as a natural substance with anticariogenic effects that inhibited the growth of S. mutans and did not affect the cell viability, thus indicating the potential for clinical application.

20.
Pharmaceutics ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38794276

ABSTRACT

Ozone is increasingly utilized in dental caries treatment due to its antibacterial properties. In a context of limited studies and no consensus on protocols, this research aims to assess ozone's antibacterial efficacy on cariogenic bacteria and its potential adverse impact on dentin bond strength. Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, and Actinomyces naeslundii suspensions were exposed to 40 µg/mL of ozone gas and 60 µg/mL of ozonated water (80 s) via a medical ozone generator. Negative and positive control groups (chlorhexidine 2%) were included, and UFC/mL counts were recorded. To examine microtensile bond strength (µTBS), 20 human molars were divided into four groups, and class I cavities were created. After ozone application, samples were restored using an etch-and-rinse and resin composite, then sectioned for testing. The SPSS v. 28 program was used with a significance level of 5%. The µTBS results were evaluated using one-way ANOVA, Tukey HSD, and Games-Howell. Bacterial counts reduced from 106 to 101, but dentin µTBS was significantly impacted by ozone (ANOVA, p < 0.001). Despite ozone's attractive antibacterial activity, this study emphasizes its detrimental effect on dentin adhesion, cautioning against its use before restorative treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...