Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.551
Filter
1.
Cureus ; 16(8): e67235, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39301350

ABSTRACT

Extragenital endometriosis is not a common occurrence. Its diagnosis is often delayed, which leads to further complications and recurrent hospitalizations. In this report, we present a case of a 37-year-old African American female diagnosed with thoracic endometriosis who initially presented with a two-week duration of progressive shortness of breath. The diagnosis of this patient posed a dilemma as there was initial suspicion of ovarian cancer and Meig's syndrome, which can have similar presentations.

2.
Ann Diagn Pathol ; 73: 152375, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39312865

ABSTRACT

Growth pattern (GP), tumor budding (TB), poorly differentiated clusters (PDC), desmoplastic reaction pattern (DRP) and tumor-stroma ratio (TSR) are prognostic histomorphological parameters in colorectal cancer (CRC). Correlations between these parameters, their individual prognostic values, and their relationship with KRAS/NRAS/BRAF mutations have not been comprehensively examined. We aimed to investigate these associations, which have not been previously explored in this combination. 126 CRC cases were included. GP, TB, PDC, DRP and TSR were evaluated by two experienced pathologists. KRAS/NRAS/BRAF mutation profile were determined using qPCR. Demographic, clinicopathological and survival data were recorded. Interrelations were investigated by statistical analysis. Infiltrative GP was more frequent in high-score TB, PDC-G3, and stroma-high tumors (p < 0.05). High-score TB was more common in PDC-G3 and stroma-high tumors (p < 0.05). Immature DRP was more frequent in stroma-high tumors (p = 0.014). Among histomorphological parameters, a significant relationship was found only between infiltrative GP and the presence of KRAS mutation (p = 0.023). Moreover, GP was significantly associated with pT, lymphatic invasion, perineural invasion (p < 0.05). Effects on survival were assessed using Kaplan-Meier method and Cox proportional hazards model. TB and PDC were identified as independent predictors of overall survival. Higher TB score (p = 0.008) and higher PDC grade (p = 0.013) lead to worse survival. Interestingly, GP, DRP, TSR or KRAS/NRAS/BRAF mutations were not associated with overall survival. Our results highlight the prognostic significance of TB and PDC. We suggest incorporating TB and PDC into routine CRC reports. The association of KRAS mutation with infiltrative GP supports its role in the acquisition of invasive behavior.

3.
J Lipid Res ; 65(10): 100636, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39218218

ABSTRACT

To investigate the yet-unknown roles of prostaglandins (PGs) in the uterus, we analyzed the expression of various PG receptors in the uterus. We found that three types of Gs-coupled PG receptors, DP, EP2, and EP4, were expressed in luminal epithelial cells from the peri-implantation period to late pregnancy. DP expression was also induced in stromal cells within the mesometrial region, whereas EP4 was expressed in stromal cells within the anti-mesometrial region during the peri-implantation period. The timing of DP induction after embryo attachment correlated well with that of cyclooxygenase-2 (COX-2); however, COX-2-expressing stromal cells were located in the vicinity of the embryo, whereas DP-expressing stromal cells surrounded these cells on the mesometrial side. Specific [3H]PGD2-binding activity was detected in the decidua of uteri, with PGD2 synthesis comparable to that of PGE2 detected in the uteri during the peri-implantation period. Administration of the COX-2-specific inhibitor celecoxib caused adverse effects on decidualization, as demonstrated by the attenuated weight of the implantation sites, which was recovered by the simultaneous administration of a DP agonist. Such a rescuing effect of the DP agonist was mimicked by an EP4 agonist, but not an EP2 agonist. While the importance of DP signaling was shown pharmacologically, DP/EP2 double deficiency did not affect implantation and decidualization, suggesting the contribution of EP4 to these processes. Indeed, administration of an EP4 antagonist substantially affected decidualization in DP/EP2-deficient mice. These results suggest that COX-2-derived PGD2 and PGE2 contribute to decidualization via a coordinated pathway of DP and EP4 receptors.

4.
Cells ; 13(17)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39272982

ABSTRACT

BACKGROUND: Periostin (POSTN) is a type of matrix protein that functions by binding to other matrix proteins, cell surface receptors, or other molecules, such as cytokines and proteases. POSTN has four major splicing variants (PN1-4), which are primarily expressed in fibroblasts and cancer. We have reported that we should inhibit pathological POSTN (PN1-3), but not physiological POSTN (PN4). In particular, pathological POSTN with exon 17 is present in both stroma and cancer, but it is unclear whether the stroma or cancer pathological POSTN should be suppressed. METHODS AND RESULTS: We transplanted 4T1 cells (breast cancer) secreting POSTN with exon 17 into 17KO mice lacking POSTN exon 17 to suppress stromal POSTN with exon 17. The results show that 17KO mice had smaller primary tumors and fewer metastases. Furthermore, to suppress cancer POSTN with exon 17, 4T1 cells transfected with POSTN exon 17 skipping oligo or control oligo were transplanted from the tail vein into the lungs. The results show that POSTN exon 17 skipping oligo significantly suppressed lung metastasis. CONCLUSIONS: These findings suggest that it is important to suppress POSTN exon 17 in both stroma and cancer. Antibody targeting POSTN exon 17 may be a therapeutic candidate for breast cancer.


Subject(s)
Cell Adhesion Molecules , Exons , Stromal Cells , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Exons/genetics , Mice , Female , Cell Line, Tumor , Stromal Cells/metabolism , Stromal Cells/pathology , Humans , Alternative Splicing/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Mice, Knockout , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Periostin
5.
Cells ; 13(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39273037

ABSTRACT

The microenvironment of a cancer stem cell (CSC) niche is often found in coexistence with cancer-associated fibroblasts (CAFs). Here, we show the first in-depth analysis of the interaction between primary triple-negative breast cancer stem cells (BCSCs) with fibroblasts. Using 2D co-culture models with specific seeding ratios, we identified stromal fibroblast aggregation at the BCSC cluster periphery, and, on closer observation, the aggregated fibroblasts was found to encircle BCSC clusters in nematic organization. In addition, collagen type I and fibronectin accumulation were also found at the BCSC-stromal periphery. MACE-Seq analysis of BCSC-encapsulating fibroblasts displayed the transformation of stromal fibroblasts to CAFs and the upregulation of fibrosis regulating genes of which the Interferon Regulatory Factor 6 (IRF6) gene was identified. Loss of function experiments with the IRF6 gene decreased fibroblast encapsulation around BCSC clusters in 2D co-cultures. In BCSC xenografts, fibroblast IRF6 expression led to an increase in the stromal area and fibroblast density in tumors, in addition to a reduction in necrotic growth. Based on our findings, we propose that fibroblast IRF6 function is an important factor in the development of the stromal microenvironment and in sustaining the BCSC tumor niche.


Subject(s)
Coculture Techniques , Fibroblasts , Interferon Regulatory Factors , Neoplastic Stem Cells , Stromal Cells , Tumor Microenvironment , Up-Regulation , Humans , Female , Interferon Regulatory Factors/metabolism , Interferon Regulatory Factors/genetics , Stromal Cells/metabolism , Stromal Cells/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Fibroblasts/metabolism , Fibroblasts/pathology , Up-Regulation/genetics , Mice , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor
6.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273316

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease that is almost entirely resistant to conventional chemotherapy and radiation therapy. A significant factor in this resistance appears to be the dense desmoplastic stroma, which contains various cancer-associated fibroblast (CAF) populations. However, our understanding of the communication between tumor cells and CAFs that contributes to this aggressive malignancy is still developing. Recently, we used an advanced three-dimensional heterospecies, heterospheroid co-culture model to investigate the signaling between human pancreatic tumor Panc1 cells and mouse pancreatic stellate cells (mPSCs) through global expression profiling. Upon discovering that CCN1 was significantly upregulated in Panc1 cells during co-culture, we decided to explore the role of CCN1 using CRISPR-Cas9 knockout technology. Panc1 cells lacking CCN1 showed reduced differentiation and decreased sensitivity to gemcitabine, primarily due to lower expression of genes involved in gemcitabine transport and metabolism. Additionally, we observed that stimulation with TGF-ß1 and lysophosphatidic acid increased CCN1 expression in Panc1 cells and induced a shift in mPSCs towards a more myofibroblastic CAF-like phenotype.


Subject(s)
Coculture Techniques , Cysteine-Rich Protein 61 , Deoxycytidine , Gemcitabine , Pancreatic Neoplasms , Pancreatic Stellate Cells , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Humans , Pancreatic Stellate Cells/metabolism , Pancreatic Stellate Cells/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/drug therapy , Mice , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cell Differentiation/drug effects
7.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273393

ABSTRACT

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited treatment options. This study evaluates the prognostic value of stromal markers in TNBC, focusing on the tumor-stroma ratio (TSR) and overall stroma ratio (OSR) in whole slide images (WSI), as well as the expression of type-I collagen, type-III collagen, and fibrillin-1 on tissue microarrays (TMAs), using both visual assessment and digital image analysis (DIA). A total of 101 female TNBC patients, primarily treated with surgery between 2005 and 2016, were included. We found that high visual OSR correlates with worse overall survival (OS), advanced pN categories, lower stromal tumor-infiltrating lymphocyte count (sTIL), lower mitotic index, and patient age (p < 0.05). TSR showed significant connections to the pN category and mitotic index (p < 0.01). High expression levels of type-I collagen (>45%), type-III collagen (>30%), and fibrillin-1 (>20%) were linked to significantly worse OS (p = 0.004, p = 0.013, and p = 0.005, respectively) and progression-free survival (PFS) (p = 0.028, p = 0.025, and p = 0.002, respectively), validated at the mRNA level. Our results highlight the importance of stromal characteristics in promoting tumor progression and metastasis and that targeting extracellular matrix (ECM) components may offer novel therapeutic strategies. Furthermore, DIA can be more accurate and objective in evaluating TSR, OSR, and immunodetected stromal markers than traditional visual examination.


Subject(s)
Biomarkers, Tumor , Triple Negative Breast Neoplasms , Humans , Female , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/mortality , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Aged , Adult , Stromal Cells/metabolism , Stromal Cells/pathology , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , Fibrillin-1/metabolism , Fibrillin-1/genetics , Image Processing, Computer-Assisted/methods , Collagen Type I/metabolism , Collagen Type I/genetics , Collagen Type III/metabolism , Collagen Type III/genetics , Aged, 80 and over
8.
BMC Vet Res ; 20(1): 439, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39342193

ABSTRACT

The current study presents the analysis of stromal cells obtained from an hyperplastic left-ovary of a Holstein cow. Cultured hyperplastic stromal cells displayed a fibroblast-like morphology and ceased proliferation after the 8th passage. The non-cancerous nature of stromal cells was confirmed by in vitro cell proliferation and migration assays. Negligible amounts of E2 were detected in the spent media of cultured stromal cells, which suggests that stromal cells were non-estradiol synthesizing cells. As revealed in immunofluorescence and gene expression analysis, the hyperplastic stromal cells explicitly expressed vimentin in their cytoskeleton. Upon hematoxylin staining, a highly dense population of stromal cells was observed in the stromal tissue of the hyperplastic ovary. To explore genome-wide alterations, mRNA microarray analysis was performed using Affymetrix Bovine Gene 1.0ST Arrays compared to normal ovarian derived stromal cells. The microarray identified 1396 differentially expressed genes, of which 733 were up- and 663 down-regulated in hyperplastic stromal cells. Importantly, asporin (ASPN) and vascular cell adhesion molecule 1 (VCAM1) were among the highly up-regulated genes. Higher expression of ASPN was also confirmed by immunohistochemistry and RT-qPCR analysis. Ingenuity pathway analysis (IPA) identified about 98 significantly enriched (-log (p value ≥ 1.3) canonical pathways, importantly of which the "Sirutin Signaling Pathway" and "Mitochondrial Dysfunction" were highly activated while "Oxidative phosphorylation" was inhibited. Additionally, higher proportion of hyperplastic stromal cells in the S-phase of cell cycle, could be attributed to higher expression levels of cell proliferation genes such as CCND2 and CDK6.


Subject(s)
Ovary , Stromal Cells , Animals , Female , Stromal Cells/metabolism , Stromal Cells/pathology , Cattle , Ovary/pathology , Ovary/metabolism , Hyperplasia/veterinary , Hyperplasia/genetics , Cattle Diseases/genetics , Cattle Diseases/pathology , Cell Proliferation , Ovarian Neoplasms/genetics , Ovarian Neoplasms/veterinary , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism
9.
Cancers (Basel) ; 16(18)2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39335188

ABSTRACT

Prostate cancer (PCa), the most commonly diagnosed cancer in men worldwide, is particularly challenging for oncologists when a precise prognosis needs to be established. Indeed, the entire clinical management in PCa has important drawbacks, generating an intense debate concerning the possibility to individuate molecular biomarkers able to avoid overtreatment in patients with pathological indolent cancers. To date, the paradigmatic change in the view of cancer pathogenesis prompts to look for prognostic biomarkers not only in cancer epithelial cells but also in the tumor microenvironment. PCa ecology has been defined with increasing details in the last few years, and a number of promising key markers associated with the reactive stroma are now available. Here, we provide an updated description of the most biologically significant and cited prognosis-oriented microenvironment biomarkers derived from the main reactive processes during PCa pathogenesis: tissue adaptations, inflammatory response and metabolic reprogramming. Proposed biomarkers include factors involved in stromal cell differentiation, cancer-normal cell crosstalk, angiogenesis, extracellular matrix remodeling and energy metabolism.

10.
Cells ; 13(18)2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39329755

ABSTRACT

Stromal cells play a critical role in the tumor microenvironment of breast cancer (BC), as they are recruited by tumor cells and regulate the metastatic spread. Though high expression of α-parvin, a member of the parvin family of actin-binding proteins, is reported to be associated with a poor prognosis and metastasis in several cancers, its role in carcinogenesis has not been thoroughly explored. Therefore, we aimed to examine the expression of α-parvin in BC patients by compartmentalizing and quantifying tissues to determine whether α-parvin can be a potential therapeutic target. We performed immunohistochemical (IHC) staining of α-parvin in BC tissues, and the IHC scores were calculated in the overall tissue, stroma, and epithelium using image analysis software. The expression of α-parvin was significantly higher in BC tissues (p = 0.0002) and BC stroma (p < 0.0001) than in normal tissues. Furthermore, all α-parvin scores were significantly positively correlated with the proliferation marker Ki67. The overall and stroma scores are associated with the tumor, (lymph) node, and metastasis (TNM) classification, stage, and grade. These results suggest that high expression of α-parvin in stroma is associated with BCs and might be a new predictive marker for diagnosing BC.


Subject(s)
Breast Neoplasms , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Prognosis , Middle Aged , Biomarkers, Tumor/metabolism , Adult , Microfilament Proteins/metabolism , Stromal Cells/metabolism , Stromal Cells/pathology , Aged , Tumor Microenvironment , Ki-67 Antigen/metabolism , Immunohistochemistry
11.
Head Neck ; 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39340223

ABSTRACT

BACKGROUND: Evaluation of the prognostic impact of tumor microenvironment (TME) has received attention in recent years. We introduce a TME-based risk stratification for oropharyngeal squamous cell carcinoma (OPSCC). MATERIAL AND METHODS: A total of 182 patients treated for OPSCC at the Helsinki University Hospital were included. TME-based risk stratification was designed combining tumor-stroma ratio and stromal tumor-infiltrating lymphocytes assessed in hematoxylin and eosin-stained sections. RESULTS: In multivariable analysis, TME-based risk stratification associated with poor disease-free survival with a hazard ratio (HR) of 2.68 (95% CI 1.11-6.48, p = 0.029). In addition, the proposed risk stratification was associated with poor disease-specific survival (HR 2.687, 95% CI 1.28-5.66, p = 0.009) and poor overall survival (HR 2.21, 95% CI 1.23-3.99, p = 0.008). CONCLUSION: Our TME-based risk stratification provides a powerful prognostic tool that can be used in daily treatment planning of OPSCC together with tumor-related prognostic markers.

12.
Pathol Res Pract ; 263: 155573, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39326366

ABSTRACT

BACKGROUND: MicroRNAs act as oncogenes or tumor suppressors in various cancers. The tumor microenvironment (TME) plays an important role in tumor cell progression and survival. METHODS: MicroRNA expressions were evaluated by using NanoString nCounter assay, qRT-PCR and in situ hybridization. Correlation between MircoRNA expressions and TME factors, clinicopathological behaviors and prognostic significance were assessed in 323 surgically resected colorectal cancers. RESULTS: The microRNA-206 expression was identified significantly higher in Glasgow microenvironment score (GMS) 0 than in GMS 1 or GMS 2 by using the NanoString nCounter assay and qRT-PCR. High microRNA-206 expression was identified in 155 (48.0 %) cases in in situ hybridization and was significantly correlated with low pT classification, and absence of lymphovascular and perineural invasion, and lymph node metastasis. MicroRNA-206 expression was significantly associated with low tumor stroma percentage (TSP), high Klintrup-Mäkinen (KM) grade and low GMS. Patients with high microRNA-206 expression showed significantly better 5-year overall survival than those with low microRNA-206 expression, and was an independent prognostic factor in patients with colorectal cancer. High miR-206 expression was associated with TME, favorable clinicopathologic behaviors and overall survival and presents an independent prognostic factor in patients with colorectal cancer. CONCLUSION: Thus, MicroRNA-206 expression presents a feasible prognostic factor and potential therapeutic target to treat patients with colorectal cancer.

13.
Article in English | MEDLINE | ID: mdl-39327407

ABSTRACT

PURPOSE: Salvage surgery for primary lung cancer is expected to become increasingly common. This study aimed to clarify the survival impact of pathologic characteristics after salvage surgery. METHODS: Consecutive patients who underwent salvage surgery following definitive chemoradiotherapy or systemic therapy for initially unresectable lung cancer from 2010 to 2020 were enrolled in this study. The tumor slides were reviewed to determine the size of the tumor bed and the proportions of viable tumor, necrosis, and stroma. RESULTS: A total of 23 patients were evaluated, and 18 had clinical stage IIIB-IV disease. Six received chemoradiotherapy and 17 received systemic therapy alone. A major pathologic response (MPR, ≤ 10% of viable tumor) was observed in 6 patients, and 4 patients achieved a pathological complete response. The 3-year overall and recurrence-free survival rates (OS and RFS) were 78.6% and 59.2%, respectively. There was no significant difference in OS between patients with and without MPR, and even non-MPR patients achieved a favorable 3-year OS of 70.2%. Meanwhile, patients with high (≥ 30%) stroma showed significantly better OS than those with low (< 30%) stroma (3-year OS: 100% vs. 23.3%, p < 0.001). CONCLUSIONS: This study showed that the proportion of stroma can be useful for predicting long-term survival after salvage surgery. Further large-scale studies are warranted to confirm the current findings.

14.
Exp Eye Res ; 248: 110073, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243928

ABSTRACT

This study analyzed the transcriptional changes in primary human corneal stromal fibroblasts (hCSFs) grown under quiescent (serum-free) and proliferating (serum-supplemented) culture conditions to identify genes, pathways, and protein‒protein interaction networks influencing corneal repair and regeneration. Primary hCSFs were isolated from donor human corneas and maintained in serum-free or serum-laden conditions. RNA was extracted from confluent cultures using Qiagen kit and subjected to RNA sequencing (RNAseq) analysis. Differential gene expression (DGE) and pathway enrichment analyses were conducted using DESeq2 and Gene Set Enrichment Analysis (GSEA), respectively. Protein‒protein interaction (PPI) networks were created exploiting the STRING database and analyzed with Cytoscape and the cytoHubba plugin. RNA-seq revealed 5,181 genes that were significantly differentially expressed/changed among the 18,812 annotated genes (p value ˂0.05). A cutoff value of a log2-fold change of ±1.5 or greater was used to identify 674 significantly upregulated and 771 downregulated genes between quiescent and proliferating hCSFs. Pathway enrichment analysis revealed significant changes in genes linked to cell cycle regulation, inflammatory, and oxidative stress response pathways, such as E2F Targets, G2M Checkpoint, and MYC Targets, TNFA signaling via NF-kB, and oxidative phosphorylation. Protein-protein interaction network analysis highlighted critical hub genes. The FGF22, CD34, ASPN, DPT, LUM, FGF10, PDGFRB, ECM2, DCN, VEGFD, OMD, OGN, ANGPT1, CDH5, and PRELP were upregulated, whereas genes linked to cell cycle regulation and mitotic progression, such as BUB1, TTK, KIF23, KIF11, BUB1B, DLGAP5, NUSAP1, CCNA2, CCNB1, BIRC5, CDK1, KIF20A, AURKB, KIF2C, and CDCA8, were downregulated. The RNA sequences and gene count files have been submitted to the Gene Expression Omnibus (accession # GSE260476). Our study provides a comprehensive information on the transcriptional and molecular changes in hCSFs under quiescent and proliferative conditions and highlights key pathways and hub genes.

15.
Res Rep Urol ; 16: 205-214, 2024.
Article in English | MEDLINE | ID: mdl-39345801

ABSTRACT

Benign prostatic hyperplasia (BPH) mainly causes lower urinary tract symptoms in ageing men, but its exact etiology and pathogenesis have not been established. The objective of this review was to design an update on the advances of human BPH research. We undertook a literature search for identifying studies of the roles of sex hormones (androgens and estrogens) in the onset and development of human BPH using the Pubmed database. In literature, many studies have indicated that ageing and obesity are the factors for preceding the onset of BPH. No evidence for the role of testosterone (T) or dihydrotestosterone (DHT) is found in BPH initiation. Since BPH exclusively occurs in the transitional zone (TZ) surrounding the urethra, it is postulated that years of exposure to uncharacterized urinary toxins could disrupt the homeostasis of the stroma and/or epithelium of this prostatic zone that are typically occurring in ageing men. After cellular damage and subsequent inflammation generated, the intraprostatic DHT produced mainly from T by 5α-reductase promotes BPH development. Further, estrogens could take part in the nodular proliferation of stromal cells in some BPH patients. The confounding of BPH may attenuate the development of prostate tumor in the TZ. In conclusion, evidence in literature suggests that androgens are not etiological factors for BPH, and intraprostatic DHT along with chronic inflammation are mainly responsible for nodular proliferation of stromal and/or epithelial cells in prostatic TZ. The urinary factors for the etiology of BPH and BPH as a prediction of PCa progression still need further investigation.

16.
Bio Protoc ; 14(18): e5074, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39346761

ABSTRACT

Corneal scarring, a significant cause of global blindness, results from various insults, including trauma, infections, and genetic disorders. The conventional treatment to replace scarred corneal tissues includes partial or full-thickness corneal transplantation using healthy donor corneas. However, only 1 in 70 individuals with treatable corneal scarring can undergo surgery, due to the limited supply of transplantable donor tissue. Our research focuses on cell-based strategies, specifically ex vivo-expanded corneal stromal stem cells (CSSCs), to address corneal scarring. Preclinical studies have demonstrated the efficacy of CSSC treatment in reducing corneal inflammation and fibrosis, inhibiting scar formation, and regenerating native stromal tissue. Mechanisms include CSSC differentiation into stromal keratocytes and the expression of regenerative cytokines. Here, we present a good manufacturing practice (GMP)-compliant protocol to isolate and expand human CSSCs. This method paves the way to produce clinical-grade CSSCs for transplantation and clinical trials. Key features • This protocol utilizes surgical skills to dissect human corneal tissues for CSSC isolation. • The yield and features of CSSCs rely on donor tissue quality (freshness) and have donor-to-donor variability. • Up to 0.5 billion CSSCs can be generated from a single cornea specimen, and cells at passage 3 are suitable for treatment uses.

17.
Am J Cancer Res ; 14(8): 4004-4027, 2024.
Article in English | MEDLINE | ID: mdl-39267662

ABSTRACT

Lysophosphatidate (LPA)-mediated signaling is a vital component of physiological wound healing, but the pathway is subverted to mediate chronic inflammatory signaling in many pathologies, including cancers. LPA, as an extracellular signaling molecule, is produced by the enzyme autotaxin (ATX, gene name ENPP2) and signals through six LPA receptors (LPARs). Its signaling is terminated by turnover via the ecto-activity of three lipid phosphate phosphatases (LPPs, gene names PLPP1-3). Many pharmacological developments against the LPA-signaling axis are underway, primarily against ATX. An ATX inhibitor against pancreatic ductal adenocarcinoma (PDAC), a very aggressive disease with limited systemic therapeutic options, is currently in clinical trials, and represents the first in-class drug against LPA signaling in cancers. In the present study, we surveyed the expression of ATX, LPARs, and LPPs in human PDACs and their clinical outcomes in two large independent cohorts, the Cancer Genome Atlas (TCGA) and GSE21501. Correlation among gene expressions, biological function and the cell composition of the tumor microenvironment were analysed using gene set enrichment analysis and cell cyber-sorting with xCell. ENPP2, LPAR1, LPAR4, LPAR5, LPAR6, PLPP1, and PLPP2 were significantly elevated in PDACs compared to normal pancreatic tissue, whereas LPAR2, LPAR3, and PLPP3 where downregulated (all P≤0.003). Only ENPP2 demonstrated survival differences, with overall survival favoring ENPP2-high patients (hazard ration 0.5-0.9). ENPP2 was also the only gene with enriched gene patterns for inflammatory and tissue repair gene sets. Epithelial (cancer) cells had increased LPAR2, LPAR5 and PLPP2 expression, and decreased ENPP2, LPAR1, PLPP1, and PLPP3 gene expression (all P<0.02). Tumor fibroblasts had increased ENPP2, LPAR2, LPAR4, PLPP1, and PLPP3 expression and decreased LPAR2, LPAR5, and PLPP2 expression in both cohorts (all P≤0.01). Immune cell populations were not well correlated to gene expression in PDACs, but across both cohorts, cytolytic scores were increased in high-expressing ENPP2, LPAR1, LPAR6, PLPP1, and PLPP3 tumors (P<0.01). Overall, in PDACs, ENPP2 may switch from an anti-to-pro tumor promoting gene with disease progression. LPAR2 and PLPP2 inhibition are also predicted to have potential therapeutic utility. Future multi-omics investigations are necessarily to validate which LPA signaling components are high-value candidates for pharmacological manipulation in PDAC treatment.

18.
Cancer Sci ; 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39226222

ABSTRACT

We used a mathematical approach to investigate the quantitative spatial profile of cancer cells and stroma in lung squamous cell carcinoma tissues and its clinical relevance. The study enrolled 132 patients with 3-5 cm peripheral lung squamous cell carcinoma, resected at the National Cancer Center Hospital East. We utilized machine learning to segment cancer cells and stroma on cytokeratin AE1/3 immunohistochemistry images. Subsequently, a spatial form of Shannon's entropy was employed to precisely quantify the spatial distribution of cancer cells and stroma. This quantification index was defined as the spatial tumor-stroma distribution index (STSDI). The patients were classified as STSDI-low and -high groups for clinicopathological comparison. The STSDI showed no significant association with baseline clinicopathological features, including sex, age, pathological stage, and lymphovascular invasion. However, the STSDI-low group had significantly shorter recurrence-free survival (5-years RFS: 49.5% vs. 76.2%, p < 0.001) and disease-specific survival (5-years DSS: 53.6% vs. 81.5%, p < 0.001) than the STSDI-high group. In contrast, the application of Shannon's entropy without spatial consideration showed no correlation with patient outcomes. Moreover, low STSDI was an independent unfavorable predictor of tumor recurrence and disease-specific death (RFS; HR = 2.668, p < 0.005; DSS; HR = 3.057, p < 0.005), alongside the pathological stage. Further analysis showed a correlation between low STSDI and destructive growth patterns of cancer cells within tumors, potentially explaining the aggressive nature of STSDI-low tumors. In this study, we presented a novel approach for histological analysis of cancer tissues that revealed the prognostic significance of spatial tumor-stroma distribution in lung squamous cell carcinoma.

19.
Mol Oncol ; 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245631

ABSTRACT

Alpha-smooth muscle actin (α-SMA) expression in the stroma is linked to the presence of cancer-associated fibroblasts and is known to correlate with worse outcomes in various tumors. In this study, using a GeoMx digital spatial profiling approach, we characterized the gene expression of the tumor and α-SMA-expressing stromal cell compartments in pancreatic neuroendocrine tumors (PanNETs). The profiling was performed on tissues from eight retrospective cases (three grade 1, four grade 2, and one grade 3). Selected regions of interest were segmented geometrically based on tissue morphology and fluorescent signals from synaptophysin and α-SMA markers. The α-SMA-expressing stromal-cell-associated genes were involved in pathways of extracellular matrix modification, whereas, in tumor cells, the gene expression profiles were associated with pathways involved in cell proliferation. The comparison of gene expression profiles across all three PanNET grades revealed that the differences between grades are not only present at the level of the tumor but also in the α-SMA-expressing stromal cells. Furthermore, the tumor cells from regions with a rich presence of adjacent α-SMA-expressing stromal cells revealed an upregulation of matrix metalloproteinase-9 (MMP9) expression in grade 3 tumors. This study provides an in-depth characterization of gene expression profiles in α-SMA-expressing stromal and tumor cells, and outlines potential crosstalk mechanisms.

20.
Drug Resist Updat ; 77: 101146, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39243602

ABSTRACT

Despite the ongoing advances in interventional strategies (surgery, chemotherapy, radiotherapy, and immunotherapy) for managing pancreatic ductal adenocarcinoma (PDAC), the development of therapy refractory phenotypes remains a significant challenge. Resistance to various therapeutic modalities in PDAC emanates from a combination of inherent and acquired factors and is attributable to cancer cell-intrinsic and -extrinsic mechanisms. The critical determinants of therapy resistance include oncogenic signaling and epigenetic modifications that drive cancer cell stemness and metabolic adaptations, CAF-mediated stromagenesis that results in ECM deposition altered mechanotransduction, and secretome and immune evasion. We reviewed the current understanding of these multifaceted mechanisms operating in the PDAC microenvironment, influencing the response to chemotherapy, radiotherapy, and immunotherapy regimens. We then describe how the lessons learned from these studies can guide us to discover novel therapeutic regimens to prevent, delay, or revert resistance and achieve durable clinical responses.

SELECTION OF CITATIONS
SEARCH DETAIL