Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Oncol Lett ; 28(2): 339, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38855503

ABSTRACT

3,3'-Diindolylmethane (DIM) is a natural phytochemical derived from cruciferous plants that has inhibitory effects on a wide range of tumor cells; however, its relevant effects on esophageal cancer cells have been poorly studied. Therefore, in the present study, a pharmacology network approach was used to predict the possible core targets of DIM acting on esophageal cancer. Subsequently, using in vitro experiments, TE-1 human esophageal cancer cells were treated with different concentrations of DIM (0, 40, 60 and 80 µM) for 24 h. Changes in cell activity were detected by Cell Counting Kit-8 assay, and changes in the expression levels of stromal interaction molecule 1 (STIM1) and apoptosis-related proteins, B-cell lymphoma-2 (Bcl-2) and Bax, were assessed by western blotting, followed by the upregulation of STIM1 by thapsigargin (Tg). Network pharmacology analysis showed that there were 39 potential core targets of DIM in esophageal cancer. The results of the in vitro experiments showed that DIM could inhibit the viability of esophageal cancer cells, downregulate the expression of STIM1 and Bcl-2 proteins and upregulate the expression of Bax protein, all in a concentration-dependent manner. The results also demonstrated that toxic carotenoids were agonist against STIM1 protein and upregulated STIM1 and Bax protein expression. After agonizing STIM1 protein expression using Tg, DIM was able to counteract the expression trend of STIM1, Bcl-2 and Bax protein in TE-1 cells. In summary, DIM induced apoptosis and inhibited the viability of esophageal cancer cells by downregulating the expression of STIM1 protein; therefore, the natural phytochemical, DIM, may be a potential substance for the early prevention and treatment of esophageal cancer cells.

2.
J Biol Chem ; 300(7): 107422, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815866

ABSTRACT

Infiltration of monocyte-derived cells to sites of infection and injury is greater in males than in females, due in part, to increased chemotaxis, the process of directed cell movement toward a chemical signal. The mechanisms governing sexual dimorphism in chemotaxis are not known. We hypothesized a role for the store-operated calcium entry (SOCE) pathway in regulating chemotaxis by modulating leading and trailing edge membrane dynamics. We measured the chemotactic response of bone marrow-derived macrophages migrating toward complement component 5a (C5a). Chemotactic ability was dependent on sex and inflammatory phenotype (M0, M1, and M2), and correlated with SOCE. Notably, females exhibited a significantly lower magnitude of SOCE than males. When we knocked out the SOCE gene, stromal interaction molecule 1 (STIM1), it eliminated SOCE and equalized chemotaxis across both sexes. Analysis of membrane dynamics at the leading and trailing edges showed that STIM1 influences chemotaxis by facilitating retraction of the trailing edge. Using BTP2 to pharmacologically inhibit SOCE mirrored the effects of STIM1 knockout, demonstrating a central role of STIM/Orai-mediated calcium signaling. Importantly, by monitoring the recruitment of adoptively transferred monocytes in an in vivo model of peritonitis, we show that increased infiltration of male monocytes during infection is dependent on STIM1. These data support a model in which STIM1-dependent SOCE is necessary and sufficient for mediating the sex difference in monocyte recruitment and macrophage chemotactic ability by regulating trailing edge dynamics.

3.
J Clin Immunol ; 44(4): 94, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578569

ABSTRACT

PURPOSE: Deficiency of stromal interaction molecule 1 (STIM1) results in combined immunodeficiency accompanied by extra-immunological findings like enamel defects and myopathy. We here studied a patient with a STIM1 loss-of-function mutation who presented with severe lymphoproliferation. We sought to explore the efficacy of the mTOR inhibitor rapamycin in controlling disease manifestations and reversing aberrant T-cell subsets and functions, which has never been used previously in this disorder. METHODS: Clinical findings of the patient were collected over time. We performed immunological evaluations before and after initiation of rapamycin treatment, including detailed lymphocyte subset analyses, alterations in frequencies of circulating T follicular helper (cTFH) and regulatory T (Treg) cells and their subtypes as well as T cell activation and proliferation capacities. RESULTS: A novel homozygous exon 2 deletion in STIM1 was detected in a 3-year-old girl with severe lymphoproliferation, recurrent infections, myopathy, iris hypoplasia, and enamel hypoplasia. Lymphoproliferation was associated with severe T-cell infiltrates. The deletion resulted in a complete loss of protein expression, associated with a lack of store-operated calcium entry response, defective T-cell activation, proliferation, and cytokine production. Interestingly, patient blood contained fewer cTFH and increased circulating follicular regulatory (cTFR) cells. Abnormal skewing towards TH2-like responses in certain T-cell subpopulations like cTFH, non-cTFH memory T-helper, and Treg cells was associated with increased eosinophil numbers and serum IgE levels. Treatment with rapamycin controlled lymphoproliferation, improved T-cell activation and proliferation capacities, reversed T-cell responses, and repressed high IgE levels and eosinophilia. CONCLUSIONS: This study enhances our understanding of STIM1 deficiency by uncovering additional abnormal T-cell responses, and reveals for the first time the potential therapeutic utility of rapamycin for this disorder.


Subject(s)
Muscular Diseases , Sirolimus , Female , Humans , Child, Preschool , Stromal Interaction Molecule 1/genetics , T-Lymphocyte Subsets , Immunoglobulin E , Neoplasm Proteins
4.
Int J Mol Sci ; 25(5)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38474242

ABSTRACT

Ceramides regulate phagocytosis; however, their exact function remains poorly understood. Here, we sought (1) to develop genetically encoded fluorescent tools for imaging ceramides, and (2) to use them to examine ceramide dynamics during phagocytosis. Fourteen enhanced green fluorescent protein (EGFP) fusion constructs based on four known ceramide-binding domains were generated and screened. While most constructs localized to the nucleus or cytosol, three based on the CA3 ceramide-binding domain of kinase suppressor of ras 1 (KSR1) localized to the plasma membrane or autolysosomes. C-terminally tagged CA3 with a vector-based (C-KSR) or glycine-serine linker (C-KSR-GS) responded sensitively and similarly to ceramide depletion and accumulation using a panel of ceramide modifying drugs, whereas N-terminally tagged CA3 (N-KSR) responded differently to a subset of treatments. Lipidomic and liposome microarray analysis suggested that, instead, N-KSR may preferentially bind glucosyl-ceramide. Additionally, the three probes showed distinct dynamics during phagocytosis. Despite partial autolysosomal degradation, C-KSR and C-KSR-GS accumulated at the plasma membrane during phagocytosis, whereas N-KSR did not. Moreover, the weak recruitment of C-KSR-GS to the endoplasmic reticulum and phagosomes was enhanced through overexpression of the endoplasmic reticulum proteins stromal interaction molecule 1 (STIM1) and Sec22b, and was more salient in dendritic cells. The data suggest these novel probes can be used to analyze sphingolipid dynamics and function in living cells.


Subject(s)
Ceramides , Fluorescent Dyes , Protein Kinases , Ceramides/metabolism , Signal Transduction/physiology , Phagocytosis
5.
Biosystems ; 237: 105138, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340977

ABSTRACT

Pancreatic ß-cells are equipped with the molecular machinery allowing them to respond to high glucose levels in the form of electrical activity and Ca2+ oscillations. These oscillations drive insulin secretion. Two key ionic mechanisms involved in this response are the Store-Operated Current and the current through ATP-dependent K+ channels. Both currents have been shown to be regulated by the protein STIM1, but this dual regulation by STIM1 has not been studied before. In this paper, we use mathematical modelling to gain insight into the role of STIM1 in the ß-cell response. We extended a previous ß-cell model to include the dynamics of STIM1 and described the dependence of the ATP-dependent K+ current on STIM1. Our simulations suggest that the total concentration of STIM1 modifies the bursting frequency, the burst duration and the intracellular Ca2+ levels. These results are in good agreement with experimental reports, and the contribution of the studied currents to electrical activity and Ca2+ dynamics is discussed. The model predicts that in the absence of STIM1 the excitability of the plasma membrane increases and that the glucose threshold for electrical activity is shifted to lower concentrations. These computational predictions may be related to impaired insulin secretion under conditions of reduced STIM1 in the diabetic state.


Subject(s)
Insulin-Secreting Cells , Stromal Interaction Molecule 1 , Adenosine Triphosphate/metabolism , Calcium/metabolism , Calcium Signaling , Cell Membrane/metabolism , Glucose/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Stromal Interaction Molecule 1/metabolism , Humans
6.
MedComm (2020) ; 5(2): e482, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38344399

ABSTRACT

Metastasis is the leading cause of death in hepatocellular carcinoma (HCC) patients, and autophagy plays a crucial role in this process by orchestrating epithelial-mesenchymal transition (EMT). Stromal interaction molecule 1 (STIM1), a central regulator of store-operated calcium entry (SOCE) in nonexcitable cells, is involved in the development and spread of HCC. However, the impact of STIM1 on autophagy regulation during HCC metastasis remains unclear. Here, we demonstrate that STIM1 is temporally regulated during autophagy-induced EMT in HCC cells, and knocking out (KO) STIM1 significantly reduces both autophagy and EMT. Interestingly, STIM1 enhances autophagy through both SOCE-dependent and independent pathways. Mechanistically, STIM1 directly interacts with microtubule-associated protein 1A/1B-light chain 3B (LC3B) to form a complex via the sterile-α motif (SAM) domain, which promotes autophagosome formation. Furthermore, deletion of the SAM domain of STIM1 abolishes its binding with LC3B, leading to a decrease in autophagy and EMT in HCC cells. These findings unveil a novel mechanism by which the STIM1/LC3B complex mediates autophagy and EMT in HCC cells, highlighting a potential target for preventing HCC metastasis.

8.
Int J Mol Sci ; 24(24)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38139137

ABSTRACT

Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.


Subject(s)
Agrimonia , Humans , T-Lymphocytes , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents/pharmacology
9.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106138

ABSTRACT

Histone deacetylase inhibitors (HDIs) modulate ß cell function in preclinical models of diabetes; however, the mechanisms underlying these beneficial effects have not been determined. In this study, we investigated the impact of the HDI sodium butyrate (NaB) on ß cell function and calcium (Ca2+) signaling using ex vivo and in vitro models of diabetes. Our results show that NaB significantly improved glucose-stimulated insulin secretion in islets from human organ donors with type 2 diabetes and in cytokine-treated INS-1 ß cells. Consistently, NaB partially rescued glucose-stimulated Ca2+ oscillations in mouse islets treated with proinflammatory cytokines. Because the oscillatory phenotype of Ca2+ in the ß cell is governed by changes in endoplasmic reticulum (ER) Ca2+ levels, next we explored the relationship between NaB and store-operated calcium entry (SOCE), a rescue mechanism that acts to refill ER Ca2+ levels through STIM1-mediated gating of plasmalemmal Orai channels. We found that NaB treatment preserved basal ER Ca2+ levels and restored SOCE in IL-1ß-treated INS-1 cells. Furthermore, we linked these changes with the restoration of STIM1 levels in cytokine-treated INS-1 cells and mouse islets, and we found that NaB treatment was sufficient to prevent ß cell death in response to IL-1ß treatment. Mechanistically, NaB counteracted cytokine-mediated reductions in phosphorylation levels of key signaling molecules, including AKT, ERK1/2, glycogen synthase kinase-3α (GSK-3α), and GSK-3ß. Taken together, these data support a model whereby HDI treatment promotes ß cell function and Ca2+ homeostasis under proinflammatory conditions through STIM1-mediated control of SOCE and AKT-mediated inhibition of GSK-3.

10.
FASEB Bioadv ; 5(11): 453-469, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37936920

ABSTRACT

Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.

11.
J Biol Chem ; 299(8): 104970, 2023 08.
Article in English | MEDLINE | ID: mdl-37380078

ABSTRACT

Intracellular calcium signaling is essential for many cellular processes, including store-operated Ca2+ entry (SOCE), which is initiated by stromal interaction molecule 1 (STIM1) detecting endoplasmic reticulum (ER) Ca2+ depletion. STIM1 is also activated by temperature independent of ER Ca2+ depletion. Here we provide evidence, from advanced molecular dynamics simulations, that EF-SAM may act as a true temperature sensor for STIM1, with the prompt and extended unfolding of the hidden EF-hand subdomain (hEF) even at slightly elevated temperatures, exposing a highly conserved hydrophobic Phe108. Our study also suggests an interplay between Ca2+ and temperature sensing, as both, the canonical EF-hand subdomain (cEF) and the hidden EF-hand subdomain (hEF), exhibit much higher thermal stability in the Ca2+-loaded form compared to the Ca2+-free form. The SAM domain, surprisingly, displays high thermal stability compared to the EF-hands and may act as a stabilizer for the latter. We propose a modular architecture for the EF-hand-SAM domain of STIM1 composed of a thermal sensor (hEF), a Ca2+ sensor (cEF), and a stabilizing domain (SAM). Our findings provide important insights into the mechanism of temperature-dependent regulation of STIM1, which has broad implications for understanding the role of temperature in cellular physiology.


Subject(s)
Endoplasmic Reticulum , Molecular Dynamics Simulation , Calcium/metabolism , Calcium Signaling , Endoplasmic Reticulum/metabolism , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism , Temperature , Humans
12.
Cell Oncol (Dordr) ; 46(4): 987-1000, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36917356

ABSTRACT

BACKGROUND: Stromal interaction molecule 1 (STIM1)-mediated Ca2+ signaling regulates tumor angiogenesis in nasopharyngeal carcinoma (NPC), an Epstein-Barr virus (EBV)-related human malignancy. However, the mechanism by which STIM1 modulates endothelial functional phenotypes contributing to tumor angiogenesis remains elusive. METHODS: NPC cell-derived exosomes were isolated via differential centrifugation and observed using transmission electron microscopy. Exosome particle sizes were assessed by nanoparticle tracking analysis (NTA). Uptake of exosomes by recipient ECs was detected by fluorescent labeling of the exosomes with PKH26. Tumor angiogenesis-associated profiles were characterized by determining cell proliferation, migration, tubulogenesis and permeability in human umbilical vein endothelial cells (HUVECs). Activation of the Akt/ERK pathway was assessed by detecting the phosphorylation levels using Western blotting. A chick embryo chorioallantoic membrane (CAM) xenograft model was employed to study tumor-associated neovascularization in vivo. RESULTS: We found that NPC cell-derived exosomes harboring EBV-encoded latent membrane protein 1 (LMP1) promoted proliferation, migration, tubulogenesis and permeability by activating the Akt/ERK pathway in ECs. STIM1 silencing reduced LMP1 enrichment in NPC cell-derived exosomes, thereby reversing its pro-oncogenic effects in an Akt/ERK pathway-dependent manner. Furthermore, STIM1 knockdown in NPC cells blunted tumor-induced vascular network formation and inhibited intra-tumor neovascularization in the chorioallantoic membrane (CAM) xenograft model. CONCLUSION: STIM1 regulates tumor angiogenesis by controlling exosomal EBV-LMP1 delivery to ECs in the NPC tumor microenvironment. Blocking exosome-mediated cell-to-cell horizontal transfer of EBV-associated oncogenic signaling molecules may be an effective therapeutic strategy for NPC.


Subject(s)
Epstein-Barr Virus Infections , Nasopharyngeal Neoplasms , Chick Embryo , Animals , Humans , Nasopharyngeal Carcinoma/genetics , Herpesvirus 4, Human , Proto-Oncogene Proteins c-akt/metabolism , MAP Kinase Signaling System , Nasopharyngeal Neoplasms/metabolism , Epstein-Barr Virus Infections/complications , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Phenotype , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Cell Line, Tumor , Tumor Microenvironment , Neoplasm Proteins/metabolism
13.
Arterioscler Thromb Vasc Biol ; 43(5): e151-e170, 2023 05.
Article in English | MEDLINE | ID: mdl-36924231

ABSTRACT

BACKGROUND: Altered intracellular Ca2+ homeostasis in neonatal platelets has been previously reported. This study aims to examine the changes in the Ca2+ entry through the store-operated calcium entry (SOCE) mechanism in neonatal platelets. METHODS: Human platelets from either control women, mothers, and neonates were isolated and, following, were fixed after being treated as required. Platelet samples were analyzed by Western blotting, qRT-PCR, and MALDITOF/TOF. Ca2+ homeostasis was also determined. Culture cells were used as surrogated of platelets to overexpress the proteins of interest to reproduce the alterations observed in platelets. RESULTS: Altered TG (thapsigargin)-evoked SOCE, alternative molecular weight form of STIM1 (stromal interaction molecule 1; s-STIM1 [short STIM1 isoform (478 aa)], around 60 kDa) and overexpression of SARAF (SOCE-associated regulatory factor) were found in neonatal platelets as compared to maternal and control women platelets. s-STIM1 may result due to CAPN1 (calpain1)-dependent processing, as confirmed in platelets and MEG01 cells by using calpeptin and overexpressing CAPN1, respectively. In HEK293 (STIM1 and STIM2 [stromal interaction molecule 2] double knockout) cells transfected either with c-STIM1 (canonical STIM1 [685 aa]), s-STIM1 (478), STIM1B (540), and CAPN1 overexpression plasmids, we found s-STIM1 and c-STIM1, except in cells overexpressing s-STIM1 (478) that lacked CAPN1 target residues. These results and the in silico analysis, lead us to conclude that STIM1 is cleaved at Q496 by CAPN1. Ca2+ imaging analysis and coimmunoprecipitation assay using MEG01 and HEK293 cells overexpressing SARAF together with s-STIM1 (478) reported a reduced slow Ca2+-dependent inactivation, so reproducing the Ca2+-homeostasis pattern observed in neonatal platelets. CONCLUSIONS: CAPN1 may cleave STIM1 in neonatal platelets, hence, impairing SARAF coupling after SOCE activation. s-STIM1 may avoid slow Ca2+-dependent inactivation and, subsequently, results in an enhanced TG-evoked SOCE as observed in neonatal platelets.


Subject(s)
Blood Platelets , Calpain , Membrane Proteins , Stromal Interaction Molecule 1 , Female , Humans , Infant, Newborn , Blood Platelets/metabolism , Calcium/metabolism , Calcium Signaling , Calpain/metabolism , HEK293 Cells , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism
14.
J Mol Biol ; 434(24): 167874, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36332662

ABSTRACT

Stromal interaction molecule 1 (STIM1) is an endo/sarcoplasmic reticulum (ER/SR) calcium (Ca2+) sensing protein that regulates store-operated calcium entry (SOCE). In SOCE, STIM1 activates Orai1-composed Ca2+ channels in the plasma membrane (PM) after ER stored Ca2+ depletion. S-Glutathionylation of STIM1 at Cys56 evokes constitutive SOCE in DT40 cells; however, the structural and biophysical mechanisms underlying the regulation of STIM1 by this modification are poorly defined. By establishing a protocol for site-specific STIM1 S-glutathionylation using reduced glutathione and diamide, we have revealed that modification of STIM1 at either Cys49 or Cys56 induces thermodynamic destabilization and conformational changes that result in increased solvent-exposed hydrophobicity. Further, S-glutathionylation or point-mutation of Cys56 reduces Ca2+ binding affinity, as measured by intrinsic fluorescence and far-UV circular dichroism spectroscopies. Solution NMR showed S-glutathionylated-induced perturbations in STIM1 are localized to the α1 helix of the canonical EF-hand, the α3 and α4 helices of the non-canonical EF-hand and α6 and α8 helices of the SAM domain. Finally, we designed an S-glutathiomimetic mutation that strongly recapitulates the structural, biophysical and functional effects within the STIM1 luminal domain and we envision to be another tool for understanding the effects of protein S-glutathionylation in vitro, in cellulo and in vivo.


Subject(s)
Glutathione , Stromal Interaction Molecule 1 , Calcium/metabolism , Calcium Signaling/physiology , EF Hand Motifs , Sarcoplasmic Reticulum/metabolism , Stromal Interaction Molecule 1/chemistry , Glutathione/chemistry , Protein Domains , Humans , Animals
15.
Cell Stress Chaperones ; 27(5): 535-544, 2022 09.
Article in English | MEDLINE | ID: mdl-35841499

ABSTRACT

Hypoxia/reoxygenation (H/R) is used as an in vivo model of ischemia/reperfusion injury, and myocardial ischemia can lead to heart disease. Calcium overload is an important factor in myocardial ischemia-reperfusion injury and can lead to apoptosis of myocardial cells. Therefore, it is of great clinical importance to find ways to regulate calcium overload and reduce apoptosis of myocardial cells, and thus alleviate myocardial ischemia-reperfusion injury. There is evidence that heat shock protein 70 (HSP70) has a protective effect on the myocardium, but the exact mechanism of this effect is not completely understood. Stromal interaction molecule 1 and inositol 1,4,5-triphosphate receptor (STIM/1IP3R) play an important role in myocardial ischemia-reperfusion injury. Therefore, this study aimed to investigate whether HSP70 plays an anti-apoptotic role in H9C2 cardiomyocytes by regulating the calcium overload pathway through STIM1/IP3R. Rat H9C2 cells were subjected to transient oxygen and glucose deprivation (incubated in glucose-free medium and hypoxia for 6 h) followed by re-exposure to glucose and reoxygenation (incubated in high glucose medium and reoxygenation for 4 h) to simulate myocardial ischemia reperfusion-induced cell injury. H9C2 cell viability was significantly decreased, and lactate dehydrogenase (LDH) release and apoptosis were significantly increased after oxygen and glucose deprivation. Transfection of HSP70 into H9C2 cells could reduce the corresponding effect, increase cell viability and anti-apoptotic signal pathway, and reduce the apoptotic rate and pro-apoptotic signal pathway. After hypoxia and reoxygenation, the expression of STIM1/IP3R and intracellular calcium concentration of HSP70-overexpressed H9C2 cells were significantly lower than those of hypoxia cells. Similarly, direct silencing of STIM1 by siRNA significantly increased cell viability and expression of anti-apoptotic protein Bcl-2 and decreased apoptosis rate and expression of pro-apoptotic protein BAX. These data are consistent with HSP70 overexpression. These results suggest that HSP70 abrogates intracellular calcium overload by inhibiting upregulation of STIM1/IP3R expression, thus reducing apoptosis in H9C2 cells and playing a protective role in cardiomyocytes.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Myocardial Reperfusion Injury , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Calcium/metabolism , Cell Hypoxia , Hypoxia , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Lactate Dehydrogenases/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac , Oxygen/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Small Interfering/metabolism , Rats , Stromal Interaction Molecule 1/metabolism , bcl-2-Associated X Protein/metabolism
16.
J Cell Physiol ; 237(9): 3614-3626, 2022 09.
Article in English | MEDLINE | ID: mdl-35762104

ABSTRACT

The human transient receptor potential canonical 5 (TRPC5) is a calcium-permeable, nonselective cation channel expressed in the central and peripheral nervous system and also in other tissues such as the kidney, synovium, and odontoblasts. TRPC5 has been recently confirmed to play a key role in spontaneous, inflammatory mechanical, and cold pain. Although TRPC5 activation is known to be cold sensitive, it is unclear whether this property is intrinsic to the channel protein and whether or to what extent it may be determined by the cellular environment. In this study, we explored the cold sensitivity of human TRPC5 at the single-channel level using transiently transfected HEK293T cells. Upon decreasing the temperature, the channel demonstrated prolonged mean open dwell times and a robust increase in the open probability (Po ), whereas the amplitude of unitary currents decreased ~1.5-fold per 10°C of temperature difference. In the absence of any agonists, the temperature dependence of Po was sigmoidal, with a steep slope within the temperature range of 16°C-11°C, and exhibited saturation below 8-5°C. Thermodynamic analysis revealed significant changes in enthalpy and entropy, suggesting that substantial conformational changes accompany cold-induced gating. The mutant channel T970A, in which the regulation downstream of G-protein coupled receptor signaling was abrogated, exhibited higher basal activity at room temperature and a less steep temperature response profile, with an apparent threshold below 22°C. An even more pronounced decrease in the activation threshold was observed in a mutant that disrupted the electrostatic interaction of TRPC5 with the endoplasmic reticulum calcium sensor stromal interaction molecule 1. Thus, TRPC5 exhibits features of an intrinsically cold-gated channel; its sensitivity to cold tightly depends on the phosphorylation status of the protein and intracellular calcium homeostasis.


Subject(s)
Calcium , TRPC Cation Channels , Calcium/metabolism , Calcium Channels/metabolism , Cell Membrane/metabolism , HEK293 Cells , Humans , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism
17.
Data Brief ; 42: 108143, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35496494

ABSTRACT

The data generated here in relates to the research article "CaV1.3 enhanced store operated calcium promotes resistance to androgen deprivation in prostate cancer". A model of prostate cancer (PCa) progression to castration resistance was employed, with untreated androgen sensitive LNCaP cell line alongside two androgen deprived (bicalutamide) sublines, either 10 days (LNCaP-ADT) or 2 years (LNCaP-ABL) treatment, in addition to androgen insensitive PC3. With this PCa model, qPCR was used to examined fold change in markers linked to androgen resistance, androgen receptor (AR) and neuron specific enolase (NSE), observing an increase under androgen deprivation. In addition, the gene expression of a range of calcium channels was measured, with only the L-type Voltage gated calcium channel, CACNA1D, demonstrating an increase during androgen deprivation. With CACNA1D knockdown the channel was found not to influence the gene expression of calcium channels, ORAI1 and STIM1. The calcium channel blocker (CCB), nifedipine, was employed to determine the impact of CaV1.3 on the observed store release and calcium entry measured via Fura-2AM ratiometric dye in our outlined PCa model. In both the presence and absence of androgen deprivation, nifedipine was found to have no impact on store release induced by thapsigargin (Tg) in 0mM Ca2+ nor store operated calcium entry (SOCE) following the addition of 2mM Ca2+. However, CACNA1D siRNA knockdown was able to reduce SOCE in PC3 cells. The effect of nifedipine on CaV1.3 in PCa biology was measured through cell proliferation assay, with no observed change in the presence of CCB. While siCACNA1D reduced PC3 cell proliferation. This data can be reused to inform new studies investigating altered calcium handling in androgen resistant prostate cancer. It provides insight into the mechanism of CaV1.3 and its functional properties in altered calcium in cancer, which can be of use to researchers investigating this channel in disease. Furthermore, it could be helpful in interpreting studies investigating CCB's as a therapeutic and in the development of future drugs targeting CaV1.3.

18.
Elife ; 112022 04 19.
Article in English | MEDLINE | ID: mdl-35439114

ABSTRACT

The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a critical regulator of cellular processes. We took a chemical biology approach to gain further insights into its function. We developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of structure-based optimization guided by several co-crystallized structures. C17 displayed an effect on DYRK2 at a single-digit nanomolar IC50 and showed outstanding selectivity for the human kinome containing 467 other human kinases. Using C17 as a chemical probe, we further performed quantitative phosphoproteomic assays and identified several novel DYRK2 targets, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and stromal interaction molecule 1 (STIM1). DYRK2 phosphorylated 4E-BP1 at multiple sites, and the combined treatment of C17 with AKT and MEK inhibitors showed synergistic 4E-BP1 phosphorylation suppression. The phosphorylation of STIM1 by DYRK2 substantially increased the interaction of STIM1 with the ORAI1 channel, and C17 impeded the store-operated calcium entry process. These studies collectively further expand our understanding of DYRK2 and provide a valuable tool to pinpoint its biological function.


Subject(s)
Calcium , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Calcium/metabolism , Humans , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Stromal Interaction Molecule 1/genetics , Stromal Interaction Molecule 1/metabolism , Dyrk Kinases
19.
Cell Commun Signal ; 20(1): 33, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35303866

ABSTRACT

Store-operated channels (SOCs) are highly selective Ca2+ channels that mediate Ca2+ influx in non-excitable and excitable (i.e., skeletal and cardiac muscle) cells. These channels are triggered by Ca2+ depletion of the endoplasmic reticulum and sarcoplasmic reticulum, independently of inositol 1,4,5-trisphosphate (InsP3), which is involved in cell growth, differentiation, and gene transcription. When the Ca2+ store is depleted, stromal interaction molecule1 (STIM1) as Ca2+ sensor redistributes into discrete puncta near the plasma membrane and activates the protein Ca2+ release activated Ca2+ channel protein 1 (Orai1). Accumulating evidence suggests that SOC is associated with several physiological roles in endothelial dysfunction and vascular smooth muscle proliferation that contribute to the progression of cardiovascular disease. This review mainly elaborates on the contribution of SOC in the vasculature (endothelial cells and vascular smooth muscle cells). We will further retrospect the literature implicating a critical role for these proteins in cardiovascular disease. Video Abstract.


Subject(s)
Calcium Channels , Cardiovascular Diseases , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling , Endothelial Cells/metabolism , Humans , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Stromal Interaction Molecule 1/metabolism
20.
Acta Pharm Sin B ; 12(1): 50-75, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35127372

ABSTRACT

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...