Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Heliyon ; 10(11): e32225, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868042

ABSTRACT

The impact of high-intensity ultrasound (HIU, 20 kHz) on the physicochemical and functional characteristics of gourd seed protein isolate (GoSPI) was studied. GoSPI was prepared from oil-free gourd seed flour through alkaline extraction (pH 11) and subsequent isoelectric precipitation (pH 4). The crude protein concentration of GoSPI ranged from 91.56 ± 0.17 % to 95.43 ± 0.18 %. Aqueous suspensions of GoSPI (1:3.5 w/v) were ultrasonicated at powers of 200, 400, and 600 W for 15 and 30 min. Glutelins (76.18 ± 0.15 %) were the major protein fraction in GoSPI. HIU decreased the moisture, ash, ether extract, and nitrogen-free extract contents and the hue angle, available water and a* and b* color parameters of the GoSPI in some treatments. The L* color parameter increased (7.70 %) after ultrasonication. HIU reduced the bulk density (52.63 %) and particle diameter (39.45 %), as confirmed by scanning electron microscopy, indicating that ultrasonication dissociated macromolecular aggregates in GoSPI. These structural changes enhanced the oil retention capacity and foam stability by up to 62.60 and 6.84 %, respectively, while the increases in the solvability, water retention capacity, and emulsifying activity index of GoSPI were 90.10, 19.80, and 43.34 %, respectively. The gelation, foaming capacity, and stability index of the emulsion showed no improvement due to HIU. HIU altered the secondary structure of GoSPI by decreasing the content of α-helices (49.66 %) and increasing the content of ß-sheets (52.00 %) and ß-turns (65.00 %). The electrophoretic profile of the GoSPI was not changed by HIU. The ultrasonicated GoSPI had greater functional attributes than those of the control GoSPI and could therefore be used as a functional food component.

2.
Fungal Biol Biotechnol ; 11(1): 5, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715132

ABSTRACT

BACKGROUND: Candida albicans is one of the most prevalent fungi causing infections in the world. Mnt1 is a mannosyltransferase that participates in both the cell wall biogenesis and biofilm growth of C. albicans. While the cell wall performs crucial functions in pathogenesis, biofilm growth is correlated with sequestration of drugs by the extracellular matrix. Therefore, antifungals targeting CaMnt1 can compromise fungal development and potentially also render Candida susceptible to drug therapy. Despite its importance, CaMnt1 has not yet been purified to high standards and its biophysical properties are lacking. RESULTS: We describe a new protocol to obtain high yield of recombinant CaMnt1 in Komagataella phaffii using methanol induction. The purified protein's identity was confirmed by MALDI-TOF/TOF mass spectroscopy. The Far-UV circular dichroism (CD) spectra demonstrate that the secondary structure of CaMnt1 is compatible with a protein formed by α-helices and ß-sheets at pH 7.0. The fluorescence spectroscopy results show that the tertiary structure of CaMnt1 is pH-dependent, with a greater intensity of fluorescence emission at pH 7.0. Using our molecular modeling protocol, we depict for the first time the ternary complex of CaMnt1 bound to its two substrates, which has enabled the identification of residues involved in substrate specificity and catalytic reaction. Our results corroborate the hypothesis that Tyr209 stabilizes the formation of an oxocarbenium ion-like intermediate during nucleophilic attack of the acceptor sugar, opposing the double displacement mechanism proposed by other reports. CONCLUSIONS: The methodology presented here can substantially improve the yield of recombinant CaMnt1 expressed in flask-grown yeasts. In addition, the structural characterization of the fungal mannosyltransferase presents novelties that can be exploited for new antifungal drug's development.

3.
Ultrason Sonochem ; 105: 106870, 2024 May.
Article in English | MEDLINE | ID: mdl-38579570

ABSTRACT

The obtained seeds from fruit processing are considered by-products containing proteins that could be utilized as ingredients in food manufacturing. However, in the specific case of soursop seeds, their usage for the preparation of protein isolates is limited. In this investigation a protein isolate from soursop seeds (SSPI) was obtained by alkaline extraction and isoelectric precipitation methods. The SSPI was sonicated at 200, 400 and 600 W during 15 and 30 min and its effect on the physicochemical, functional, biochemical, and structural properties was evaluated. Ultrasound increased (p < 0.05) up to 5 % protein content, 261 % protein solubility, 60.7 % foaming capacity, 30.2 % foaming stability, 86 % emulsifying activity index, 4.1 % emulsifying stability index, 85.4 % in vitro protein digestibility, 423.4 % albumin content, 83 % total sulfhydryl content, 316 % free sulfhydryl content, 236 % α-helix, 46 % ß-sheet, and 43 % ß-turn of SSPI, in comparison with the control treatment without ultrasound. Furthermore, ultrasound decreased (p < 0.05) up to 50 % particle size, 37 % molecular flexibility, 68 % surface hydrophobicity, 41 % intrinsic florescence spectrum, and 60 % random coil content. Scanning electron microscopy analysis revealed smooth structures of the SSPI with molecular weights ranging from 12 kDa to 65 kDa. The increase of albumins content in the SSPI by ultrasound was highly correlated (r = 0.962; p < 0.01) with the protein solubility. Improving the physicochemical, functional, biochemical and structural properties of SSPI by ultrasound could contribute to its utilization as ingredient in food industry.


Subject(s)
Annona , Plant Proteins , Seeds , Solubility , Seeds/chemistry , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Annona/chemistry , Ultrasonic Waves , Chemical Phenomena , Sonication
4.
Polymers (Basel) ; 16(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38543443

ABSTRACT

Tara gum, a natural biopolymer extracted from Caesalpinia spinosa seeds, was investigated in this study. Wall materials were produced using spray drying, forced convection, and vacuum oven drying. In addition, a commercial sample obtained through mechanical methods and direct milling was used as a reference. The gums exhibited low moisture content (8.63% to 12.55%), water activity (0.37 to 0.41), bulk density (0.43 to 0.76 g/mL), and hygroscopicity (10.51% to 11.42%). This allows adequate physical and microbiological stability during storage. Polydisperse particles were obtained, ranging in size from 3.46 µm to 139.60 µm. Fourier transform infrared spectroscopy characterisation confirmed the polysaccharide nature of tara gum, primarily composed of galactomannans. Among the drying methods, spray drying produced the gum with the best physicochemical characteristics, including higher lightness, moderate stability, smaller particle size, and high glass transition temperature (141.69 °C). Regarding rheological properties, it demonstrated a non-Newtonian pseudoplastic behaviour that the power law could accurately describe. The apparent viscosity of the aqueous dispersions of the gum decreased with increasing temperature. In summary, the results establish the potential of tara gum as a wall material applicable in the food and pharmaceutical industries.

5.
J Mol Model ; 29(7): 205, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37294345

ABSTRACT

CONTEXT: The monoclinic L-histidine crystal is critical for protein structure and function and is also found in the myelin of brain nerve cells. This study numerically examines its structural, electronic, and optical properties. Our findings indicate that the L-histidine crystal has an insulating band gap of approximately 4.38 eV. Additionally, electron and hole effective masses range between 3.92[Formula: see text]-15.33[Formula: see text] and 4.16[Formula: see text]-7.53[Formula: see text], respectively. Furthermore, our investigation suggests that the L-histidine crystal is an excellent UV collector due to its strong optical absorption activity for photon energies exceeding 3.5 eV. METHODS: To investigate the structural, electronic, and optical properties of L-histidine crystals, we used the Biovia Materials Studio software to conduct Density Functional Theory (DFT) simulations as implemented in the CASTEP code. Our DFT calculations were performed using the generalized gradient approximation (GGA) as parameterized by the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, with an additional dispersion energy correction (PBE [Formula: see text] TS) based on the model proposed by Tkatchenko and Scheffler to describe van der Waals interactions. Additionally, we employed the norm-conserving pseudopotential to treat core electrons.


Subject(s)
Electronics , Histidine , Density Functional Theory , Electrons , Software
6.
Molecules ; 28(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37110859

ABSTRACT

CdS:Al thin films were fabricated on a glass substrate using the CBD method. The effect of aluminum incorporation on the structural, morphological, vibrational, and optical properties of CdS thin layers was investigated by X-ray diffraction (XRD), Raman spectroscopy (RS), atomic force microscopy (AFM), scanning electron microscopy (SEM), and UV-visible (UV-vis) and photoluminescence (PL) spectroscopies. XRD analysis of deposited thin films confirmed a hexagonal structure with a preferred (002) orientation in all samples. The crystallite size and surface morphology of the films are modified with aluminum content. Raman spectra exhibit fundamental longitudinal optical (LO) vibrational modes and their overtones. Optical properties were studied for each thin film. Here, it was observed that the optical properties of thin films are affected by the incorporation of aluminum into the CdS structure.

7.
Emergent Mater ; 6(1): 147-158, 2023.
Article in English | MEDLINE | ID: mdl-36597484

ABSTRACT

Biocides are employed to prevent biodeterioration in waterborne paints. In the present study, we used zinc oxide nanoparticles (obtained from spent alkaline batteries) as biocide for indoor waterborne paint at 1.5% of the total solid content in paint. Two different zinc oxides synthesized from spent alkaline batteries, which showed photocatalyst activity, were employed as an antimicrobial agents. After leaching the anode of alkaline batteries, zinc was precipitated from the leachate liquor by introducing oxalic acid (O-ZnO) or sodium carbonate (C-ZnO). The antimicrobial properties of the prepared oxides were tested against Staphylococcus aureus (bacteria), Chaetomium globosum, and Aspergillus fumigatus (fungi) using agar well diffusion method. C-ZnO inhibited the growth of all the strains studied and presented enhanced activity than O-ZnO. The better performance as antimicrobial agent of C-ZnO compared to O-ZnO was attributed to its lower crystallite size, higher amount of oxygen monovacancies, and to its lower band gap energy. The oxide with the best performance in antimicrobial activity, C-ZnO, was employed for the formulation of waterborne acrylic paints. It was observed that 1.5% C-ZnO improved the antifungal properties and antibacterial properties compared to the control sample.

8.
Toxins (Basel) ; 14(11)2022 10 28.
Article in English | MEDLINE | ID: mdl-36355990

ABSTRACT

Microbial infections represent a problem of great importance at the public health level, with a high rate of morbidity-mortality worldwide. However, treating the different diseases generated by microorganisms requires a gradual increase in acquired resistance when applying or using them against various antibiotic therapies. Resistance is caused by various molecular mechanisms of microorganisms, thus reducing their effectiveness. Consequently, there is a need to search for new opportunities through natural sources with antimicrobial activity. One alternative is using peptides present in different scorpion venoms, specifically from the Buthidae family. Different peptides with biological activity in microorganisms have been characterized as preventing their growth or inhibiting their replication. Therefore, they represent an alternative to be used in the design and development of new-generation antimicrobial drugs in different types of microorganisms, such as bacteria, fungi, viruses, and parasites. Essential aspects for its disclosure, as shown in this review, are the studies carried out on different types of peptides in scorpion venoms with activity against pathogenic microorganisms, highlighting their high therapeutic potential.


Subject(s)
Anti-Infective Agents , Scorpion Venoms , Animals , Scorpion Venoms/pharmacology , Scorpion Venoms/chemistry , Scorpions , Peptides/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Fungi , Anti-Bacterial Agents
9.
Heliyon ; 8(8): e10102, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36016527

ABSTRACT

In this research, a combined study on structures and vibrational spectra of antiviral rimantadine have been performed using hybrid B3LYP/6-311++G∗∗ calculations and the scaled quantum force field (SQMFF) procedure. Harmonic force fields and scaled force constants of Free Base (FB), Cationic (CA) and Hydrochloride (HCl) species derived from the antiviral rimantadine have been calculated in gas phase and in aqueous solution using normal internal coordinates and scaling factors. Good correlations were acquired comparing the theoretical IR, Raman, 1H- 13C-NMR and UV spectra of three species with the analogous experimental ones, suggesting probably, the presence of all them in both phases. The main force constants of three species have evidenced lower values than the corresponding to antiviral amantadine. The ionic character of N1-H33⋯Cl36 bond of HCl species in aqueous solution evidence positive Mulliken charge on N1 atom indicating that this species is as CA one. Rimantadine presents higher solvation energies in water than other antiviral species, such as chloroquin, niclosamide, cidofovir and brincidofovir. The FB and HCl species of rimantadine are slightly less reactive than the corresponding to amantadine while the opposite is observed for the CA species. The predicted ECD spectra for the FB and CA species show positive Cotton effect different from the negative observed for the HCl one. These different behaviours of three species of rimantadine could probably explain the differences observed in the intensities of bands predicted in the electronic spectra of these species.

10.
Antibiotics (Basel) ; 10(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34572651

ABSTRACT

Background: Pathogenic microorganisms are causing increasing cases of mortality and morbidity, along with alarming rates of ineffectiveness as a result of acquired antimicrobial resistance. Bi2WO6 showed good potential to be used as an antibacterial substance when exposed to visible light. This study demonstrates for the first time the dimension-dependent antibacterial activity of layered Bi2WO6 nanosheets. Materials and methods: The synthesized layered Bi2WO6 nanosheets were prepared by the hydrothermal method and characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and Raman and Fourier transform infrared spectroscopy (FTIR). Antibacterial and antibiotic-modulation activities were performed in triplicate by the microdilution method associated with visible light irradiation (LEDs). Results: Bi2WO6 nanosheets were effective against all types of bacteria tested, with MIC values of 256 µg/mL against Escherichia coli standard and resistant strains, and 256 µg/mL and 32 µg/mL against Staphylococcus aureus standard and resistant strains, respectively. Two-dimensional (2D) Bi2WO6 nanosheets showed antibacterial efficiency against both strains studied without the presence of light. Conclusions: Layered Bi2WO6 nanosheets revealed dimension-dependent antibacterial activity of the Bi2WO6 system.

11.
Molecules ; 26(4)2021 Feb 20.
Article in English | MEDLINE | ID: mdl-33672700

ABSTRACT

Plants synthesize a large number of natural products, many of which are bioactive and have practical values as well as commercial potential. To explore this vast structural diversity, we present PSC-db, a unique plant metabolite database aimed to categorize the diverse phytochemical space by providing 3D-structural information along with physicochemical and pharmaceutical properties of the most relevant natural products. PSC-db may be utilized, for example, in qualitative estimation of biological activities (Quantitative Structure-Activity Relationship, QSAR) or massive docking campaigns to identify new bioactive compounds, as well as potential binding sites in target proteins. PSC-db has been implemented using the open-source PostgreSQL database platform where all compounds with their complementary and calculated information (classification, redundant names, unique IDs, physicochemical properties, etc.) were hierarchically organized. The source organism for each compound, as well as its biological activities against protein targets, cell lines and different organism were also included. PSC-db is freely available for public use and is hosted at the Universidad de Talca.


Subject(s)
Databases, Chemical , Phytochemicals/chemistry , Plants/chemistry , Molecular Docking Simulation , Phytochemicals/metabolism , Plants/metabolism , Quantitative Structure-Activity Relationship
12.
Int J Biol Macromol ; 144: 536-543, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31862362

ABSTRACT

The effect of high-intensity ultrasound (US) combined with transglutaminase treatment (TG) and the inclusion of nanoparticles (Np) on the structural, mechanical, barrier, and physicochemical properties of quinoa protein/chitosan composite edible films were evaluated. Structurally it was observed that the maximum temperatures of the thermal degradation increased with the use of combined US and TG treatment, generating films with superior thermal stability. FTIR results showed that in the amide zone I oscillations of the polypeptide structure were related to the stretching vibrations of CO in the US/TG-Np edible film. Which has generally been associated with changes in the structure and formation of covalent bonds by the action of TG. The US improved mechanical properties by increasing the tensile strength (with or without the application of TG). While combining US-TG produced a significant increase in thickness, decrease in elongation percentage, and increase in tensile strength. Which can be attributed to cross-linking produced by TG. Water vapour permeability increased in all cases. In general, the combination of US-TG treatments showed a more pronounced effect on the structure and mechanical properties.


Subject(s)
Chenopodium quinoa/chemistry , Chitosan/chemistry , Edible Films , Nanoparticles/chemistry , Transglutaminases/chemistry , Ultrasonic Waves
13.
BMJ Open ; 9(10): e030194, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31662370

ABSTRACT

INTRODUCTION: In recent years, it has been demonstrated that photobiomodulation therapy (PBMT) using low-level laser therapy and/or light-emitting diode therapy combined to static magnetic field (sMF) has ergogenic effects, improving muscular performance and accelerating postexercise recovery. However, many aspects related to these effects and its clinical applicability remain unknown. Therefore, the aim of this project is to evaluate the ergogenic effects of PBMT/sMF in detraining after a strength-training protocol. METHODS AND ANALYSIS: The study will be a randomised, triple-blind, placebo-controlled clinical trial. Healthy male volunteers will be randomly distributed into four experimental groups: PBMT/sMF before training sessions + PBMT/sMF during detraining, PBMT/sMF before training sessions + placebo during detraining, placebo before training sessions + PBMT/sMF during detraining and placebo before training sessions + placebo during detraining. Strength-training sessions will be carried out over 12 weeks, and the detraining period will occur during the 4 weeks after. The muscular strength and the structural properties of quadriceps will be analysed. ETHICS AND DISSEMINATION: This study was approved by the Research Ethics Committee of Nove de Julho University. The results from this study will be disseminated through scientific publications in international peer-reviewed journals and presented at national and international scientific meetings. TRIAL REGISTRATION NUMBER: NCT03858179.


Subject(s)
Low-Level Light Therapy/methods , Magnetic Field Therapy/methods , Muscle Strength , Quadriceps Muscle , Resistance Training/methods , Adult , Humans , Magnetic Fields , Male , Young Adult
14.
Heliyon ; 5(9): e02322, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31535039

ABSTRACT

Structural and vibrational properties of free base, cationic and hydrochloride species derived from both S(-) and R(+) enantiomers of antihistaminic promethazine (PTZ) agent have been theoretically evaluated in gas phase and in aqueous solution by using the hybrid B3LYP/6-31G* calculations. The initial structures of S(-) and R(+) enantiomers of hydrochloride PTZ were those polymorphic forms 1 and 2 experimentally determined by X-ray diffraction. Here, all structures in aqueous solution were optimized at the same level of theory by using the polarized continuum (PCM) and the universal solvation model. As was experimentally reported, variations in the unit cell lead to slight energy, density, and melting point differences between the two forms but, this behavior is not carried through in isotropic condition, like in solution with non-chiral solvents. Hence, the N-C distances, Mulliken, atomic natural population (NPA) and Merz-Kollman (MK) charges, bond orders, stabilization and solvation energies, frontier orbitals, some descriptors and their topological properties were compared with the antihistaminic cyclizine agent. The frontier orbitals studies show that the free base species of both forms in solution are more reactive than cyclizine. Higher electrophilicity indexes are observed in the cationic and hydrochloride species of PTZ than cyclizine while the cationic species of cyclizine have higher nucleophilicity index than both species of PTZ. The presences of bands attributed to cationic species of both enantiomers are clearly supported by the infrared and Raman spectra in the solid phase. The expected 114, 117 and 120 vibration normal modes for the free base, cationic and hydrochloride species of both forms were completely assigned and the force constants reported. Reasonable concordances among the predicted infrared, Raman, UV-Vis and Electronic Circular Dichroism (ECD) with the corresponding experimental ones were found.

15.
Am J Phys Anthropol ; 170(2): 176-195, 2019 10.
Article in English | MEDLINE | ID: mdl-31267511

ABSTRACT

INTRODUCTION: Although pre-Hispanic hunter-gatherer and horticulturalist (known as Guaraní) societies from the lower Paraná River Delta (Argentina) presented differences in diet, pottery decoration, mortuary practices, and places of origin, differences in skeletal morphology between such groups have never been systematically explored. This work focuses on variations in humeral and femoral external linear measurements and derived structural properties of adult individuals from both societies as well as on variations in body mass and stature. MATERIALS AND METHODS: Bone length, epiphyseal size, and midshaft breadth were measured in 82 adult humeri and 100 femora from hunter-gatherer and Guaraní archeological sites. Epiphyseal and midshaft robusticity, residual strength, midshaft shape and area, stature, and body mass were then estimated. Mann-Whitney tests were run to compare the hunter-gatherer and Guaraní samples. RESULTS: Male Guaraní individuals presented stronger humeri and more robust femoral and humeral proximal epiphyses than hunter-gatherers. In addition, female Guaraní individuals showed rounder femoral diaphyses in comparison with female hunter-gatherers. Concerning stature, the Guaraní individuals were found to be shorter than hunter-gatherers, regardless of sex. No statistical differences were found in body mass. DISCUSSION: Despite the fact that skeletal variations between Guaraní and hunter-gatherers could be a consequence of differences in mechanical loadings and genetic composition, bone robusticity is also positively correlated with increased age, but as the age composition of the Guaraní sample could not be estimated, skeletal variation between the samples could be a consequence of differences in age distribution.


Subject(s)
Body Height/physiology , Femur/anatomy & histology , Indians, South American/history , Adult , Agriculture/history , Argentina , Diaphyses/anatomy & histology , Diet/history , Feeding Behavior/ethnology , Female , History, 15th Century , History, 16th Century , History, 17th Century , History, Ancient , History, Medieval , Humans , Humerus/anatomy & histology , Male
16.
Food Res Int ; 121: 947-956, 2019 07.
Article in English | MEDLINE | ID: mdl-31108830

ABSTRACT

The objective of this study was to investigate the impacts of high-intensity ultrasound treatments on the compositional, physicochemical, biochemical, functional and structural properties of canola protein isolates (CPI). Aqueous canola protein suspensions were sonicated at 40 kHz for 15 min and 30 min. The moisture content, water activity, bulk density and the L* and a* color parameters of the CPI decreased due to the ultrasound; however, the in vitro protein digestibility was not modified by the treatment. Glutelin (57.18%) was the main protein fraction in the canola protein isolate. SDS-PAGE demonstrated that there were no changes in the protein electrophoretic patterns, thus indicating that sonication did not break the covalent bonds. However, the ultrasound treatment improved the protein solubility, oil absorption capacity and the emulsifying, gelation and foaming properties, but these improvements depended on the pH and ultrasound exposure time. Scanning electron microscopy revealed that the ultrasound treatment disrupted the microstructure of the CPI by exhibiting larger aggregates as a lyophilized powder. In addition, there was an increase in the surface hydrophobicity and a decrease in the size of the particles of the canola protein due to the ultrasound effects, which indicates a destruction of the particles or a dissociation of the protein aggregates in the canola protein dispersions. These results suggest that ultrasound treatment is a valuable tool for improving the characteristics of canola proteins for use in foods.


Subject(s)
Brassica napus/chemistry , Chemical Phenomena , Plant Proteins/isolation & purification , Ultrasonic Waves , Color , Electrophoresis, Polyacrylamide Gel , Emulsions , Food Technology , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Molecular Weight , Particle Size , Plant Proteins/metabolism , Solubility , Sonication , Water/analysis
17.
Int J Mol Sci ; 20(9)2019 May 11.
Article in English | MEDLINE | ID: mdl-31083590

ABSTRACT

Cationic polymeric nanoparticles (NPs) have the ability to overcome biological membranes, leading to improved efficacy of anticancer drugs. The modulation of the particle-cell interaction is desired to control this effect and avoid toxicity to normal cells. In this study, we explored the surface functionalization of cationic polymethylmethacrylate (PMMA) NPs with two natural compounds, sialic acid (SA) and cholesterol (Chol). The performance of benznidazole (BNZ) was assessed in vitro in the normal renal cell line (HEK-293) and three human cancer cell lines, as follows: human colorectal cancer (HT-29), human cervical carcinoma (HeLa), and human hepatocyte carcinoma (HepG2). The structural properties and feasibility of NPs were evaluated and the changes induced by SA and Chol were determined by using multiple analytical approaches. Small (<200 nm) spherical NPs, with a narrow size distribution and high drug-loading efficiency were prepared by using a simple and reproducible emulsification solvent evaporation method. The drug interactions in the different self-assembled NPs were assessed by using Fourier transform-infrared spectroscopy. All formulations exhibited a slow drug-release profile and physical stability for more than 6 weeks. Both SA and Chol changed the kinetic properties of NPs and the anticancer efficacy. The feasibility and potential of SA/Chol-functionalized NPs has been demonstrated in vitro in the HEK-293, HepG2, HeLa, and HT-29 cell lines as a promising system for the delivery of BNZ.


Subject(s)
Antineoplastic Agents/pharmacology , Chemical Phenomena , Cholesterol/chemistry , Drug Liberation , N-Acetylneuraminic Acid/chemistry , Nanoparticles/chemistry , Nitroimidazoles/chemistry , Cations , Cell Death/drug effects , Drug Compounding , HEK293 Cells , HT29 Cells , HeLa Cells , Humans , Kinetics , Particle Size , Spectroscopy, Fourier Transform Infrared , Static Electricity , Surface Properties
18.
Int J Biol Macromol ; 109: 152-159, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29247732

ABSTRACT

An increasing use of vegetable protein is required to support the production of protein-rich foods which can replace animal proteins in the human diet. Amaranth, chia and quinoa seeds contain proteins which have biological and functional properties that provide nutritional benefits due to their reasonably well-balanced aminoacid content. This review analyses these vegetable proteins and focuses on recent research on protein classification and isolation as well as structural characterization by means of fluorescence spectroscopy, surface hydrophobicity and differential scanning calorimetry. Isolation procedures have a profound influence on the structural properties of the proteins and, therefore, on their in vitro digestibility. The present article provides a comprehensive overview of the properties and characterization of these proteins.


Subject(s)
Amaranthus/chemistry , Anthemis/chemistry , Chenopodium quinoa/chemistry , Plant Proteins/chemistry , Chemical Phenomena , Molecular Structure , Plant Proteins/classification , Plant Proteins/isolation & purification , Seeds/chemistry
19.
J Mol Model ; 23(12): 332, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29105031

ABSTRACT

DFT calculations were carried out in order to determine the electronic and structural properties of pentagonal Al n (I h and D 5d symmetries), Al n -CO, and Al n -NO clusters, where n = 7, 13, 19, 43, or 55 atoms. As n was increased, the bare clusters were found to exhibit a transition in electronic behavior (from semiconductor to conductor) at n = 43 atoms. Clusters with a bound CO or NO molecule also showed this behavior, although their HOMO-LUMO energy gaps were smaller than those for the corresponding bare clusters. As the size of the Al n -CO or Al n -NO cluster increased, the presence of extra p electrons improved the capacity of the cluster to adsorb a CO or NO molecule and resulted in an increase in the electronic charge directed from the aluminum atom at the adsorption site to the adsorbed species (CO or NO), thus strengthening the Al-CO or Al-NO bond. Furthermore, the Al n CO and Al n NO clusters with n = 43 and 55 exhibited chemisorption, as did the Al13-NO cluster; the other clusters presented physisorption, based on their adsorption energies. The tendency to adsorb either CO or NO increased with the size of the aluminum cluster. Graphical Abstract Adsorption of CO and NO molecules onto pentagonal clusters of aluminum: a DFT study.

20.
J Food Sci ; 82(3): 698-705, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28218968

ABSTRACT

Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest Tm and Δm H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films.


Subject(s)
Chitosan/chemistry , Food Packaging/methods , Polymers/chemistry , Polysaccharides, Bacterial/chemistry , Steam , Temperature , Tensile Strength , Humans , Permeability , Solubility , Water
SELECTION OF CITATIONS
SEARCH DETAIL