Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
1.
Microbiol Spectr ; 12(7): e0009824, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38814093

ABSTRACT

Two patients with acute gastroenteritis tested positive for Shiga toxin-producing Escherichia coli (STEC) by polymerase chain reaction (PCR), and both strains carried the Shiga toxin 2 encoding gene. Since routine culture using CHROMagar STEC failed to recover these isolates, immunomagnetic separation (IMS) targeting the top six non-O157:H7 serotypes was used for isolate recovery. After two subsequent IMS runs, the STEC strains were isolated from trypticase soy broth with and without overnight enrichment for runs 1 and 2, respectively. Serotyping based on whole-genome sequencing revealed that both patients carried the strain O166:H15 STEC with the stx2 gene. Hence, the magnetic beads used in IMS appeared to have cross-reactivity with other E. coli serotypes. When the STEC isolates from both stools were cultured on CHROMagar STEC and sheep blood agar (BAP), two distinct colony sizes were apparent after overnight incubation. The small and large colonies were picked and separately cultured on both media, and colony growth was observed for 2 weeks at room temperature after an initial overnight incubation at 37°C. After 1 week, the colonies showed concentric ring structures with a darker center and a lighter surrounding on CHROMagar STEC and a "fried egg"-resembling structure with a raised circular center and a flat surrounding on BAP. Both colony types remained morphologically different on CHROMagar STEC throughout the 15 days. However, on BAP, their appearance was comparable by day 7. IMPORTANCE: Shiga toxin-producing E. coli (STEC) infections can lead to severe complications such as bloody diarrhea and hemolytic uremic syndrome (HUS), especially in young children and the elderly. Strains that carry the shiga toxin 2 gene (stx2), such as O157:H7, have been mostly linked with severe disease outcomes. In recent years, outbreaks caused by non-O157:H7 strains have increased. E. coli O166:H15 has been previously reported causing a gastroenteritis outbreak in 1996 as a non-STEC strain, however the O166:H15 serotype we recovered carried the stx2 gene. It was particularly challenging to isolate this strain from stools by culture. Consequently, we tested immunomagnetic separation for the STEC recovery, which was a novel approach on clinical stools. Virulence genes were included for the characterization of these isolates.


Subject(s)
Escherichia coli Infections , Feces , Gastroenteritis , Shiga Toxin 2 , Shiga-Toxigenic Escherichia coli , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Shiga-Toxigenic Escherichia coli/classification , Feces/microbiology , Humans , Shiga Toxin 2/genetics , Escherichia coli Infections/microbiology , Gastroenteritis/microbiology , Immunomagnetic Separation , Serotyping , Male , Serogroup , Female , Whole Genome Sequencing
2.
Braz J Microbiol ; 55(2): 1723-1733, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38639846

ABSTRACT

Shiga toxigenic E. coli are important foodborne zoonotic pathogens. The present study was envisaged to standardize loop-mediated isothermal amplification assays targeting stx1 and stx2 genes for rapid and visual detection of STEC and compare its sensitivity with PCR. The study also assessed the effect of short enrichment on the detection limit of LAMP and PCR. The developed LAMP assays were found to be highly specific. Analytical sensitivity of LAMP was 94 fg/µLand 25.8 fg/µL for stx-1 and stx-2 while LOD of 5 CFU/g of carabeef was measured after 6-12 h enrichment. The study highlights the importance of short (6-12 h) enrichment for improving the sensitivity of LAMP. The entire detection protocol could be performed within 9 h yielding results on the same day. The developed LAMP assays proved to be a handy and cost-effective alternative for screening STEC contamination in meat.


Subject(s)
Meat , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Sensitivity and Specificity , Shiga-Toxigenic Escherichia coli , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification , Nucleic Acid Amplification Techniques/methods , Animals , Molecular Diagnostic Techniques/methods , Meat/microbiology , Food Microbiology/methods , Shiga Toxin 1/genetics , Shiga Toxin 2/genetics , Food Contamination/analysis
3.
Curr Res Food Sci ; 8: 100716, 2024.
Article in English | MEDLINE | ID: mdl-38511154

ABSTRACT

Rapid identification of Shiga toxin-producing Escherichia coli, or STEC, is of utmost importance to assure the innocuousness of the foodstuffs. STEC have been implicated in outbreaks associated with different types of foods however, among them, ready-to-eat (RTE) vegetables are particularly problematic as they are consumed raw, and are rich in compounds that inhibit DNA-based detection methods such as qPCR. In the present study a novel method based on Loop-mediated isothermal amplification (LAMP) to overcome the limitations associated with current molecular methods for the detection of STEC in RTE vegetables targeting stx1 and stx2 genes. In this sense, LAMP demonstrated to be more robust against inhibitory substances in food. In this study, a comprehensive enrichment protocol was combined with four inexpensive DNA extraction protocols. The one based on silica purification enhanced the performance of the method, therefore it was selected for its implementation in the final method. Additionally, three different detection chemistries were compared, namely real-time fluorescence detection, and two end-point colorimetric strategies, one based on the addition of SYBR Green, and the other based on a commercial colorimetric master mix. After optimization, all three chemistries demonstrated suitable for the detection of STEC in spiked RTE salad samples, as it was possible to reach a LOD50 of 0.9, 1.4, and 7.0 CFU/25 g for the real-time, SYBR and CC LAMP assays respectively. All the performance parameters reached values higher than 90 %, when compared to a reference method based on multiplex qPCR. More specifically, the analytical sensitivity was 100, 90.0 and 100 % for real-time, SYBR and CC LAMP respectively, the specificity 100 % for all three assays, and accuracy 100, 96 and 100 %. Finally, a high degree of concordance was also obtained (1, 0.92 and 1 respectively). Considering the current technological advances, the method reported, using any of the three detection strategies, demonstrated suitable for their implementation in decentralized settings, with low equipment resources.

4.
J Appl Microbiol ; 135(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38285612

ABSTRACT

AIM: This study aimed to develop a sensitive and specific recombinant antigen protein indirect enzyme-linked immunosorbent assay (ELISA) kit to detect the Shiga toxin (Stx)-producing Escherichia coli (STEC) antibodies against porcine edema disease (ED). METHODS AND RESULTS: The recombinant antigen was co-expressed with the STEC-derived Stx2e A2-fragment and Stx2e B protein in E. coli BL21(DE3) pLysS cells and purified using maltose-binding protein open columns. We used a Shiga-like toxin 2 antibody to test the specificity of the recombinant antigen in an indirect ELISA, which was detected in antigen-coated wells but not in uncoated wells. We tested the indirect ELISA system using samples from the STEC-immunized pig group, the commercial swine farm group, and healthy aborted fetal pleural effusion group; five and twenty samples, respectively, were positive for STEC in the former, whereas all three samples were negative for STEC in the latter. CONCLUSIONS: This newly developed indirect ELISA may be a specific method for diagnosing STEC infections in pigs.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Swine Diseases , Swine , Animals , Escherichia coli Infections/diagnosis , Escherichia coli Infections/veterinary , Swine Diseases/diagnosis , Enzyme-Linked Immunosorbent Assay/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Edema
5.
J Appl Microbiol ; 134(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37994679

ABSTRACT

AIMS: This study was conducted to investigate the presence of Shiga toxin-producing O157 and non-O157 E. coli in raw water buffalo milk, as well as to determine the virulence gene profiles, phylogroups, sequence types, and serotypes of the isolated strains. METHODS AND RESULTS: A total of 200 hand-milked raw water buffalo milk samples were collected from 200 different water buffaloes over a period of three months from 20 different farms. Isolation of STEC was performed using CHROMagar STEC. Presence of stx1, stx2, and eaeA genes were investigated by mPCR. Phylogroups and sequence types of E. coli strains were determined by Clermont phylotyping and MLST. Serotyping was performed using PCR or WGS. According to the results, two milk samples obtained from two different farms were found as STEC-positive. All Stx-positive E. coli isolates belonged to phylogenetic group A and were assigned to ST10. WGS results indicated that serotype of two isolates was O21:H25 and average nucleotide identity was detected at 99.99%. Thirteen additional registered E. coli O21:H25 assembled WGS data were obtained from EnteroBase and a phylogenetic tree was constructed. CONCLUSIONS: With this study, the presence of stx2 harboring E. coli O21:H25 in milk was identified for the first time. Although the identified serotype is considered a non-pathogen seropathotype, we conclude it could play an important role in the environmental circulation of Stx-phages and consequently contribute to the emergence of new STEC-related outbreaks.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Buffaloes/genetics , Escherichia coli Proteins/genetics , Phylogeny , Multilocus Sequence Typing , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary
6.
Microorganisms ; 11(11)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38004814

ABSTRACT

Escherichia albertii is an emerging foodborne pathogen. To better understand the pathogenesis and health risk of this pathogen, comparative genomics and phenotypic characterization were applied to assess the pathogenicity potential of E. albertii strains isolated from wild birds in a major agricultural region in California. Shiga toxin genes stx2f were present in all avian strains. Pangenome analyses of 20 complete genomes revealed a total of 11,249 genes, of which nearly 80% were accessory genes. Both core gene-based phylogenetic and accessory gene-based relatedness analyses consistently grouped the three stx2f-positive clinical strains with the five avian strains carrying ST7971. Among the three Stx2f-converting prophage integration sites identified, ssrA was the most common one. Besides the locus of enterocyte effacement and type three secretion system, the high pathogenicity island, OI-122, and type six secretion systems were identified. Substantial strain variation in virulence gene repertoire, Shiga toxin production, and cytotoxicity were revealed. Six avian strains exhibited significantly higher cytotoxicity than that of stx2f-positive E. coli, and three of them exhibited a comparable level of cytotoxicity with that of enterohemorrhagic E. coli outbreak strains, suggesting that wild birds could serve as a reservoir of E. albertii strains with great potential to cause severe diseases in humans.

7.
Porcine Health Manag ; 9(1): 49, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37885038

ABSTRACT

BACKGROUND: Escherichia coli bacteria capable of producing the toxin Stx2e and possessing F18-fimbriae (edema disease E. coli, EDEC) are considered causative agents of porcine oedema disease. This disease, which usually occurs in piglets shortly after weaning, has a high lethality in affected animals and can lead to high economic losses in piglet rearing. The aim of this cross-sectional field study was to determine the prevalence of EDEC in weaned piglets in Germany at pen and farm levels. RESULTS: Ninety-nine farms with unknown history of infections with shigatoxin-producing E. coli (STEC) and oedema disease were sampled. On each farm, up to five pens were selected for sampling (n = 481). The piglets in these pens were at an age 1-3 weeks after weaning. Single faecal samples (n = 2405) and boot swabs (n = 479) were collected from the floor. On 50 farms, cotton ropes were additionally used to collect oral fluid samples (n = 185) and rope wash out samples (n = 231) from the selected pens. All samples were analyzed by bacterial culture combined with a duplex PCR for the presence of the corresponding genes stx2e and fedA (major subunit protein of F18 fimbriae). In addition, whole DNA specimens extracted from boot swabs, oral fluid samples, and rope wash out samples were directly examined by duplex PCR for DNA of stx2e and fedA. A pen was classified as positive if at least one of the samples, regardless of the technique, yielded a positive result in the PCR, and farms were considered positive if at least one pen was classified as positive. Overall, genes stx2e and fedA were found simultaneously in 24.9% (95% CI 22.1-29.1%) of sampled pens and in 37.4% (95% CI 27.9-47.7%) of sampled farms. Regardless of the presence of F18-fimbriae, Escherichia coli encoding for Stx2e (STEC-2e) were found in 35.1% (95% CI 31.0-39.1%) of the pens and 53.5% (95% CI 44.4-63.6%) of the farms sampled. CONCLUSIONS: Escherichia coli strains considered capable to cause oedema disease in swine (EDEC) are highly prevalent in the surveyed pig producing farms in Germany. Due to intermittent shedding of EDEC and a potentially low within-farm prevalence, we recommend a combination of different sampling techniques for EDEC monitoring at pen and farm levels. Further studies are needed to understand which STEC-2e strains really pose the risk of causing severe porcine disease.

8.
Microorganisms ; 11(10)2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37894145

ABSTRACT

Shiga toxins (Stxs), especially the Stx2a subtype, are the major virulence factors involved in enterohemorrhagic Escherichia coli (EHEC)-associated hemolytic uremic syndrome (eHUS), a life-threatening disease causing acute kidney injury, especially in children. After oral transmission and colonization in the gut, EHEC release Stx. Intracellular cleavage of the Stx A subunit, when followed by reduction, boosts the enzymatic activity that causes damage to targeted cells. This cleavage was assumed to be mostly mediated by furin during Stx intracellular trafficking. To investigate whether this cleavage could occur in the intestine, even prior to entering target cells, Stx2a A subunit structure (intact or cleaved) was characterized after its exposure to specific host factors present in human stool. The molecular weight of Stx2a A subunit/fragments was determined by immunoblotting after electrophoretic separation under reducing conditions. In this study, it was demonstrated that Stx2a is cleaved by certain human stool components. Trypsin and chymotrypsin-like elastase 3B (CELA3B), two serine proteases, were identified as potential candidates that can trigger the extracellular cleavage of Stx2a A subunit directly after its secretion by EHEC in the gut. Whether the observed cleavage indeed translates to natural infections and plays a role in eHUS pathogenesis has yet to be determined. If so, it seems likely that a host's protease profile could affect disease development by changing the toxin's biological features.

9.
Microorganisms ; 11(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894219

ABSTRACT

The sharing of genome sequences in online data repositories allows for large scale analyses of specific genes or gene families. This can result in the detection of novel gene subtypes as well as the development of improved detection methods. Here, we used publicly available WGS data to detect a novel Stx subtype, Stx2n in two clinical E. coli strains isolated in the USA. During this process, additional Stx2 subtypes were detected; six Stx2j, one Stx2m strain, and one Stx2o, were all analyzed for variability from the originally described subtypes. Complete genome sequences were assembled from short- or long-read sequencing and analyzed for serotype, and ST types. The WGS data from Stx2n- and Stx2o-producing STEC strains were further analyzed for virulence genes pro-phage analysis and phage insertion sites. Nucleotide and amino acid maximum parsimony trees showed expected clustering of the previously described subtypes and a clear separation of the novel Stx2n subtype. WGS data were used to design OMNI PCR primers for the detection of all known stx1 (283 bp amplicon), stx2 (400 bp amplicon), intimin encoded by eae (221 bp amplicon), and stx2f (438 bp amplicon) subtypes. These primers were tested in three different laboratories, using standard reference strains. An analysis of the complete genome sequence showed variability in serogroup, virulence genes, and ST type, and Stx2 pro-phages showed variability in size, gene composition, and phage insertion sites. The strains with Stx2j, Stx2m, Stx2n, and Stx2o showed toxicity to Vero cells. Stx2j carrying strain, 2012C-4221, was induced when grown with sub-inhibitory concentrations of ciprofloxacin, and toxicity was detected. Taken together, these data highlight the need to reinforce genomic surveillance to identify the emergence of potential new Stx2 or Stx1 variants. The importance of this surveillance has a paramount impact on public health. Per our description in this study, we suggest that 2017C-4317 be designated as the Stx2n type-strain.

10.
Vet Sci ; 10(7)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37505826

ABSTRACT

The invasiveness properties of Shigatoxigenic and enteropathogenic Escherichia coli (STEC and EPEC) O80:H2 in humans and calves are encoded by genes located on a pS88-like ColV conjugative plasmid. The main objectives of this study in larvae of the Galleria mellonella moth were therefore to compare the virulence of eight bovine STEC and EPEC O80:H2, of two E. coli pS88 plasmid transconjugant and STX2d phage transductant K12 DH10B, of four E. coli O80:non-H2, and of the laboratory E. coli K12 DH10B strains. Thirty larvae per strain were inoculated in the last proleg with 10 µL of tenfold dilutions of each bacterial culture corresponding to 10 to 106 colony-forming units (CFUs). The larvae were kept at 37 °C and their mortality rate was followed daily for four days. The main results were that: (i) not only the STEC and EPEC O80:H2, but also different E. coli O80:non-H2 were lethal for the larvae at high concentrations (from 104 to 106 CFU) with some variation according to the strain; (ii) the Stx2d toxin and partially the pS88 plasmid were responsible for the lethality caused by the E. coli O80:H2; (iii) the virulence factors of E. coli O80:non-H2 were not identified. The general conclusions are that, although the Galleria mellonella larvae represent a useful first-line model to study the virulence of bacterial pathogens, they are more limited in identifying their actual virulence properties.

11.
Vet Res ; 54(1): 29, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36973816

ABSTRACT

Porcine edema disease (ED) is an enterotoxaemia that frequently occurs in 4-12 week-old piglets and results in high mortality. ED is caused by Shiga toxin 2e (Stx2e), produced by host-adapted Shiga toxin-producing Escherichia coli (STEC) strains. We constructed a recombinant protein in which the B subunit of Stx2e (Stx2eB) was linked to Cartilage Oligomeric Matrix Protein (COMP)'s pentameric domain to enhance antigenicity to induce neutralizing antibodies against Stx2e. We evaluated the efficacy of this antigen as a vaccine on the farm where ED had occurred. The suckling piglets were divided into two groups. The pigs in the vaccinated group were intramuscularly immunized with the vaccine containing 30 µg/head of Stx2eB-COMP at 1 and 4 weeks of age. The control pigs were injected with saline instead of the vaccine. The neutralizing antibody titer to Stx2e, mortality, clinical score, and body weight was evaluated up to 11 weeks after the first vaccination. In the vaccinated group, the Stx2e neutralizing antibody was detected 3 weeks after the first vaccination, its titer increased during the following weeks. The antibody was not detected in the control group during the test period. The STEC gene was detected in both groups during the test period, but a typical ED was observed only in control pigs; the mortality and clinical score were significantly lower in the vaccinated group than in the control group. These data indicate that the pentameric B subunit vaccine is effective for preventing ED and offers a promising tool for pig health control.


Subject(s)
Antitoxins , Edema Disease of Swine , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Swine Diseases , Animals , Swine , Shiga Toxin 2/genetics , Escherichia coli Infections/prevention & control , Escherichia coli Infections/veterinary , Edema Disease of Swine/prevention & control , Antibodies, Neutralizing , Vaccines, Subunit , Edema/prevention & control , Edema/veterinary , Swine Diseases/prevention & control
13.
Anim Genet ; 54(1): 55-67, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36305422

ABSTRACT

Understanding the genetic mechanism of highland adaptation is of great importance for breeding improvement of Tibetan chickens (TBC). Some studies of TBC have identified some candidate genes and pathways from multiple subgroups, but the related genetic mechanisms remain largely unknown. Different genetic backgrounds and the independent genetic basis of highland adaptation make it difficult to identity the selective region of highland adaptation with all TBC samples. In this study, we conducted pre-analysis in a large-scale population to select a TBC subgroup with the purest and highest level of highland-specific lineage for the further analysis. Finally, the 37 samples from a TBC subgroup and 19 Lahsa White chickens were used to represent the highland group for further analysis with 80 samples from five Chinese local lowland breeds as controls. Population structure analysis revealed that highland adaptation significantly affected population stratification in Chinese local chicken breeds. Genome-wide selection signal analysis identified 201 candidate genes associated with highland adaptation of TBC, and these genes were significantly enriched in calcium signaling, vascular smooth muscle contraction and the cellular response to oxidative stress pathways. Additionally, we identified a narrow 1.76 kb region containing an overlapping region between HBZ and an active enhancer, and our identified region showed a highly significant signal. The highland group selected the haplotype with high activity to improve the oxygen-carrying capacity, thus being adapted to a hypoxic environment. We also found that STX2 was significantly selected in the highland group, thus potentially reducing the oxidative stress caused by hypoxia, and that STX2 exhibited the opposite effects on highland adaptation and reproductive traits. Our findings advance our understanding of extreme environment adaptation of highland chickens, and provide some variants and genes beneficial to TBC genetic breeding improvement.


Subject(s)
Adaptation, Physiological , Chickens , Animals , Adaptation, Physiological/genetics , Chickens/genetics , Genome , Hypoxia/genetics , Whole Genome Sequencing/veterinary , Altitude
14.
Int J Food Microbiol ; 383: 109952, 2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36191491

ABSTRACT

Escherichia coli O104:H4 strain 11-3088 encoding Stx2a is epidemiologically related to the foodborne outbreak associated with sprouts in Germany, 2011. Sprouting provides suitable conditions for bacterial growth and may lead to transduction of non-pathogenic strains of E. coli with Stx phages. Although transduction of E. coli by Stx phages in food has been documented, data on the phages from E. coli O104:H4 is limited. This study determined the host range of the bacteriophage Φ11-3088 from E. coli O104:H4 using E. coli O104:H4 ∆stx2::gfp::ampr and demonstrated phage transduction during sprouting. The Φ11-3088∆stx transduced 5/45 strains, including generic E. coli, pap-positive E. coli O103:H2, ETEC, and S. sonnei. The expression level of Φ11-3088∆stx differed among lysogens upon induction. Of the 3 highly induced lysogens, the lytic cycle was induced in E. coli O104:H4∆stx2::gfp::ampr and O103:H2 but not in S. sonnei. E. coli DH5α was the only strain susceptible to lytic infection by Φ11-3088∆stx. To explore the effect of drying and rehydration during seed storage and sprouting on phage induction and transduction, mung beans inoculated with the phage donor E. coli O104:H4∆stx2::gfp::ampr (8 log CFU/g) were dried, rehydrated, and incubated with the phage recipient E. coli DH5α (7 log CFU/g) for 96 h. Sprouted seeds harbored about 3 log CFU/g of putative lysogens that acquired ampicillin resistance. At the end of sprouting, 71 % of putative lysogens encoded gfp, confirming phage transduction. Overall, stx transfer by phages may increase the cell counts of STEC during sprouting by converting generic E. coli to STEC.


Subject(s)
Bacteriophages , Escherichia coli Infections , Escherichia coli O104 , Shiga-Toxigenic Escherichia coli , Vigna , Bacteriophages/genetics , Escherichia coli , Escherichia coli Infections/microbiology , Shiga-Toxigenic Escherichia coli/metabolism
15.
Front Endocrinol (Lausanne) ; 13: 945736, 2022.
Article in English | MEDLINE | ID: mdl-35957815

ABSTRACT

The presence of Escherichia coli in the vaginal microbiome has been associated with pregnancy complications. In previous works, we demonstrated that Shiga toxin-producing Escherichia coli (STEC) can produce abortion and premature delivery in rats and that Shiga toxin type 2 (Stx2) can impair human trophoblast cell lines. The hypothesis of this work was that STEC may colonize the lower female reproductive tract and be responsible for adverse pregnancy outcomes. Thus, the aim of this work was to evaluate the presence and prevalence of virulence factor genes from STEC in the endocervix of asymptomatic pregnant women. For that purpose, endocervical swabs were collected from pregnant women during their prenatal examination. Swab samples were enriched in a differential medium to select Enterobacteria. Then, positive samples were analyzed by PCR to detect genes characteristic of Escherichia sp. (such as uidA and yaiO), genes specific for portions of the rfb (O-antigen-encoding) regions of STEC O157 (rfbO157), and STEC virulence factor genes (such as stx1, stx2, eae, lpfAO113, hcpA, iha, sab, subAB). The cytotoxic effects of stx2-positive supernatants from E. coli recovered from the endocervix were evaluated in Vero cells. Our results showed that 11.7% of the endocervical samples were positive for E. coli. Additionally, we found samples positive for stx2 and other virulence factors for STEC. The bacterial supernatant from an isolate identified as E. coli O113:NT, carrying the stx2 gene, exhibited cytotoxic activity in Vero, Swan 71 and Hela cells. Our results open a new perspective regarding the presence of STEC during pregnancy.


Subject(s)
Escherichia coli O157 , Escherichia coli Proteins , Pregnancy Outcome , Shiga Toxin 2 , Shiga-Toxigenic Escherichia coli , Virulence Factors , Animals , Cervix Uteri/microbiology , Chlorocebus aethiops , Escherichia coli O157/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , HeLa Cells , Humans , Pregnancy , Pregnancy Outcome/genetics , Pregnant Women , Rats , Risk Factors , Shiga Toxin 2/genetics , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/metabolism , Vero Cells , Virulence Factors/genetics
16.
Int Immunopharmacol ; 110: 109076, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35978517

ABSTRACT

Immunotoxins are regarded as a type of targeted therapy for killing cells by highly potent bacterial, fungal or plant toxins. Shiga like toxins (SLTs) are a group of bacterial AB5 protein toxins that inhibit host cell protein synthesis through the removal of a single adenine residue from the 28S rRNA and lead to apoptosis. Here, we described the design and usage of a Stx-based immunotoxin that can induce the selective cytotoxicity and apoptosis in Fn-14-positive cells related to the colon and lung cancer. In the present study, the Stx2a-PE15-P4A8 fusion protein was expressed efficiently in E. coli (DE3) system when driven from inclusion bodies by 8 M urea. The Stx2a-PE15-P4A8 fusion protein was expressed efficiently in E. coli (DE3) system and then purified. The purified fusion protein could specifically target Fn-14 receptor existed on colon and lung cancer cell lines and suppress these cells in a dose-dependent manner. In addition, the protein was able to nearly 50 % of apoptotic cell death and maintains about 54 % of its stability after 24 h of incubation in mouse serum at 37 °C. Compared to PE38-P4A8 construct in our previous study, these results showed that the Stx2a-PE15-P4A8 construct can be an efficient therapeutic candidate for cancer immunotherapy.


Subject(s)
Bacterial Toxins , Colorectal Neoplasms , Immunotoxins , Lung Neoplasms , Animals , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Colorectal Neoplasms/drug therapy , Escherichia coli/genetics , Escherichia coli/metabolism , Immunotoxins/genetics , Lung Neoplasms/drug therapy , Mice
17.
Microbiol Spectr ; 10(4): e0157122, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35938860

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) is a zoonotic pathogen with the ability to cause severe diseases like hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the key virulence factor in STEC and can be classified into two types, Stx1 and Stx2, and different subtypes. Stx2k is a newly reported Stx2 subtype in E. coli strains from diarrheal patients, animals, and raw meats exclusively in China so far. To understand the reservoir of Stx2k-producing E. coli (Stx2k-STEC), we investigated Stx2k-STEC strains in goat herds and examined their genetic characteristics using whole-genome sequencing. A total of 448 STEC strains were recovered from 2,896 goat fecal samples, and 37.95% (170/448) were Stx2k-STEC. Stx2k-STEC strains of serotype O93:H28 and sequence type 4038 (ST4038) were the most predominant and were detected over several years. Notably, 55% of Stx2k-STEC strains carried the heat-labile toxin (LT)-encoding gene (elt) defining enterotoxigenic E. coli (ETEC), thereby exhibiting the hybrid STEC/ETEC pathotype. Stx2k-converting prophage genomes clustered into four groups and exhibited high similarity within each group. Strains from patients, raw meat, sheep, and goats were intermixed distributed in the phylogenetic tree, indicating the risk for cross-species spread of Stx2k-STEC and pathogenic potential for humans. Further studies are required to investigate the Stx2k-STEC strains in other reservoirs and to understand the mechanism of persistence in these hosts. IMPORTANCE Strains of the recently reported Stx2k-STEC have been circulating in a variety of sources over time in China. Here, we show a high prevalence of Stx2k-STEC in goat herds. More than half of the strains were of the hybrid STEC/ETEC pathotype. Stx2k-STEC strains of predominant serotypes have been widespread in the goat herds over several years. Stx2k-converting prophages have exhibited a high level of similarity across geographical regions and time and might be maintained and transmitted horizontally. Given that goat-derived Stx2k-STEC strains share similar genetic backbones with patient-derived strains, the high prevalence of Stx2k-STEC in goats suggests that there is a risk of cross-species spread and that these strains may pose pathogenetic potential to humans. Our study thus highlights the need to monitor human Stx2k-STEC infections in this region and, by extension, in other geographic locations.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Animals , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics , Goats , Humans , Phylogeny , Prevalence , Sheep , Shiga Toxin/genetics , Shiga-Toxigenic Escherichia coli/genetics
18.
Front Cell Infect Microbiol ; 12: 975173, 2022.
Article in English | MEDLINE | ID: mdl-36004327

ABSTRACT

The human colonic mucus is mainly composed of mucins, which are highly glycosylated proteins. The normal commensal colonic microbiota has mucolytic activity and is capable of releasing the monosaccharides contained in mucins, which can then be used as carbon sources by pathogens such as Enterohemorrhagic Escherichia coli (EHEC). EHEC can regulate the expression of some of its virulence factors through environmental sensing of mucus-derived sugars, but its implications regarding its main virulence factor, Shiga toxin type 2 (Stx2), among others, remain unknown. In the present work, we have studied the effects of five of the most abundant mucolytic activity-derived sugars, Fucose (L-Fucose), Galactose (D-Galactose), N-Gal (N-acetyl-galactosamine), NANA (N-Acetyl-Neuraminic Acid) and NAG (N-Acetyl-D-Glucosamine) on EHEC growth, adhesion to epithelial colonic cells (HCT-8), and Stx2 production and translocation across a polarized HCT-8 monolayer. We found that bacterial growth was maximum when using NAG and NANA compared to Galactose, Fucose or N-Gal, and that EHEC adhesion was inhibited regardless of the metabolite used. On the other hand, Stx2 production was enhanced when using NAG and inhibited with the rest of the metabolites, whilst Stx2 translocation was only enhanced when using NANA, and this increase occurred only through the transcellular route. Overall, this study provides insights on the influence of the commensal microbiota on the pathogenicity of E. coli O157:H7, helping to identify favorable intestinal environments for the development of severe disease.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Escherichia coli Proteins , Mucus , Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Escherichia coli O157/metabolism , Escherichia coli Proteins/metabolism , Expectorants/metabolism , Fucose/metabolism , Galactose , Gastrointestinal Microbiome , Humans , Intestines/metabolism , Intestines/microbiology , Mucins/metabolism , Mucus/immunology , Mucus/metabolism , Shiga Toxin 2/metabolism , Virulence , Virulence Factors/metabolism
19.
Int J Mol Sci ; 23(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35805890

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Colon , Endothelial Cells/chemistry , Epithelial Cells , Glycosphingolipids/analysis , Humans , Kidney , Shiga Toxin
20.
Microorganisms ; 10(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35744763

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) can cause diseases ranging from mild diarrhea to fatal extra-intestinal hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the key virulence factor in STEC, two Stx types (Stx1 and Stx2) and several subtypes varying in sequences, toxicity, and host specificity have been identified. Stx2l is a newly-designated subtype related to human disease but lacks thorough characterization. Here, we identified Stx2l from five STEC strains (Stx2l-STECs) recovered from raw mutton and beef in China. Whole-genome sequencing (WGS) was used to characterize the Stx2l-STECs in this study together with Stx2l-STECs retrieved from public databases. Our study revealed that all the analyzed Stx2l-STEC strains belonged to the same serogroup O8. Multilocus sequencing typing (MLST) showed two sequence types (ST88 and ST23) among these strains. Stx2l-converting prophages from different sources shared a highly similar structure and sequence. Single-nucleotide polymorphism (SNP)-based analysis revealed genetic relatedness between the human-derived and food-derived strains belonging to ST23. To conclude, our study supported the designation of Stx2l and demonstrated diverse host range and geographical distribution of Stx2l-STECs.Stx2l-STEC strains from different sources showed a high genetic similarity with an identical O8 serogroup. Further studies are needed to investigate the epidemiological trait and pathogenic potential of Stx2l-STEC strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...