Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.284
Filter
2.
BMC Plant Biol ; 24(1): 636, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971734

ABSTRACT

BACKGROUND: The monocot chimeric jacalins (MCJ) proteins, which contain a jacalin-related lectin (JRL) domain and a dirigent domain (DIR), are specific to Poaceae. MCJ gene family is reported to play an important role in growth, development and stress response. However, their roles in maize have not been thoroughly investigated. RESULTS: In this study, eight MCJ genes in the maize genome (designated as ZmMCJs) were identified, which displayed unequal distribution across four chromosomes. Phylogenetic relationships between the ZmMCJs were evident through the identification of highly conserved motifs and gene structures. Analysis of transcriptome data revealed distinct expression patterns among the ZmMCJ genes, leading to their classification into four different modules, which were subsequently validated using RT-qPCR. Protein structures of the same module are found to be relatively similar. Subcellular localization experiments indicated that the ZmMCJs are mainly located on the cell membrane. Additionally, hemagglutination and inhibition experiments show that only part of the ZmMCJs protein has lectin activity, which is mediated by the JRL structure, and belongs to the mannose-binding type. The cis-acting elements in the promoter region of ZmMCJ genes predicted their involvement response to phytohormones, such as abscisic acid and jasmonic acid. This suggests that ZmMCJ genes may play a significant role in both biotic and abiotic stress responses. CONCLUSIONS: Overall, this study adds new insights into our understanding of the gene-protein architecture, evolutionary characteristics, expression profiles, and potential functions of MCJ genes in maize.


Subject(s)
Genome, Plant , Phylogeny , Plant Lectins , Zea mays , Zea mays/genetics , Plant Lectins/genetics , Plant Lectins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Stress, Physiological/genetics
3.
Plant Methods ; 20(1): 100, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956683

ABSTRACT

BACKGROUND: Optimization of a highly efficient transient expression system is critical for the study of gene function, particularly in those plants in which stable transformation methods are not widely available. Agrobacterium tumefaciens­mediated transient transformation is a simple and low-cost method that has been developed and applied to a wide variety of plant species. However, the transient expression in spinach (Spinacia oleracea L.) is still not reported. RESULTS: We developed a transient expression system in spinach leaves of the Sp75 and Sp73 varieties. Several factors influencing the transformation efficiency were optimized such as Agrobacterium strain, spinach seedling stage, leaf position, and the expression time after injection. Agrobacterium strain GV3101 (pSoup-p19) was more efficient than AGL1 in expressing recombinant protein in spinach leaves. In general, Sp75 leaves were more suitable than Sp73 leaves, regardless of grow stage. At four-leaf stage, higher intensity and efficiency of transient expression were observed in group 1 (G1) of Sp75 at 53 h after injection (HAI) and in G1 of Sp73 at 64 HAI. At six-leaf stage of Sp75, group 3 (G3) at 72 HAI were the most effective condition for transient expression. Using the optimized expression system, we detected the subcellular localization of a transcriptional co-activator SoMBF1c and a NADPH oxidase SoRbohF. We also detected the interaction of the protein kinase SoCRK10 and the NADPH oxidase SoRbohB. CONCLUSION: This study established a method of highly efficient transient expression mediated by Agrobacterium in spinach leaves. The transient expression system will facilitate the analysis of gene function and lay a solid foundation for molecular design breeding of spinach.

4.
BMC Genomics ; 25(1): 670, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965476

ABSTRACT

BACKGROUND: The TCP (teosinte branched1/cincinnata/proliferating cell factor) family plays a prominent role in plant development and stress responses. However, TCP family genes have thus far not been identified in castor bean, and therefore an understanding of the expression and functional aspects of castor bean TCP genes is lacking. To identify the potential biological functions of castor bean (RcTCP) TCP members, the composition of RcTCP family members, their basic physicochemical properties, subcellular localizations, interacting proteins, miRNA target sites, and gene expression patterns under stress were assessed. RESULTS: The presence of 20 RcTCP genes on the nine chromosomes of castor bean was identified, all of which possess TCP domains. Phylogenetic analysis indicated a close relationship between RcTCP genes and Arabidopsis AtTCP genes, suggesting potential functional similarity. Subcellular localization experiments confirmed that RcTC01/02/03/10/16/18 are all localized in the nucleus. Protein interaction analysis revealed that the interaction quantity of RcTCP03/06/11 proteins is the highest, indicating a cascade response in the functional genes. Furthermore, it was found that the promoter region of RcTCP genes contains a large number of stress-responsive elements and hormone-induced elements, indicating a potential link between RcTCP genes and stress response functions. qRT-PCR showed that all RcTCP genes exhibit a distinct tissue-specific expression pattern and their expression is induced by abiotic stress (including low temperature, abscisic acid, drought, and high salt). Among them, RcTCP01/03/04/08/09/10/14/15/18/19 genes may be excellent stress-responsive genes. CONCLUSION: We discovered that RcTCP genes play a crucial role in various activities, including growth and development, the stress response, and transcription. This study provides a basis for studying the function of RcTCP gene in castor.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Ricinus communis , Stress, Physiological , Stress, Physiological/genetics , Ricinus communis/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Profiling
5.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948861

ABSTRACT

Under stress conditions, cells reprogram their molecular machineries to mitigate damage and promote survival. Ubiquitin signaling is globally increased during oxidative stress, controlling protein fate and supporting stress defenses at several subcellular compartments. However, the rules driving subcellular ubiquitin localization to promote these concerted response mechanisms remain understudied. Here, we show that K63-linked ubiquitin chains, known to promote proteasome-independent pathways, accumulate primarily in non-cytosolic compartments during oxidative stress induced by sodium arsenite in mammalian cells. Our subcellular ubiquitin proteomic analyses of non-cytosolic compartments expanded 10-fold the pool of proteins known to be ubiquitinated during arsenite stress (2,046) and revealed their involvement in pathways related to immune signaling and translation control. Moreover, subcellular proteome analyses revealed proteins that are recruited to non-cytosolic compartments under stress, including a significant enrichment of helper ubiquitin-binding adaptors of the ATPase VCP that processes ubiquitinated substrates for downstream signaling. We further show that VCP recruitment to non-cytosolic compartments under arsenite stress occurs in a ubiquitin-dependent manner mediated by its adaptor NPLOC4. Additionally, we show that VCP and NPLOC4 activities are critical to sustain low levels of non-cytosolic K63-linked ubiquitin chains, supporting a cyclical model of ubiquitin conjugation and removal that is disrupted by cellular exposure to reactive oxygen species. This work deepens our understanding of the role of localized ubiquitin and VCP signaling in the basic mechanisms of stress response and highlights new pathways and molecular players that are essential to reshape the composition and function of the human subcellular proteome under dynamic environments.

6.
Plant Cell Environ ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950037

ABSTRACT

Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.

7.
Int J Mol Sci ; 25(11)2024 May 30.
Article in English | MEDLINE | ID: mdl-38892171

ABSTRACT

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 VvSNARE genes were identified and predominantly distributed on 18 chromosomes. Secondary structures showed that the VvSNARE genes family irregular random coils and α-helices. The promoter regions of the VvSNARE genes were enriched for light-, abiotic-stress-, and hormone-responsive elements. Intraspecific collinearity analysis identified 10 pairs collinear genes within the VvSNARE family and unveiled a greater number of collinear genes between grapevine and apple, as well as Arabidopsis thaliana, but less associations with Oryza sativa. Quantitative real-time PCR (qRT-PCR) analyses showed that the VvSNARE genes have response to treatments with ABA, NaCl, PEG, and 4 °C. Notably, VvSNARE2, VvSNARE14, VvSNARE15, and VvSNARE17 showed up-regulation in response to ABA treatment. VvSNARE2, VvSNARE15, VvSNARE18, VvSNARE19, VvSNARE20, VvSNARE24, VvSNARE25, and VvSNARE29 exhibited significant up-regulation when exposed to NaCl treatment. The PEG treatment led to significant down-regulation of VvSNARE1, VvSNARE8, VvSNARE23, VvSNARE25, VvSNARE26, VvSNARE31, and VvSNARE49 gene expression. The expression levels of VvSNARE37, VvSNARE44, and VvSNARE46 were significantly enhanced after exposure to 4 °C treatment. Furthermore, subcellular localization assays certified that VvSNARE37, VvSNARE44, and VvSNARE46 were specifically localized at the cell membrane. Overall, this study showed the critical role of the VvSNARE genes family in the abiotic stress response of grapevines, thereby providing novel candidate genes such as VvSNARE37, VvSNARE44, and VvSNARE46 for further exploration in grapevine stress tolerance research.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Growth Regulators , Plant Proteins , Stress, Physiological , Vitis , Vitis/genetics , Vitis/metabolism , Stress, Physiological/genetics , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Multigene Family
8.
Int J Mol Sci ; 25(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928424

ABSTRACT

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.


Subject(s)
Endosomes , Lysosomes , Humans , Amino Acid Sequence , Cell Membrane/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , HEK293 Cells , HeLa Cells , Lysosomes/metabolism , Nucleotide Transport Proteins/metabolism , Nucleotide Transport Proteins/genetics , Protein Sorting Signals , Protein Transport
9.
J Fungi (Basel) ; 10(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921362

ABSTRACT

Monascus pigments (MPs), a class of secondary metabolites produced by Monascus spp., can be classified into yellow, orange, and red MPs according to their differences in the wavelength of the maximum absorption. However, the biosynthetic sequence and cellular biosynthesis mechanism of different MPs components are still not yet completely clear in Monascus spp. In this study, the subcellular localization of five MPs synthases was investigated using fluorescent protein fusion expression. The results revealed that the proteins encoded by the MPs biosynthetic gene cluster were compartmentalized in various subcellular locations, including the mitochondrial polyketide synthase MrPigA, cytosolic enzymes consisting of the ketoreductase MrPigC, the oxidoreductase MrPigE, and the monooxygenase MrPigN, and the cell-wall-bound oxidoreductase MrPigF. Moreover, the correct localization of MrPigF to the cell wall was crucial for the synthesis of orange MPs. Lastly, we discussed the compartmentalized biosynthetic pathway of MPs. This study will not only be helpful in clarifying the biosynthetic sequence and biosynthesis mechanism of different MPs but also provides new insights into the cellular biosynthesis of secondary metabolites in filamentous fungi.

10.
Plant Mol Biol ; 114(4): 72, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874897

ABSTRACT

The red and far-red light photoreceptor phytochrome B (phyB) transmits light signals following cytosol-to-nuclear translocation to regulate transcriptional networks therein. This necessitates changes in protein-protein interactions of phyB in the cytosol, about which little is presently known. Via introduction of a nucleus-excluding G767R mutation into the dominant, constitutively active phyBY276H (YHB) allele, we explore the functional consequences of expressing a cytosol-localized YHBG767R variant in transgenic Arabidopsis seedlings. We show that YHBG767R elicits selective constitutive photomorphogenic phenotypes in dark-grown phyABCDE null mutants, wild type and other phy-deficient genotypes. These responses include light-independent apical hook opening, cotyledon unfolding, seed germination and agravitropic hypocotyl growth with minimal suppression of hypocotyl elongation. Such phenotypes correlate with reduced PIF3 levels, which implicates cytosolic targeting of PIF3 turnover or PIF3 translational inhibition by YHBG767R. However, as expected for a cytoplasm-tethered phyB, YHBG767R elicits reduced light-mediated signaling activity compared with similarly expressed wild-type phyB in phyABCDE mutant backgrounds. YHBG767R also interferes with wild-type phyB light signaling, presumably by formation of cytosol-retained and/or otherwise inactivated heterodimers. Our results suggest that cytosolic interactions with PIFs play an important role in phyB signaling even under physiological conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cytosol , Phytochrome B , Signal Transduction , Phytochrome B/metabolism , Phytochrome B/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/radiation effects , Cytosol/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypocotyl/growth & development , Hypocotyl/genetics , Hypocotyl/metabolism , Hypocotyl/radiation effects , Plants, Genetically Modified , Light , Mutation , Gene Expression Regulation, Plant , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , Seedlings/metabolism , Phenotype
11.
Microbiol Spectr ; : e0421423, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912810

ABSTRACT

Previous work identified a pair of specific effectors AsCEP19 and AsCEP20 in Alternaria solani as contributors to the virulence of A. solani. Here, we constructed AsCEP19 and AsCEP20 deletion mutants in A. solani strain HWC168 to further reveal the effects of these genes on the biology and pathogenicity of A. solani. Deletion of AsCEP19 and AsCEP20 did not affect vegetative growth but did affect conidial maturation, with an increase in the percentage of abnormal conidia produced. Furthermore, we determined the expression patterns of genes involved in the conidiogenesis pathway and found that the regulatory gene abaA was significantly upregulated and chsA, a positive regulator for conidiation, was significantly downregulated in the mutant strains compared to the wild-type strain. These results suggest that AsCEP19 and AsCEP20 indirectly affect the conidial development and maturation of A. solani. Pathogenicity assays revealed significantly impaired virulence of ΔAsCEP19, ΔAsCEP20, and ΔAsCEP19 + AsCEP20 mutants on potato and tomato plants. Moreover, we performed localization assays with green fluorescent protein-tagged proteins in chili pepper leaves. We found that AsCEP19 can specifically localize to the chloroplasts of chili pepper epidermal cells, while AsCEP20 can localize to both chloroplasts and the plasma membrane. Weighted gene co-expression network analysis revealed enrichment of genes of this module in the photosynthesis pathway, with many hub genes associated with chloroplast structure and photosynthesis. These results suggest that chloroplasts are the targets for AsCEP19 and AsCEP20. IMPORTANCE: Alternaria solani is an important necrotrophic pathogen causing potato early blight. Previous studies have provide preliminary evidence that specific effectors AsCEP19 and AsCEP20 contribute to virulence, but their respective functions, localization, and pathogenic mechanisms during the infection process of A. solani remain unclear. Here, we have systematically studied the specific effectors AsCEP19 and AsCEP20 for the first time, which are essential for conidial maturation. The deletion of AsCEP19 and AsCEP20 can significantly impair fungal pathogenicity. Additionally, we preliminarily revealed that AsCEP19 and AsCEP20 target the chloroplasts of host cells. Our findings further enhance our understanding of the molecular mechanisms underlying the virulence of necrotrophic pathogens.

12.
Biol Open ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841912

ABSTRACT

Bazooka/Par-3 (Baz) is an evolutionarily conserved scaffold protein that functions as a master regulator for the establishment and maintenance of cell polarity in many different cell types. In the vast majority of published research papers Baz has been reported to localize at the cell cortex and at intercellular junctions. However, there have also been several reports showing localization and function of Baz at additional subcellular sites, in particular the nuclear envelope and the neuromuscular junction. In this study we have re-assessed the localization of Baz to these subcellular sites in a systematic manner. We used antibodies raised in different host animals against different epitopes of Baz for confocal imaging of Drosophila tissues. We tested the specificity of these antisera by mosaic analysis with null mutant baz alleles and tissue-specific RNAi against baz. In addition, we used a GFP-tagged gene trap line for Baz and a bacterial artificial chromosome (BAC) expressing GFP-tagged Baz under control of its endogenous promoter in a baz mutant background to compare the subcellular localization of the GFP-Baz fusion proteins to the staining with anti-Baz antisera. Together, these experiments did not provide evidence for specific localization of Baz to the nucleus or the neuromuscular junction.


Subject(s)
Cell Nucleus , Drosophila Proteins , Drosophila melanogaster , Neuromuscular Junction , Animals , Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Neuromuscular Junction/metabolism , Protein Transport , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism
13.
Plant Cell Rep ; 43(7): 168, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864883

ABSTRACT

KEY MESSAGE: Immunofluorescence staining with frozen sections of plant tissues and a nest tube is convenient and effective, and broadens the applicability of immunofluorescence staining. Immunofluorescence staining is an indispensable and extensively employed technique for determining the subcellular localization of chloroplast division proteins. At present, it is difficult to effectively observe the localization of target proteins in leaves that are hard, or very thin, or have epidermal hair or glands with the current immunofluorescence staining methods. Moreover, signals of target proteins were predominantly detected in mesophyll cells, not the cells of other types. Thus, the method of immunofluorescence staining was further explored for improvement in this study. The plant tissue was embedded with 50% PEG4000 at -60℃, which was then cut into sections by a cryomacrotome. The sections were immediately immersed in fixation solution. Then, the sample was transferred into a special nested plastic tube, which facilitated the fixation and immunofluorescence staining procedures. The use of frozen sections in this method enabled a short processing time and reduced material requirements. By optimizing the thickness of the sections, a large proportion of the cells could be well stained. With this method, we observed the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis and various chloroplast division mutants. Meanwhile, the localization of FtsZ1 was also observed not only in mesophyll cells, but also in guard cells and epidermal cells in a lot of other plant species, including many species with hard leaf tissues. This method is not only easy to use, but also expands the scope of applicability for immunofluorescence staining.


Subject(s)
Arabidopsis , Chloroplast Proteins , Chloroplasts , Fluorescent Antibody Technique , Frozen Sections , Staining and Labeling , Arabidopsis/metabolism , Arabidopsis/cytology , Frozen Sections/methods , Fluorescent Antibody Technique/methods , Chloroplasts/metabolism , Staining and Labeling/methods , Chloroplast Proteins/metabolism , Chloroplast Proteins/genetics , Plant Leaves/metabolism , Plant Leaves/cytology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Mesophyll Cells/metabolism , Mesophyll Cells/cytology
14.
Ren Fail ; 46(2): 2362391, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847497

ABSTRACT

Fabry disease, a lysosomal storage disease, is an uncommon X-linked recessive genetic disorder stemming from abnormalities in the alpha-galactosidase gene (GLA) that codes human alpha-Galactosidase A (α-Gal A). To date, over 800 GLA mutations have been found to cause Fabry disease (FD). Continued enhancement of the GLA mutation spectrum will contribute to a deeper recognition and underlying mechanisms of FD. In this study, a 27-year-old male proband exhibited a typical phenotype of Fabry disease. Subsequently, family screening for Fabry disease was conducted, and high-throughput sequencing was employed to identify the mutated gene. The three-level structure of the mutated protein was analyzed, and its subcellular localization and enzymatic activity were determined. Apoptosis was assessed in GLA mutant cell lines to confirm the functional effects. As a result, a new mutation, c.777_778del (p. Gly261Leufs*3), in the GLA gene was identified. The mutation caused a frameshift during translation and the premature appearance of a termination codon, which led to a partial deletion of the domain in C-terminal region and altered the protein's tertiary structure. In vitro experiments revealed a significant reduction of the enzymatic activity in mutant cells. The expression was noticeably decreased at the mRNA and protein levels in mutant cell lines. Additionally, the subcellular localization of α-Gal A changed from a homogeneous distribution to punctate aggregation in the cytoplasm. GLA mutant cells exhibited significantly higher levels of apoptosis compared to wild-type cells.


Subject(s)
Codon, Nonsense , Fabry Disease , Pedigree , alpha-Galactosidase , Humans , Fabry Disease/genetics , Fabry Disease/diagnosis , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism , Male , Adult , China , Asian People/genetics , Apoptosis/genetics , East Asian People
15.
Methods Mol Biol ; 2792: 265-275, 2024.
Article in English | MEDLINE | ID: mdl-38861094

ABSTRACT

Eukaryotic cells are compartmentalized by membrane-bounded organelles to ensure that specific biochemical reactions and cellular functions occur in a spatially restricted manner. The subcellular localization of proteins is largely determined by their intrinsic targeting signals, which are mainly constituted by short peptides. A complete organelle targeting signal may contain a core signal (CoreS) as well as auxiliary signals (AuxiS). However, the AuxiS is often not as well characterized as the CoreS. Peroxisomes house many key steps in photorespiration, besides other crucial functions in plants. Peroxisome targeting signal type 1 (PTS1), which is carried by most peroxisome matrix proteins, was initially recognized as a C-terminal tripeptide with a "canonical" consensus of [S/A]-[K/R]-[L/M]. Many studies have shown the existence of auxiliary targeting signals upstream of PTS1, but systematic characterizations are lacking. Here, we designed an analytical strategy to characterize the auxiliary targeting signals for plant peroxisomes using large datasets and statistics followed by experimental validations. This method may also be applied to deciphering the auxiliary targeting signals for other organelles, whose organellar targeting depends on a core peptide with assistance from a nearby auxiliary signal.


Subject(s)
Computational Biology , Peroxisomes , Peroxisomes/metabolism , Computational Biology/methods , Protein Transport , Peroxisomal Targeting Signals , Protein Sorting Signals , Plant Proteins/metabolism , Plant Proteins/genetics , Databases, Protein , Amino Acid Sequence
16.
Comput Struct Biotechnol J ; 23: 1796-1807, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38707539

ABSTRACT

Protein subcellular localization prediction is of great significance in bioinformatics and biological research. Most of the proteins do not have experimentally determined localization information, computational prediction methods and tools have been acting as an active research area for more than two decades now. Knowledge of the subcellular location of a protein provides valuable information about its functionalities, the functioning of the cell, and other possible interactions with proteins. Fast, reliable, and accurate predictors provides platforms to harness the abundance of sequence data to predict subcellular locations accordingly. During the last decade, there has been a considerable amount of research effort aimed at developing subcellular localization predictors. This paper reviews recent subcellular localization prediction tools in the Eukaryotic, Prokaryotic, and Virus-based categories followed by a detailed analysis. Each predictor is discussed based on its main features, strengths, weaknesses, algorithms used, prediction techniques, and analysis. This review is supported by prediction tools taxonomies that highlight their rele- vant area and examples for uncomplicated categorization and ease of understandability. These taxonomies help users find suitable tools according to their needs. Furthermore, recent research gaps and challenges are discussed to cover areas that need the utmost attention. This survey provides an in-depth analysis of the most recent prediction tools to facilitate readers and can be considered a quick guide for researchers to identify and explore the recent literature advancements.

17.
Int J Biol Macromol ; 271(Pt 1): 132587, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788880

ABSTRACT

Arogenate dehydratase (ADT) is key for phenylalanine (Phe) biosynthesis in plants. To examine ADT components and function in Akebia trifoliata, a representative of Ranunculaceae, we first identified eight ADTs (AktADT1-8, encoding sequences varying from 1032 to 1962 bp) in the A. trifoliata reference genome and five proteins (AktADT1, AktADT4, AktADT7, AktADT8 and AktADT8s) with moonlighting prephenate dehydratase (PDT) activity and Km values varying from 0.43 to 2.17 mM. Structurally, two basic residue combinations (Val314/Ala317 and Ala314/Val317) in the PAC domain are essential for the moonlighting PDT activity of ADTs. Functionally, AktADT4 and AktADT8 successfully restored the wild-type phenotype of pha2, a knockout mutant of Saccharomyces cerevisiae. In addition, AktADTs are ubiquitously expressed, but their expression levels are tissue specific, and the half maximal inhibitory concentration (IC50) of Phe for AktADTs ranged from 49.81 to 331.17 µM. Both AktADT4 and AktADT8 and AktADT8s localized to chloroplast stromules and the cytosol, respectively, while the remaining AktADTs localized to the chloroplast stroma. These findings suggest that various strategies exist for regulating Phe biosynthesis in A. trifoliata. This provides a reasonable explanation for the high Phe content and insights for further genetic improvement of the edible fruits of A. trifoliata.


Subject(s)
Hydro-Lyases , Phenylalanine , Phenylalanine/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Isoenzymes/metabolism , Isoenzymes/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Amino Acid Sequence
18.
Acta Trop ; 256: 107250, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38768697

ABSTRACT

Neospora caninum is an obligate intracellular parasite that infects a wide range of mammalian species, and particularly causes abortions in cattle and nervous system dysfunction in dogs. Dense granule proteins (GRAs) are thought to play an important role in the mediation of host-parasite interactions and facilitating parasitism. However, a large number of potential GRAs remain uncharacterized, and the functions of most of the identified GRAs have not been elucidated. Previously, we screened a large number GRAs including NcGRA27 and NcGRA61 using the proximity-dependent biotin identification (BioID) technique. Here, we identified a novel GRA protein NcGRA85 and used C-terminal endogenous gene tagging to determine its localization at the parasitophorous vacuole (PV) in the tachyzoite. We successfully disrupted three gra genes (NcGRA27, NcGRA61 and NcGRA85) of N. caninum NC1 strain using CRISPR-Cas9-mediated homologous recombination and phenotyped the single knockout strain. The NcGRA61 and NcGRA85 genes were not essential for parasite replication and growth in vitro and for virulence during infection of mice, as observed by replication assays, plaque assays and in vitro virulence assays in mice. Deletion of the NcGRA27 gene in the NC1 strain reduced the in vitro replication and growth of the parasite, as well as the pathogenicity of the NC1 strain in mice. In summary, our findings provide a basis for in-depth studies of N. caninum pathogenesis and demonstrate the importance of NcGRA27 in parasite growth and virulence, most likely a new virulence factor of N. caninum.


Subject(s)
CRISPR-Cas Systems , Coccidiosis , Neospora , Protozoan Proteins , Animals , Neospora/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Mice , Coccidiosis/parasitology , Coccidiosis/veterinary , Female , Mice, Inbred BALB C , Virulence/genetics , Gene Knockout Techniques , Dogs
19.
Genes (Basel) ; 15(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38790184

ABSTRACT

The ionic toxicity induced by salinization has adverse effects on the growth and development of crops. However, researches on ionic toxicity and salt tolerance in plants have focused primarily on cations such as sodium ions (Na+), with very limited studies on chloride ions (Cl-). Here, we cloned the homologous genes of Arabidopsis thaliana AtCLCc, GhCLCc-1A/D, from upland cotton (Gossypium hirsutum), which were significantly induced by NaCl or KCl treatments. Subcellular localization showed that GhCLCc-1A/D were both localized to the tonoplast. Complementation of Arabidopsis atclcc mutant with GhCLCc-1 rescued its salt-sensitive phenotype. In addition, the silencing of the GhCLCc-1 gene led to an increased accumulation of Cl- in the roots, stems, and leaves of cotton seedlings under salt treatments, resulting in compromised salt tolerance. And ectopic expression of the GhCLCc-1 gene in Arabidopsis reduced the accumulation of Cl- in transgenic lines under salt treatments, thereby enhancing salt tolerance. These findings elucidate that GhCLCc-1 positively regulates salt tolerance by modulating Cl- accumulation and could be a potential target gene for improving salt tolerance in plants.


Subject(s)
Chloride Channels , Gossypium , Plant Proteins , Salt Tolerance , Arabidopsis/genetics , Arabidopsis/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Chlorides/metabolism , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/metabolism , Gossypium/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Salt Tolerance/genetics , Sodium Chloride/metabolism
20.
J Biol Chem ; 300(6): 107333, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820650

ABSTRACT

The human Solute Carrier (SLC) family member, monocarboxylate transporter 1 (MCT1), transports lactic and pyruvic acid across biological membranes to regulate cellular pH and metabolism. Proper trafficking of MCT1 from the endoplasmic reticulum to the plasma membrane hinges on its interactions with the membrane-bound chaperone protein, CD147. Here, using AlphaFold2 modeling and copurification, we show how a conserved signature motif located in the flexible N-terminus of MCT1 is a crucial region of interaction between MCT1 and the C-terminus of CD147. Mutations to this motif-namely, the thymic cancer linked G19C and the highly conserved W20A-destabilize the MCT1-CD147 complex and lead to a loss of proper membrane localization and cellular substrate flux. Notably, the monomeric stability of MCT1 remains unaffected in mutants, thus supporting the role of CD147 in mediating the trafficking of the heterocomplex. Using the auxiliary chaperone, GP70, we demonstrated that W20A-MCT1 can be trafficked to the plasma membrane, while G19C-MCT1 remains internalized. Overall, our findings underscore the critical role of the MCT1 transmembrane one signature motif for engaging CD147 and identify altered chaperone binding mechanisms between the CD147 and GP70 glycoprotein chaperones.


Subject(s)
Amino Acid Motifs , Basigin , Monocarboxylic Acid Transporters , Protein Transport , Symporters , Basigin/metabolism , Basigin/genetics , Basigin/chemistry , Monocarboxylic Acid Transporters/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/chemistry , Humans , Symporters/metabolism , Symporters/chemistry , Symporters/genetics , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , HEK293 Cells , Mutation, Missense
SELECTION OF CITATIONS
SEARCH DETAIL
...