Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Microbiol Resour Announc ; : e0016924, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916301

ABSTRACT

The coding-complete genome sequence of bovine viral diarrhea virus (BVDV) isolate NX2023 that originated from a calf in China was determined. Phylogenetic analysis showed that the NX2023 strain belongs to the BVDV-1d subgenotype.

2.
Front Cell Infect Microbiol ; 14: 1378804, 2024.
Article in English | MEDLINE | ID: mdl-38736749

ABSTRACT

Introduction: Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods: In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results: Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion: The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.


Subject(s)
Coronavirus Infections , Coronavirus NL63, Human , Epidemics , Genotype , Phylogeny , Respiratory Tract Infections , Humans , Coronavirus NL63, Human/genetics , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus Infections/transmission , Child , Female , Male , Child, Preschool , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Infant , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Seasons , Mutation , Adolescent
3.
Microorganisms ; 12(4)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38674682

ABSTRACT

Pigeon Newcastle disease (ND) is a serious infectious illness caused by the pigeon Newcastle disease virus (NDV) or Paramyxovirus type 1 (PPMV-1). Genotype VI NDV is a primary factor in ND among Columbiformes (such as pigeons and doves). In a recent study, eight pigeon NDV strains were discovered in various provinces in China. These viruses exhibited mesogenic characteristics based on their MDT and ICPI values. The complete genome sequences of these eight strains showed a 90.40% to 99.19% identity match with reference strains of genotype VI, and a 77.86% to 80.45% identity match with the genotype II vaccine strain. Additionally, analysis of the F gene sequence revealed that these NDV strains were closely associated with sub-genotypes VI.2.2.2, VI.2.1.1.2.1, and VI.2.1.1.2.2. The amino acid sequence at the cleavage site of the F protein indicated virulent characteristics, with the sequences 112KRQKRF117 and 112RRQKRF117 observed. Pigeons infected with these sub-genotype strains had a low survival rate of only 20% to 30%, along with lesions in multiple tissues, highlighting the strong spread and high pathogenicity of these pigeon NDV strains. Molecular epidemiology data from the GenBank database revealed that sub-genotype VI.2.1.1.2.2 strains have been prevalent since 2011. In summary, the findings demonstrate that the prevalence of genotype VI NDV is due to strains from diverse sub-genotypes, with the sub-genotype VI.2.1.1.2.2 strain emerging as the current epidemic strain, highlighting the significance of monitoring pigeon NDV in China.

4.
Acta Trop ; 254: 107198, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531427

ABSTRACT

Bovine viral diarrhea virus (BVDV) infection has a significant economic impact on beef and dairy industries worldwide. Fetal infection with a non-cytopathic strain may lead to the birth of persistently infected (PI) offspring, which is the main event in the epidemiological chain of BVDV infection. This report describes the birth of 99 BVDV-PI heifer calves within 52 days of birth in a regular BVDV-vaccinated Brazilian dairy cattle herd and the subgenotypes of the infecting field strains. This study was conducted in a high-yielding open dairy cattle herd that frequently acquired heifers from neighboring areas for replacement. The farm monitors the birth of PI calves by screening all calves born using an ELISA (IDEXX) for BVDV antigen detection. All calves aged 1-7 days were evaluated. For positive and suspected results, the ELISA was repeated when the calves were close to one month old. A total of 294 heifer calves were evaluated between February and March 2021. Of these, 99 (33.7 %) had positive ELISA results and were considered PI calves. To evaluate the predominant BVDV species and subgenotypes in this outbreak, whole blood samples were collected from 31 calves born during the study period. All samples were submitted to the RT-PCR assay for the partial amplification of the BVDV 5'-UTR region, and these amplicons were subjected to nucleotide sequencing. Phylogenetic analysis identified BVDV-1b and BVDV-1d in 16 and 13 heifer calves, respectively. In two calves, it was not possible to determine the BVDV-1 subgenotype. Detection of PI animals and monitoring of circulating BVDV subgenotype strains are central to disease control. This study shows that regular BVDV vaccination alone may be insufficient to prevent BVDV infection in high-yielding open dairy cattle herds. Other biosecurity measures must be adopted to avoid the purchase of cattle with acute infections by BVDV or BVDV-PI, which can cause a break in the health profile of the herd and economic losses.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease , Diarrhea Virus 1, Bovine Viral , Diarrhea Viruses, Bovine Viral , Disease Outbreaks , Phylogeny , Animals , Cattle , Bovine Virus Diarrhea-Mucosal Disease/virology , Bovine Virus Diarrhea-Mucosal Disease/epidemiology , Bovine Virus Diarrhea-Mucosal Disease/prevention & control , Disease Outbreaks/veterinary , Female , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Virus 1, Bovine Viral/classification , Diarrhea Virus 1, Bovine Viral/isolation & purification , Diarrhea Virus 1, Bovine Viral/immunology , Brazil/epidemiology , Diarrhea Viruses, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/classification , Diarrhea Viruses, Bovine Viral/isolation & purification , Diarrhea Viruses, Bovine Viral/immunology , Genotype , Viral Vaccines/immunology , Enzyme-Linked Immunosorbent Assay , Dairying , Vaccination/veterinary , Antibodies, Viral/blood
5.
Microorganisms ; 12(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38399757

ABSTRACT

Poultry production is essential to the economy and livelihood of many rural Zambian households. However, the industry is threatened by infectious diseases, particularly Newcastle disease virus (NDV) infection. Therefore, this study employed next-generation sequencing to characterise six NDV isolates from poultry in Zambia's live bird markets (LBMs) and wild waterfowl. Four NDV isolates were detected from 410 faecal samples collected from chickens in LBMs in Lusaka and two from 2851 wild birds from Lochinvar National Park. Phylogenetic analysis revealed that the four NDVs from LBM clustered in genotype VII and sub-genotype VII.2 were closely related to viruses previously isolated in Zambia and other Southern African countries, suggesting possible local and regional transboundary circulation of the virus. In contrast, the two isolates from wild birds belonged to class I viruses, genotype 1, and were closely related to isolates from Europe and Asia, suggesting the possible introduction of these viruses from Eurasia, likely through wild bird migration. The fusion gene cleavage site motif for all LBM-associated isolates was 112RRQKR|F117, indicating that the viruses are virulent, while the isolates from wild waterfowl had the typical 112ERQER|L117 avirulent motif. This study demonstrates the circulation of virulent NDV strains in LBMs and has, for the first time, characterised NDV from wild birds in Zambia. The study further provides the first whole genomes of NDV sub-genotype VII.2 and genotype 1 from Zambia and stresses the importance of surveillance and molecular analysis for monitoring the circulation of NDV genotypes and viral evolution.

6.
Virus Evol ; 10(1): veae009, 2024.
Article in English | MEDLINE | ID: mdl-38361827

ABSTRACT

Infection by hepatitis B virus (HBV) is responsible for approximately 296 million chronic cases of hepatitis B, and roughly 880,000 deaths annually. The global burden of HBV is distributed unevenly, largely owing to the heterogeneous geographic distribution of its subtypes, each of which demonstrates different severity and responsiveness to antiviral therapy. It is therefore crucial to the global public health response to HBV that the spatiotemporal spread of each genotype is well characterized. In this study, we describe a collection of 133 newly sequenced HBV strains from recent African immigrants upon their arrival in Belgium. We incorporate these sequences-all of which we determine to come from genotypes A, D, and E-into a large-scale phylogeographic study with genomes sampled across the globe. We focus on investigating the spatio-temporal processes shaping the evolutionary history of the three genotypes we observe. We incorporate several recently published ancient HBV genomes for genotypes A and D to aid our analysis. We show that different spatio-temporal processes underlie the A, D, and E genotypes with the former two having originated in southeastern Asia, after which they spread across the world. The HBV E genotype is estimated to have originated in Africa, after which it spread to Europe and the Americas. Our results highlight the use of phylogeographic reconstruction as a tool to understand the recent spatiotemporal dynamics of HBV, and highlight the importance of supporting vulnerable populations in accordance with the needs presented by specific HBV genotypes.

7.
Viruses ; 16(1)2024 01 19.
Article in English | MEDLINE | ID: mdl-38275957

ABSTRACT

Classical swine fever (CSF) has been eradicated from Western and Central Europe but remains endemic in parts of Central and South America, Asia, and the Caribbean. CSF virus (CSFV) has been endemic in Cuba since 1993, most likely following an escape of the highly virulent Margarita/1958 strain. In recent years, chronic and persistent infections with low-virulent CSFV have been observed. Amino acid substitutions located in immunodominant epitopes of the envelope glycoprotein E2 of the attenuated isolates were attributed to positive selection due to suboptimal vaccination and control. To obtain a complete picture of the mutations involved in attenuation, we applied forward and reverse genetics using the evolutionary-related low-virulent CSFV/Pinar del Rio (CSF1058)/2010 (PdR) and highly virulent Margarita/1958 isolates. Sequence comparison of the two viruses recovered from experimental infections in pigs revealed 40 amino acid differences. Interestingly, the amino acid substitutions clustered in E2 and the NS5A and NS5B proteins. A long poly-uridine sequence was identified previously in the 3' untranslated region (UTR) of PdR. We constructed functional cDNA clones of the PdR and Margarita strains and generated eight recombinant viruses by introducing single or multiple gene fragments from Margarita into the PdR backbone. All chimeric viruses had comparable replication characteristics in porcine monocyte-derived macrophages. Recombinant PdR viruses carrying either E2 or NS5A/NS5B of Margarita, with 36 or 5 uridines in the 3'UTR, remained low virulent in 3-month-old pigs. The combination of these elements recovered the high-virulent Margarita phenotype. These results show that CSFV evolution towards attenuated variants in the field involved mutations in both structural and non-structural proteins and the UTRs, which act synergistically to determine virulence.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Animals , Swine , Virulence/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/chemistry , Mutation
8.
J Med Virol ; 95(11): e29185, 2023 11.
Article in English | MEDLINE | ID: mdl-37916771

ABSTRACT

In the spring of 2023, three Ukrainian war refugees from a municipal community shelter and a volunteer caregiver at an affiliated daycare center in Kiel, Germany, were diagnosed with infectious jaundice attributable to a single hepatitis A virus (HAV) subgenotype IA strain. Similar HAV sequences have been observed in Germany and other European countries for several years. One refugee and the volunteer required hospitalization. Four children were asymptomatically infected but excreted high levels of HAV ribonucleic acid in the stool. The infections were probably acquired in Germany, but a source could not be determined. The outbreak was contained through vaccination, increased hygiene, and education. The existing HAV vaccination recommendation for refugee shelter staff and volunteers should be consistently implemented.


Subject(s)
Hepatitis A virus , Hepatitis A , Refugees , Child , Humans , Hepatitis A/epidemiology , RNA, Viral/genetics , Hepatitis A virus/genetics , Disease Outbreaks , Germany/epidemiology , Phylogeny , Genotype
9.
Risk Manag Healthc Policy ; 16: 1403-1409, 2023.
Article in English | MEDLINE | ID: mdl-37554251

ABSTRACT

Introduction: The hepatitis C virus (HCV) is responsible for 1.5 million new infections, and around 290 thousand deaths worldwide. 15 to 30% of the patients that go into a chronic phase of the disease will develop cirrhosis or hepatocellular carcinoma within 20 years and is the leading etiology for liver transplantation. HCV genetic characteristics display a remarkable genetic diversity, which divides HCV into 8 genotypes and 67 subgenotypes; the treatment and probability of chronic HCV depend on these genotypes and subgenotypes. In Ecuador, there is no available information regarding HCV genotypes and subgenotypes; therefore, this study aims to provide an overview of the main genotypes circulating in Ecuador. Methods: In a cross-sectional and descriptive study using the Ecuadorian Ministry of Health (MSP) registry of patients already diagnosed with Hepatitis C (HCV) between 2017 and 2019. From 51 patients identified by health ministry, blood samples from a total of 15 subjects (named HCV1 to HCV15) were collected using an appropriate venipuncture technique. Pandemic-related circumstances avoid reaching all patients identified by health ministry. Results: After the amplification of 11 samples from patients living in the Ecuadorian territory, the genotypes of HCV obtained were distributed as follows: 6 samples corresponding to subgenotype 2b (54.5%), 2 samples corresponding to subgenotype 1a (18.2%), 2 samples corresponding to subgenotype 4d (18.2%) and 1 corresponding to sample 1b (9.1%). Conclusion: These results represent the first epidemiological approach to genotype distribution in Ecuador, and it contributes to better management of patients. We emphasize the importance of the development of better strategies from the Healthcare Ministry of Ecuador (MSP) for the identification, treatment and tracking of HCV patients.

10.
Avian Pathol ; 52(6): 426-431, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37561557

ABSTRACT

Thirty-five samples collected from chickens in 13 commercial farms in Eritrea between 2017 and 2021 following reports of disease were screened for Newcastle disease virus. Seventeen samples (50%) were shown to be positive by RT-PCR. An initial analysis of partial fusion (F) gene sequences of 10 representative samples indicated that the viruses belonged to subgenotype VII.1.1. Subsequently, full F gene sequence analysis of four of these representative samples confirmed the genotype of the viruses but also revealed that they were not identical to each other suggesting different origins of the VII.1.1 subgenotype viruses circulating in Eritrea. These data have implications for the control of Newcastle disease within the poultry population in Eritrea.


Subject(s)
Newcastle Disease , Poultry Diseases , Animals , Newcastle disease virus/genetics , Phylogeny , Eritrea/epidemiology , Chickens , Poultry Diseases/epidemiology , Newcastle Disease/epidemiology , Genotype
11.
Viruses ; 15(8)2023 08 12.
Article in English | MEDLINE | ID: mdl-37632070

ABSTRACT

Background: The prevalence of HBV infection and HBV genotypes varies from country to country, and the role of HBV genotypes in the presence of HBV in the placenta and fetus has never been explored. This study was conducted to (1) identify HBV genotypes, and their frequencies, that infected Northern Thai pregnant women; (2) evaluate the association between HBV genotypes and the detection rate of HBV DNA in the placenta and fetus; (3) evaluate the association between specific mutations of the HBV genome and HBV DNA detection in placental tissue; and (4) identify the mutation of the HBV genome that might occur between maternal blood, placenta, and cord blood. Methods: Stored samples of the maternal blood, placental tissue, and cord blood that were collected from 145 HBsAg-positive pregnant Thai women were analyzed to identify HBV DNA. Results: Approximately 25% of infected mothers had fetal HBV DNA detection, including cases with concomitant HBV DNA detection in the placenta (77.3%). A total of 11.7% of cases with placental detection had no HBV DNA detection in the maternal blood, indicating that the placenta could be a site of HBV accumulation. Of the 31 HBV-positive blood samples detected by nested PCR, the detected strains were subgenotype C1 (77.4%), subgenotype B9 (9.7%), and subgenotype C2, B2, B4, and recombinant B4/C2 (3.2% for each). Genotype B had a trend in increased risk of placental HBV DNA detection compared to genotype C, with a relative risk of 1.40 (95% CI: 1.07-1.84). No specific point mutation had a significant effect on HBV DNA detection in placental tissue. Mutation of C454T tended to enhance HBV DNA detection in placental tissue, whereas T400A tended to have a lower detection rate. No mutation was detected in different sample types collected from the same cases. Conclusions: HBV DNA detection in the fetus was identified in approximately 25% of HBV-positive mothers, associated with the presence of HBV in the placenta in most cases. The placenta could possibly be a site of HBV accumulation. Subgenotype C1 was the most common subgenotype, followed by subgenotype B9. HBV genotype B possibly had a higher trend in intrauterine detection than HBV genotype C. Mutation is unlikely to occur during intrauterine exposure.


Subject(s)
Hepatitis B virus , Placenta , Pregnancy , Female , Humans , Hepatitis B virus/genetics , Fetus , DNA , Mothers , Mutation
12.
Clin Res Hepatol Gastroenterol ; 47(7): 102180, 2023 08.
Article in English | MEDLINE | ID: mdl-37479136

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection is a global public health burden, affecting nearly 300 million people around the world. Due to HBV population is considered to be represented as a viral quasispecies with genetic diversity, some reports showed that different genotypes of HBV have different viral effects, though the emergence of antiviral drugs that effectively inhibit viral replication, however, HBV infection has still not been eradicated and further research is needed. SUMMARY: HBV has been classified into at least ten genotypes (A-J)  and more than 40 subgenotypes based on an intergroup or intragroup nucleotide difference across the whole genome, respectively. Inter genotypic recombinants were also observed during the HBV evolution. HBV genotypes and subgenotypes have distinct ethno-geographical distributions, as well as evident differences in their biological characteristics. HBV genotypes and subgenotypes also have close association with disease severity, long-term clinical outcomes, and response to antiviral therapy. KEYMESSAGES: In this review, we up-dated the epidemiological characteristics, clinical features and prognosis of HBV infection with dissimilar genotype/subgenotypes, to better understanding and developing individualized prevention and treatment strategies.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Clinical Relevance , Genetic Variation , Phylogeny , Hepatitis B/genetics , Genotype , DNA, Viral
13.
Acta Microbiol Immunol Hung ; 70(3): 246-251, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37490367

ABSTRACT

Hepatitis A virus (HAV) is one of the most important etiological agents of acute viral hepatitis but comprehensive molecular epidemiological study with chrono-phylogeographical data are not available from Hungary.Between 2003 and 2022, a total of 8,307 HAV infections were registered officially in Hungary of which 400 (4.8%) HAV IgM antibody-positive serum samples were collected countrywide. HAV genomic RNA was successfully detected in 216/400 (54%) sera by RT-PCR subsequently confirmed by sequencing. The complete nucleotide sequences of VP1 region were determined in 32 representative HAV strains. Based on the sequence analysis, 150 (69.4%) strains were characterized as HAV sub-genotype IA and 66 (30.6%) as sub-genotype IB, respectively. Based on the combined epidemiological and molecular data, epidemic, endemic, and imported HAV strains were also characterized. The first two registered countrywide outbreaks started among men-sex-with men (MSM) in 2011 (sub-genotype IA) and 2021 (sub-genotype IB), the continuously circulating endemic/domestic HAV strain (sub-genotype IA) in East Hungary and the travel-related sub-genotype IB strains from Egypt should be highlighted. All HAV strains are deposited in the HAVNET database (https://www.rivm.nl/en/havnet).In this 20-year-long comprehensive molecular epidemiological study, we report the genetic characterization and geographic distribution of endemic, epidemic and imported HAV strains for the first time in Hungary with continuous co-circulation of sub-genotypes IA and IB HAV strains since 2003. These data provide basic information about the HAV situation in the country in an international context and can promote more effective national public health intervention strategies for the prevention of HAV transmissions and infections.


Subject(s)
Hepatitis A virus , Sexual and Gender Minorities , Male , Humans , Hepatitis A virus/genetics , Molecular Epidemiology , Hungary/epidemiology , Homosexuality, Male , Travel , Phylogeny , Travel-Related Illness , Genotype , RNA, Viral/genetics
14.
J Parasitol ; 109(4): 340-348, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37498779

ABSTRACT

Leptotrombidium (Acari: Trombiculidae) mites are carriers of Orientia tsutsugamushi, the bacterial pathogen causing scrub typhus in humans. Classification of Leptotrombidium is vital because limited mite species carry O. tsutsugamushi. Generally, Leptotrombidium at the larval stage (approximately 0.2 mm in size) are used for morphological identification. However, morphological identification is often challenging because it requires considerable skills and taxonomic expertise. In this study, we found that the full-length sequences of the mitochondrial cytochrome c oxidase subunit 1 gene varied among the significant Leptotrombidium. On the basis of these, we modified the canonical deoxyribonucleic acid (DNA) barcoding method for animals by redesigning the primer set to be suitable for Leptotrombidium. Polymerase chain reaction with the redesigned primer set drastically increased the detection sensitivity, especially against Leptotrombidium scutellare (approximately 17% increase), one of the significant mites carrying O. tsutsugamushi. Phylogenetic analysis showed that the samples morphologically classified as L. scutellare and Leptotrombidium pallidum were further split into 3 and 2 distinct subclusters respectively. The mean genetic distance (p-distance) between L. scutellare and L. pallidum was 0.2147, whereas the mean distances within each species were 0.052 and 0.044, respectively. Within L. scutellare, the mean genetic distances between the 3 subclusters were 0.1626-0.1732, whereas the distances within each subcluster were 0.003-0.017. Within L. pallidum, the mean genetic distance between the 2 subclusters was 0.1029, whereas the distances within each subcluster were 0.010-0.013. The DNA barcoding uncovered a broad genetic diversity of Leptotrombidium, especially of L. scutellare and L. pallidum, the notable species carrying O. tsutsugamushi. We conclude that the DNA barcoding using our primers enables precise and detailed classification of Leptotrombidium and implies the existence of a subgenotype in Leptotrombidium that had not been found by morphological identification.


Subject(s)
Acari , Orientia tsutsugamushi , Scrub Typhus , Trombiculidae , Animals , Humans , Scrub Typhus/microbiology , Orientia tsutsugamushi/genetics , Phylogeny , Bacteria , Genetic Variation
15.
Vet Res Forum ; 14(4): 221-228, 2023.
Article in English | MEDLINE | ID: mdl-37181855

ABSTRACT

Newcastle disease virus (NDV) sub-genotype VII.1.1 is the most common circulating NDV in Iran. In this study, a velogenic NDV isolate was plaque purified and then characterized according to Office International des Epizooties (OIE) standard protocols. The biological properties of the purified isolate named CH/RT40/IR/2011 were characterized using sequencing and phylogenetic analysis, measurement of pathogenicity indexes and challenge studies. The isolate was plaque purified on chicken embryo fibroblast cells for three rounds and then characterized using molecular and biological approaches. Phylogenetic and evolutionary distance analysis of fusion and hemagglutinin-neuraminidase genes classified the virus in sub-genotype VII.1.1. No mutation was observed in the glycosylation and neutralizing epitope sites of the fusion and hemagglutinin-neuraminidase proteins compared to other reported Iranian NDV VII.1.1 isolates. The presence of the 112RRQKRF117 motif in the fusion protein cleavage site together with mean death time, intracerebral pathogenicity index and intravenous pathogenicity index of 57 hr, 1.80 and 2.50 respectively, revealed that the RT40 isolate was a velogenic NDV. In the challenge study, all chickens were inoculated via eye drop, and intranasal route with RT40 isolate died within a week. While all chickens in the vaccinated and challenged group survived and showed no clinical signs. In conclusion, according to genetic analysis, pathotyping and challenge study, the RT40 isolate was similar to virulent NDVs in Iran and was a suitable candidate for a national standard challenge strain, vaccine trials and vaccine production in commercial levers.

16.
Arch Microbiol ; 205(6): 253, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37254016

ABSTRACT

Newcastle disease has been endemic within the Iranian poultry industry for decades. However, the genetic nature of the circulating Hemagglutinin-Neuraminidase (HN) gene among Iranian domesticated bird populations is broadly unexplored. The presented study was carried out to gain insights into the biological and molecular characterization of four complete HN genes isolated from turkey, peacock, and broiler isolates in Iran between 2018 and 2020. The phylogenetic analysis revealed that the isolates belong to the Newcastle disease virus (NDV) subgenotype VII.1.1, previously known as VIIL. Further analysis demonstrated the thermostable substitutions S315P and I369V within the isolates. Finding the N-glycosylation site (NIS) at positions 144-146 and the cysteine residue 123 might influence the fusogenicity abilities of the isolates, while identification of multiple amino acid substitutions in both antigenic sites, especially I514V and E347Q, and the binding sites of the HN protein, raised concern about the pathogenicity of the isolates. In addition, the annual rate of change based on the HN gene of Iranian NDV was calculated at about 1.8088E-3 between 2011 and 2020. In conclusion, a new NDV variant with multiple site mutagenesis is circulating not only among chickens but also in turkey and captive birds such as peafowls, and failure of routine vaccination programs could be attributed to the differences between circulating NDV strains and those used in vaccine manufacturing. Therefore, future legislation aimed at providing vaster vaccination cover and biosecurity plans will be needed to control the spread of circulating NDV strains.


Subject(s)
Chickens , Newcastle disease virus , Animals , Newcastle disease virus/genetics , Phylogeny , Neuraminidase , Hemagglutinins/genetics , Iran , Genotype , Viral Proteins/genetics
17.
Microbiol Spectr ; 11(3): e0396522, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37074189

ABSTRACT

Hepatitis D virus (HDV) is classified into 8 genotypes (1 to 8) and several subgenotypes. In Brazil, HDV-3 and HDV-1 predominate; however, most of the diagnosis efforts and molecular studies are directed to the area of endemicity of the Amazon Basin. Here, we determined the molecular epidemiological profile of circulating HDV in Brazilian HBsAg-positive patients between 2013 and 2015 in areas of endemicity and non-areas of endemicity. From 38 anti-HDV-positive individuals, 13 (34.2%) had detectable HDV-RNA and 11 (28.9%) were successfully sequenced. Partial HDAg (~320 nt) sequencing followed by phylogenetic analysis with reference sequences resulted in the identification of HDV-3 (9/11; 81.8%), HDV-5 (1/11; 9.1%), and HDV-8 (1/11; 9.1%). Most HDV-3 samples (8/9; 88.9%) were found in the endemic North region, while one was found in Central-West Brazil, a non-area of endemicity. HDV-5 and 8, genotypes native from African countries, were found in São Paulo, a cosmopolitan city from Southeast Brazil with a high circulation of immigrants. Phylogenetic analysis of HDV-8 strains indicated that the sample determined in our study, along with previously reported sequences from Brazil, formed a highly supported monophyletic clade, likely representing a putative novel HDV-8 subgenotype. IMPORTANCE Considered a neglected pathogen until the last 2 decades, an increase in the availability of genetic data of hepatitis D virus (HDV) strains around the world has been noticed recently, resulting in the proposition of different classifications. Our study aimed to determine the molecular epidemiological profile of HDV isolates circulating in areas of endemicity and non-areas of endemicity in Brazil. Based on the analyzed fragment, HDV-8 sequences clustered out of the clades formed by subgenotypes 8a and 8b might suggest the identification of a novel subgenotype, putatively designated subgenotype 8c. Our findings demonstrate the importance of continuous epidemiological surveillance to map HDV spread pathways and the introduction of imported variants. It also reinforces that as the amount of HDV genomes generated and reported increases, we will have changes in viral classification and, consequently, in our understanding of the dynamics of variability of this viral agent.


Subject(s)
Hepatitis B virus , Hepatitis Delta Virus , Humans , Hepatitis Delta Virus/genetics , Brazil/epidemiology , Phylogeny , Hepatitis B virus/genetics , Sequence Analysis, DNA , Genotype , RNA, Viral/genetics
18.
Front Microbiol ; 14: 1137084, 2023.
Article in English | MEDLINE | ID: mdl-36970691

ABSTRACT

Hepatitis B Virus (HBV) genotypes reflect geographic, ethical or clinical traits and are currently divided into 10 genotypes (A-J). Of these, genotype C is mainly distributed in Asia, is the largest group and comprises more than seven subgenotypes (C1-C7). Subgenotype C2 is divided into three phylogenetically distinct clades, C2(1), C2(2), and C2(3), and is responsible for most genotype C infections in three East Asian nations, including China, Japan, and South Korea, which are major HBV endemic areas. However, despite the significance of subgenotype C2 with regard to clinical or epidemiologic aspects, its global distribution and molecular characteristics remain largely unknown. Here, we analyze the global prevalence and molecular characteristics between 3 clades within subgenotype C2 using 1,315 full genome sequences of HBV genotype C retrieved from public databases. Our data show that almost all HBV strains from South Korean patients infected with genotype C belong to clade C2(3) within subgenotype C2 [96.3%] but that HBV strains from Chinese or Japanese patients belong to diverse subgenotypes or clades within genotype C, suggesting clonal expansion of a specific HBV type, C2(3), among the Korean population. Our genome sequence analysis indicated a total of 21 signature sequences specific to the respective clades C2(1), C2(2), and C2(3). Of note, two types of four nonsynonymous C2(3) signature sequences, sV184A in HBsAg and xT36P in the X region, were detected in 78.9 and 82.9% of HBV C2(3) strains, respectively. In particular, HBV strains C2(3) versus C2(1) and C2(2) show a higher frequency of reverse transcriptase mutations related to nucleot(s)ide analog (NA) resistance, including rtM204I and rtL180M, suggesting an increased possibility of C2(3) infection in those with NA treatment failure. In conclusion, our data show that HBV subgenotype C2(3) is extremely prevalent in Korean patients with chronic HBV infection, which is distinct from two other East Asian nations, China and Japan, where diverse subgenotypes or clades within genotype C coexist. This epidemiologic trait might affect distinct virological and clinical traits in chronic HBV patients in Korea, where exclusively C2(3) infection is predominant.

19.
J Viral Hepat ; 30(6): 540-543, 2023 06.
Article in English | MEDLINE | ID: mdl-36825877

ABSTRACT

Hepatitis B virus (HBV) is the main etiological agent of hepatocellular carcinoma (HCC) worldwide. It has been classified into nine genotypes and several subgenotypes, with uneven global distribution. There is growing evidence that the viral genotype influences the course and outcome of chronic hepatitis B infection. Two evolutionarily different clusters of the subgenotype F1b, called basal and cosmopolitan, have been described. The two clusters have constrained geographical distribution, with the particular feature that the basal cluster is present in regions of high HCC incidence, while the Cosmopolitan cluster is found in regions of low HCC incidence. The BCP/pC region was sequenced in 68 cases chronically infected with the F1b subgenotype to determine if there was a differential pattern of pathogenic-associated mutations between both clusters. Twenty-two of the 68 cases belonged to the subgenotype F1b basal cluster and 46 to the cosmopolitan cluster. Among the HBeAg-negative patients the A1762T/G1764A and G1896A mutations were more frequently found in the basal samples (85.7 and 92.9%) compared to the cosmopolitan ones (50 and 18.2%). Interestingly, no HBeAg loss-associated mutations were observed in 7.1 and 36.4% of the basal and cosmopolitan cases, respectively. The different rate of mutations associated with a more severe course of chronic hepatitis in the basal cluster would support the difference in the HCC incidence rate in the geographical regions where the basal cluster is restricted.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Hepatitis B virus/genetics , Mutation Rate , Hepatitis B, Chronic/complications , Hepatitis B/complications , Mutation , Genotype , DNA, Viral/genetics
20.
Virus Genes ; 59(3): 359-369, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36841897

ABSTRACT

Genotype I of hepatitis B virus (HBV) was proposed recently following sequencing of complete HBV genomes from Vietnam and Laos. However, its long-term molecular evolution is unknown. The objectives of this study were to study the molecular evolution of this genotype from an asymptomatic HBsAg carrier from the Long An cohort over a 15-year period was studied using both NGS and clone-based sequencing. The number of complete genome sequences obtained in 2004, 2007, 2013, and 2019 are 17, 20, 19, and 10, respectively. All strains belong to subgenotype I1, except for six (five from 2007 and one from 2019) and 8 further strains from 2007 which form a cluster branching out from other subgenotype I sequences, supported by a 100% bootstrap value. Based on complete genome sequences, all of the estimated intragroup nucleotide divergence values between these strains and HBV subgenotypes I1-I2 exceed 4%. These strains are recombinants between genotype I1 and subgenotype C but the breakpoints vary. The median intrahost viral evolutionary rate in this carrier was 3.88E-4 substitutions per site per year. The Shannon entropy (Sn) ranged from 0.55 to 0.88 and the genetic diversity, D, ranged from 0.0022 to 0.0041. In conclusion, our data provide evidence of novel subgenotypes. Considering that the 8 strains disappeared after 2007, while one of the 6 strains appears again in 2019, we propose these 6 strains as a new subgenotype, provisionally designated HBV subgenotype I3 and the 8 strains as aberrant genotype.


Subject(s)
Hepatitis B virus , Hepatitis B , Humans , Hepatitis B virus/genetics , Follow-Up Studies , Phylogeny , Genome, Viral/genetics , Sequence Analysis, DNA , China/epidemiology , DNA, Viral/genetics , Cluster Analysis , Genotype
SELECTION OF CITATIONS
SEARCH DETAIL
...