ABSTRACT
The copper industry utilizes significant amounts of sulfuric acid in its processes, generating sulfate as waste. While sulfate-reducing bacteria can remove sulfate, it produces hydrogen sulfide (H2S) as a byproduct. This study examined the capability of a consortium consisting of Sulfobacillus thermosulfidooxidans and Sulfobacillus acidophilus to partially oxidize H2S to S° at a temperature of 45 °C. A fixed-bed bioreactor, with glass rings as support material and sodium thiosulfate as a model electron donor, was inoculated with the consortium. Formation of biofilms was crucial to maintain the bioreactor's steady state, despite high flow rates. Afterward, the electron donor was changed to H2S. When the bioreactor was operated continuously and with high aeration, H2S was fully oxidized to SO42-. However, under conditions of low aeration and at a concentration of 0.26 g/L of H2S, the consortium was able to oxidize H2S to S° with a 13% yield. S° was discovered attached to the glass rings and jarosite. The results indicate that the consortium could oxidize H2S to S° with a 13% yield under low aeration and at a concentration of 0.26 g/L of H2S. The findings highlight the capability of a Sulfobacillus consortium to convert H2S into S°, providing a potential solution for addressing environmental and safety issues associated with sulfate waste generated by the mining industry.
Subject(s)
Hydrogen Sulfide , Sulfates , Bioreactors/microbiology , Sulfur , Bacteria , Oxidation-ReductionABSTRACT
Aquatic environments of volcanic origin provide an exceptional opportunity to study the adaptations of microorganisms to early planet life conditions. Here, we characterized the prokaryotic communities and physicochemical properties of seepage sites at the bottom of the Poas Volcano crater and the Agrio River, two geologically related extremely acidic environments located in Costa Rica. Both locations hold a low pH (1.79-2.20) and have high sulfate and iron concentrations (Fe = 47-206 mg/L, SO42- = 1170-2460 mg/L), but significant differences in their temperature (90.0-95.0 ºC in the seepages at Poas Volcano, 19.1-26.6 ºC in Agrio River) and in the elemental sulfur content. Based on the analysis of 16S rRNA gene sequences, we determined that Sulfobacillus spp. represented more than half of the sequences in Poas Volcano seepage sites, while Agrio River was dominated by Leptospirillum and members of the archaeal order Thermoplasmatales. Both environments share some chemical characteristics and part of their microbiota, however, the temperature and the reduced sulfur are likely the main distinguishing features, ultimately shaping their microbial communities. Our data suggest that in the Poas Volcano-Agrio River system there is a common metabolism but with specialization of species that adapt to the physicochemical conditions of each environment.
Subject(s)
Hot Temperature , Microbiota , Phylogeny , Sulfur , Acids , Archaea/classification , Bacteria/classification , Costa Rica , Hydrogen-Ion Concentration , RNA, Ribosomal, 16S/genetics , Rivers , Volcanic EruptionsABSTRACT
Bioleaching is a mature technology, which is widely employed commercially in the leaching of primary sources of metals (ores, concentrates, and mine residues). The current work discussed the effects of aluminum sulfate additions to the growth medium, PLS recirculation and bleeding on the column bioleaching of secondary copper sulfide ores with a significant content of fluoride-containing minerals. Fluoride is toxic to bacteria at the pH of bioleaching but its toxicity may be overcome in the presence of soluble aluminum and ferric iron. Therefore, experiments were carried out in 10 × 100 cm height aerated columns, loaded with 10 kg of crushed and agglomerated copper ore and inoculated with Sulfobacillus thermosulfidooxidans. Initially, fluoride concentrations of up to 2.5 g/L in the pregnant leach solution were observed due to the fast dissolution of fluoride-bearing minerals. Aluminum was added to the leaching solution to reduce the Al/F ratio so that the concentration of HF (the main toxic species) was decreased, but while the total fluoride concentration was higher than that of aluminum, the bacterial population as low. Therefore, the current work emphasizes that it is possible to set up conditions to enable bioleaching even at high fluoride concentrations. Following this approach, copper extractions above 90% were achieved for a H2SO4 consumption ranging from 128.8 to 206.1 Kg/ton.