ABSTRACT
The regenerative therapies with stem cells (SC) has been increased by the cryopreservation, permitting cell storage for extended periods. However, the permeating cryoprotectant agents (CPAs) such as dimethylsulfoxide (DMSO) can cause severe adverse effects. Therefore, this study evaluated equine mesenchymal stem cells derived from adipose tissue (eAT-MSCs) in fresh (Control) or after slow freezing (SF) in different freezing solutions (FS). The FS comprise DMSO and non-permeating CPAs [Trehalose (T) and the SuperCool X-1000 (X)] in association or not, totalizing seven different FS: (DMSO; T; X; DMSO+T; DMSO+X; T+X, and DMSO+T+X). Before and after cryopreservation were evaluated, viability, colony forming unit (CFU), and cellular differentiation capacity. After freezing-thawing, the viability of the eAT-MSCs reduced (P< 0.05) in all treatments compared to the control. However, the viability of frozen eAT-MSCs in DMSO (80.3 ± 0.6) was superior (P<0.05) to the other FS. Regarding CFU, no difference (P>0.05) was observed between fresh and frozen cells. After freezing-thawing, the eAT-MSCs showed osteogenic, chondrogenic, and adipogenic lineages differentiation potential. Nonetheless, despite the significative reduction in the osteogenic differentiation capacity between fresh and frozen cells, no differences (P > 0.05) were observed among FS. Furthermore, the number of chondrogenic differentiation cells frozen in DMSO+X solution reduced (P<0.05) comparing to the control, without differ (P>0.05) to the other FS. The adipogenic differentiation did not differ (P>0.05) among treatments. In conclusion, although these findings confirm the success of DMSO to cryopreserve eAT-MSCs, the Super Cool X-1000 could be a promise to reduce the DMSO concentration in a FS.
As terapias regenerativas com células-tronco (CT) têm sido incrementadas pela criopreservação, permitindo o armazenamento celular. No entanto, os agentes crioprotetores (ACPs) penetrantes, como DMSO, podem causar efeitos adversos graves. Portanto, este estudo avaliou células-tronco mesenquimais equinas derivadas de tecido adiposo (CTM-TAe) in natura (Controle) ou após congelamento lento (CL) em diferentes soluções de congelamento (SC). As SCs compreendem DMSO e ACPs não permeáveis [Trealose (T) e o SuperCool X-1000 (X)] associados ou não: (DMSO; T; X; DMSO+T; DMSO+X; T +X e DMSO+T+X). Antes e após a criopreservação foram avaliados, viabilidade, unidade formadora de colônia (UFC) e capacidade de diferenciação celular. Após o congelamento-descongelamento, a viabilidade das CTM-TAe reduziu (P< 0,05) em todos os tratamentos em relação ao controle. Entretanto, a viabilidade das CTM-TAe congeladas em DMSO (80,3 ± 0,6) foi superior (P<0,05) às demais SC. Em relação às UFC, não houve diferença (P>0,05) entre células frescas e congeladas. Após congelamento-descongelamento, as CTM-TAe apresentaram potencial de diferenciação de linhagens osteogênicas, condrogênicas e adipogênicas. No entanto, apesar da redução significativa na capacidade de diferenciação osteogênica entre células frescas e congeladas, não foram observadas diferenças (P > 0,05) entre SCs. Além disso, o número de células de diferenciação condrogênica congeladas em solução de DMSO+X reduziu (P<0,05) em relação ao controle, sem diferir (P>0,05) das demais SCs. A diferenciação adipogênica não diferiu (P>0,05) entre os tratamentos. Em conclusão, embora esses achados confirmem o sucesso do DMSO para criopreservar CTM-TAe, o Super Cool X-1000 pode ser uma promessa para reduzir a concentração de DMSO.
ABSTRACT
The aim of this study was to evaluate whether the addition of synthetic polymers to the vitrification solution affected follicular morphology and development and the expression of Ki-67, Aquaporin 3 (AQP3) and cleaved Caspase-3 proteins in ovarian tissue of the caprine species. Caprine ovaries were fragmented and two fragments were immediately fixed (Fresh Control) for morphological evaluation, while other two were in vitro cultured for 7 days (Cultured Control) and fixed as well. The remaining fragments were distributed in two different vitrification groups: Vitrified and Vitrified/Cultured. Each group was composed of 4 different treatments: 1) Sucrose (SUC); 2) SuperCool X-1000 0.2 % (X-1000); 3) SuperCool Z-1000 0.4 % (Z-1000) or 4) with polyvinylpyrrolidone K-12 0.2 % (PVP). Also, Fresh Control, Cultured Control, SUC and X-1000 were destined to immunohistochemical detection of Ki-67, AQP3 and cleaved Caspase-3 proteins. Morphologically, the treatment with X-1000 showed no significant difference with the Fresh Control group and was superior to the other treatments. After the cleaved caspase-3 analysis, X-1000 showed the lowest percentages of strong immunostaining while Cultured Control showed the highest. Also, a positive correlation was found between the percentages of degenerated follicles and the percentages of strong staining intensity follicles. Regarding the AQP3 analysis, the highest percentages of strong AQP3 staining intensity were found in X-1000. In conclusion, we have demonstrated that the addition of the synthetic polymer SuperCool X-1000 to the vitrification solution improved the current vitrification protocol of caprine ovarian tissue.