Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
RNA Biol ; 19(1): 333-352, 2022.
Article in English | MEDLINE | ID: mdl-35220879

ABSTRACT

Latent 5' splice sites, not normally used, are highly abundant in human introns, but are activated under stress and in cancer, generating thousands of nonsense mRNAs. A previously proposed mechanism to suppress latent splicing was shown to be independent of NMD, with a pivotal role for initiator-tRNA independent of protein translation. To further elucidate this mechanism, we searched for nuclear proteins directly bound to initiator-tRNA. Starting with UV-crosslinking, we identified nucleolin (NCL) interacting directly and specifically with initiator-tRNA in the nucleus, but not in the cytoplasm. Next, we show the association of ini-tRNA and NCL with pre-mRNA. We further show that recovery of suppression of latent splicing by initiator-tRNA complementation is NCL dependent. Finally, upon nucleolin knockdown we show activation of latent splicing in hundreds of coding transcripts having important cellular functions. We thus propose nucleolin, a component of the endogenous spliceosome, through its direct binding to initiator-tRNA and its effect on latent splicing, as the first protein of a nuclear quality control mechanism regulating splice site selection to protect cells from latent splicing that can generate defective mRNAs.


Subject(s)
Binding Sites , Phosphoproteins/metabolism , RNA Splice Sites , RNA Splicing , RNA-Binding Proteins/metabolism , Cell Nucleus/genetics , Cell Nucleus/metabolism , Gene Knockdown Techniques , Humans , Mass Spectrometry , Protein Binding , RNA Interference , RNA, Transfer/genetics , Nucleolin
2.
Nucleus ; 6(3): 225-35, 2015.
Article in English | MEDLINE | ID: mdl-25634319

ABSTRACT

Pre-mRNA splicing is essential for the regulation of gene expression in eukaryotes and is fundamental in development and cancer, and involves the selection of a consensus sequence that defines the 5' splice site (5'SS). Human introns harbor multiple sequences that conform to the 5'SS consensus, which are not used under normal growth conditions. Under heat shock conditions, splicing at such intronic latent 5'SSs occurred in thousands of human transcripts, resulting in pre-maturely terminated aberrant proteins. Here we performed a survey of the C. elegans genome, showing that worm's introns contain latent 5'SSs, whose use for splicing would have resulted in pre-maturely terminated mRNAs. Splicing at these latent 5'SSs could not be detected under normal growth conditions, while heat shock activated latent splicing in a number of tested C. elegans transcripts. Two scenarios could account for the lack of latent splicing under normal growth conditions (i) Splicing at latent 5'SSs do occur, but the nonsense mRNAs thus formed are rapidly and efficiently degraded (e.g. by NMD); and (ii) Splicing events at intronic latent 5'SSs are suppressed. Here we support the second scenario, because, nematode smg mutants that are devoid of NMD-essential factors, did not show latent splicing under normal growth conditions. Hence, these experiments together with our previous experiments in mammalian cells, indicate the existence of a nuclear quality control mechanism, termed Suppression Of Splicing (SOS), which discriminates between latent and authentic 5'SSs in an open reading frame dependent manner, and allows splicing only at the latter. Our results show that SOS is an evolutionary conserved mechanism, probably shared by most eukaryotes.


Subject(s)
Alternative Splicing , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Genome, Helminth , RNA Precursors/genetics , RNA Splice Sites , Animals , Animals, Genetically Modified , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Codon, Nonsense , Exons , Heat-Shock Response , Hot Temperature , Humans , Introns , Nonsense Mediated mRNA Decay , Open Reading Frames , RNA Precursors/metabolism , Stress, Physiological
3.
Comput Struct Biotechnol J ; 11(19): 113-22, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25408845

ABSTRACT

Pre-mRNA splicing of Pol II transcripts is executed in the mammalian cell nucleus within a huge (21 MDa) and highly dynamic RNP machine - the supraspliceosome. It is composed of four splicing active native spliceosomes, each resembling an in vitro assembled spliceosome, which are connected by the pre-mRNA. Supraspliceosomes harbor protein splicing factors and all the five-spliceosomal U snRNPs. Recent analysis of specific supraspliceosomes at defined splicing stages revealed that they harbor all five spliceosomal U snRNAs at all splicing stages. Supraspliceosomes harbor additional pre-mRNA processing components, such as the 5'-end and 3'-end processing components, and the RNA editing enzymes ADAR1 and ADAR2. The structure of the native spliceosome, at a resolution of 20 Å, was determined by cryo-EM. A unique spatial arrangement of the spliceosomal U snRNPs within the native spliceosome emerged from in-silico studies, localizing the five U snRNPs mostly within its large subunit, and sheltering the active core components deep within the spliceosomal cavity. The supraspliceosome provides a platform for coordinating the numerous processing steps that the pre-mRNA undergoes: 5' and 3'-end processing activities, RNA editing, constitutive and alternative splicing, and processing of intronic microRNAs. It also harbors a quality control mechanism termed suppression of splicing (SOS) that, under normal growth conditions, suppresses splicing at abundant intronic latent 5' splice sites in a reading frame-dependent fashion. Notably, changes in these regulatory processing activities are associated with human disease and cancer. These findings emphasize the supraspliceosome as a multi-task master regulator of pre-mRNA processing in the cell nucleus.

SELECTION OF CITATIONS
SEARCH DETAIL