Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 490
Filter
1.
J Neurol Surg B Skull Base ; 85(4): 363-369, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38966300

ABSTRACT

Objective The aim of this work was the development of an augmented reality system including the functionality of conventional surgical navigation systems. Methods An application software for the Augmented Reality System HoloLens 2 from Microsoft was developed. It detects the position of the patient as well as position of surgical instruments in real time and displays it within the two-dimensional (2D) magnetic resonance imaging or computed tomography (CT) images. The surgical pointer instrument, including a pattern that is recognized by the HoloLens 2 sensors, was created with three-dimensional (3D) printing. The technical concept was demonstrated at a cadaver skull to identify anatomical landmarks. Results With the help of the HoloLens 2 and its sensors, the real-time position of the surgical pointer instrument could be shown. The position of the 3D-printed pointer with colored pattern could be recognized within 2D-CT images when stationary and in motion at a cadaver skull. Feasibility could be demonstrated for the clinical application of transsphenoidal pituitary surgery. Conclusion The HoloLens 2 has a high potential for use as a surgical navigation system. With subsequent studies, a further accuracy evaluation will be performed receiving valid data for comparison with conventional surgical navigation systems. In addition to transsphenoidal pituitary surgery, it could be also applied for other surgical disciplines.

2.
Int J Med Robot ; 20(3): e2649, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847242

ABSTRACT

BACKGROUND: Endoscope retrograde cholangiopancreatography is a standard surgical treatment for gallbladder and pancreatic diseases. However, surgeons is at high risk and require sufficient surgical experience and skills. METHODS: (1) The simultaneous localisation and mapping technique to reconstruct the surgical environment. (2) The preoperative 3D model is transformed into the intraoperative video environment to implement the multi-modal fusion. (3) A framework for virtual-to-real projection based on hand-eye alignment. For the purpose of projecting the 3D model onto the imaging plane of the camera, it uses position data from electromagnetic sensors. RESULTS: Our AR-assisted navigation system can accurately guide physicians, which means a distance of registration error to be restricted to under 5 mm and a projection error of 5.76 ± 2.13, and the intubation procedure is done at 30 frames per second. CONCLUSIONS: Coupled with clinical validation and user studies, both the quantitative and qualitative results indicate that our navigation system has the potential to be highly useful in clinical practice.


Subject(s)
Augmented Reality , Cholangiopancreatography, Endoscopic Retrograde , Phantoms, Imaging , Surgery, Computer-Assisted , Humans , Cholangiopancreatography, Endoscopic Retrograde/methods , Surgery, Computer-Assisted/methods , Surgery, Computer-Assisted/instrumentation , Imaging, Three-Dimensional/methods , Surgical Navigation Systems , Robotic Surgical Procedures/methods , Robotic Surgical Procedures/instrumentation , Reproducibility of Results
3.
J Dent ; 148: 105150, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909646

ABSTRACT

OBJECTIVES: To compare the accuracy and operative time of implant placement using a dynamic computer assisted implant surgery (dCAIS) system based on a cone beam computer tomography (CBCT) image, with and without superimposing a standard tessellation language (STL) file of an intraoral scan of the patient. METHODS: Ten identical resin models simulating an upper maxilla with posterior edentulism were assigned to two groups. In the CBCT+STL group, a CBCT file and an intraoral STL file were superimposed and used for registration; in the CBCT group, registration was performed using CBCT images. Six implants were placed in each model using the Navident® dynamic navigation system. Anatomy registration was performed by tracing fiducial points on the CBCT or STL image, depending on the group. Preoperative and postoperative CBCT images were overlaid to assess implant placement accuracy. RESULTS: Sixty implants were analyzed (30 implants in each group). 3D platform deviation was significantly lower (mean difference (MD): 0.17 mm; 95 % confidence interval (CI): 0.01 to 0.23; P = 0.039) in the CBCT+STL group (mean: 0.71 mm; standard deviation (SD): 0.29) than in the CBCT group (mean: 0.88 mm; SD: 0.39). The remaining accuracy outcome variables (angular deviation MD: -0.01; platform lateral deviation MD: 0.08 mm; apex global MD: 0.01 mm; apex depth MD: 0.33 mm) and surgery time (MD: 3.383 min.) were similar in both groups (p > 0.05). CONCLUSIONS: The introduction of an intraoral scan (STL) seems to reduce deviations slightly in dental implant placement with dCAIS systems. However, the clinical repercussion of this improvement is questionable. CLINICAL SIGNIFICANCE: Superimposing an intraoral scan on the CBCT image does not seem to increase the accuracy of dCAIS systems but can be useful when radiographic artifacts are present.

4.
Article in English | MEDLINE | ID: mdl-38839534

ABSTRACT

Surgical navigation, despite its potential benefits, faces challenges in widespread adoption in clinical practice. Possible reasons include the high cost, increased surgery time, attention shifts during surgery, and the mental task of mapping from the monitor to the patient. To address these challenges, a portable, all-in-one surgical navigation system using augmented reality (AR) was developed, and its feasibility and accuracy were investigated. The system achieves AR visualization by capturing a live video stream of the actual surgical field using a visible light camera and merging it with preoperative virtual images. A skull model with reference spheres was used to evaluate the accuracy. After registration, virtual models were overlaid on the real skull model. The discrepancies between the centres of the real spheres and the virtual model were measured to assess the AR visualization accuracy. This AR surgical navigation system demonstrated precise AR visualization, with an overall overlap error of 0.53 ± 0.21 mm. By seamlessly integrating the preoperative virtual plan with the intraoperative field of view in a single view, this novel AR navigation system could provide a feasible solution for the use of AR visualization to guide the surgeon in performing the operation as planned.

5.
Clin Orthop Surg ; 16(3): 430-440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827763

ABSTRACT

Background: Computer-assisted navigation surgery (CAS) during primary total knee arthroplasty (TKA) may help improve outcomes for patients with extra-articular deformity (EAD); however, this has not been extensively studied. Therefore, we aimed to investigate the clinical and radiological outcomes following primary TKA using CAS in patients with EAD. Methods: We searched Medline, Embase, and the Cochrane Library up to March 3, 2023 for studies investigating surgical outcomes of using the navigation system for TKA to treat patients with EAD. From 14 studies, 539 knees with EAD that underwent navigation TKA were enrolled. We investigated the knee range of motion (ROM), outcome scores at final follow-up (Knee Society Score [KSS] and Knee Functional Score [KFS]), and pre- and postoperative mechanical hip-knee-ankle (mHKA) angle using lower extremity scanogram. The meta-analysis was based on the single-arm method, and all data were pooled using a random-effects model. Results: Following our meta-analyses, the mean knee ROM changed from 87.0° (95% confidence interval [CI], 75.9°-98.1°) preoperatively to 109.4° (95% CI, 97.9°-120.8°) postoperatively. The adjusted KSS was 93.45 points (95% CI, 88.36-98.54 points), and the adjusted KFS was 91.57 points (95% CI, 86.80-96.33 points) in knees with EAD that underwent CAS-TKA. As a radiological outcome, the mHKA angle changed from 169.53° (95% CI, 166.90°-172.16°) preoperatively to 178.81° (95% CI, 178.31°-179.30°) postoperatively. Conclusions: CAS-TKA yielded positive clinical results and demonstrated a satisfactory alignment of the lower limb's mechanical axis. CAS-TKA showed promise for primary TKA procedures, demonstrating favorable clinical and radiological outcomes even in complex cases involving EAD.


Subject(s)
Arthroplasty, Replacement, Knee , Range of Motion, Articular , Surgery, Computer-Assisted , Humans , Arthroplasty, Replacement, Knee/methods , Surgery, Computer-Assisted/methods , Knee Joint/surgery , Knee Joint/diagnostic imaging
6.
J Dent Res ; : 220345241253794, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822563

ABSTRACT

Digital technology has emerged as a transformative tool in dental implantation, profoundly enhancing accuracy and effectiveness across multiple facets, such as diagnosis, preoperative treatment planning, surgical procedures, and restoration delivery. The multiple integration of radiographic data and intraoral data, sometimes with facial scan data or electronic facebow through virtual planning software, enables comprehensive 3-dimensional visualization of the hard and soft tissue and the position of future restoration, resulting in heightened diagnostic precision. In virtual surgery design, the incorporation of both prosthetic arrangement and individual anatomical details enables the virtual execution of critical procedures (e.g., implant placement, extended applications, etc.) through analysis of cross-sectional images and the reconstruction of 3-dimensional surface models. After verification, the utilization of digital technology including templates, navigation, combined techniques, and implant robots achieved seamless transfer of the virtual treatment plan to the actual surgical sites, ultimately leading to enhanced surgical outcomes with highly improved accuracy. In restoration delivery, digital techniques for impression, shade matching, and prosthesis fabrication have advanced, enabling seamless digital data conversion and efficient communication among clinicians and technicians. Compared with clinical medicine, artificial intelligence (AI) technology in dental implantology primarily focuses on diagnosis and prediction. AI-supported preoperative planning and surgery remain in developmental phases, impeded by the complexity of clinical cases and ethical considerations, thereby constraining widespread adoption.

7.
Int J Ophthalmol ; 17(3): 570-576, 2024.
Article in English | MEDLINE | ID: mdl-38721501

ABSTRACT

AIM: To explore the combined application of surgical navigation nasal endoscopy (NNE) and three-dimensional printing technology (3DPT) for the adjunctive treatment of orbital blowout fractures (OBF). METHODS: Retrospective analysis was conducted on the data of patients with OBF who underwent surgical treatment at the Affiliated Eye Hospital of Nanchang University between July 2012 and November 2022. The control group consisted of patients who received traditional surgical treatment (n=43), while the new surgical group (n=52) consisted of patients who received NNE with 3DPT. The difference in therapeutic effects between the two groups was evaluated by comparing the duration of the operation, best corrected visual acuity (BCVA), enophthalmos difference, recovery rate of eye movement disorder, recovery rate of diplopia, and incidence of postoperative complications. RESULTS: The study included 95 cases (95 eyes), with 63 men and 32 women. The patients' age ranged from 5 to 67y (35.21±15.75y). The new surgical group and the control group exhibited no statistically significant differences in the duration of the operation, BCVA and enophthalmos difference. The recovery rates of diplopia in the new surgical group were significantly higher than those in the control group at 1mo [OR=0.03, 95%CI (0.01-0.15), P<0.0000] and 3mo [OR=0.11, 95%CI (0.03-0.36), P<0.0000] post-operation. Additionally, the recovery rates of eye movement disorders at 1 and 3mo after surgery were OR=0.08, 95%CI (0.03-0.24), P<0.0000; and OR=0.01, 95%CI (0.00-0.18), P<0.0000. The incidence of postoperative complications was lower in the new surgical group compared to the control group [OR=4.86, 95%CI (0.95-24.78), P<0.05]. CONCLUSION: The combination of NNE and 3DPT can shorten the recovery time of diplopia and eye movement disorder in patients with OBF.

8.
Arch Orthop Trauma Surg ; 144(6): 2811-2821, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704436

ABSTRACT

BACKGROUND: The use of portable navigation systems (PNS) in total hip arthroplasty (THA) has become increasingly prevalent, with second-generation PNS (sPNS) demonstrating superior accuracy in the lateral decubitus position compared to first-generation PNS. However, few studies have compared different types of sPNS. This study retrospectively compares the accuracy and clinical outcomes of two different types of sPNS instruments in patients undergoing THA. METHODS: A total of 158 eligible patients who underwent THA at a single institution between 2019 and 2022 were enrolled in the study, including 89 who used an accelerometer-based PNS with handheld infrared stereo cameras in the Naviswiss group (group N) and 69 who used an augmented reality (AR)-based PNS in the AR-Hip group (group A). Accuracy error, navigation error, clinical outcomes, and preparation time were compared between the two groups. RESULTS: Accuracy errors for Inclination were comparable between group N (3.5° ± 3.0°) and group A (3.5° ± 3.1°) (p = 0.92). Accuracy errors for anteversion were comparable between group N (4.1° ± 3.1°) and group A (4.5° ± 4.0°) (p = 0.57). The navigation errors for inclination (group N: 2.9° ± 2.7°, group A: 3.0° ± 3.2°) and anteversion (group N: 4.3° ± 3.5°, group A: 4.3° ± 4.1°) were comparable between the groups (p = 0.86 and 0.94, respectively). The preparation time was shorter in group A than in group N (p = 0.036). There were no significant differences in operative time (p = 0.255), intraoperative blood loss (p = 0.387), or complications (p = 0.248) between the two groups. CONCLUSION: An Accelerometer-based PNS using handheld infrared stereo cameras and AR-based PNS provide similar accuracy during THA in the lateral decubitus position, with a mean error of 3°-4° for both inclination and anteversion, though the AR-based PNS required a shorter preparation time.


Subject(s)
Arthroplasty, Replacement, Hip , Augmented Reality , Surgery, Computer-Assisted , Surgical Navigation Systems , Humans , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/methods , Retrospective Studies , Female , Male , Aged , Middle Aged , Surgery, Computer-Assisted/methods , Surgery, Computer-Assisted/instrumentation , Infrared Rays
9.
Int J Comput Assist Radiol Surg ; 19(7): 1429-1437, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816650

ABSTRACT

PURPOSE: Arthroscopic surgery, with its inherent difficulties on visibility and maneuverability inside the joint, poses significant challenges to surgeons. Video-based surgical navigation (VBSN) has proven to have clinical benefits in arthroscopy but relies on a time-consuming and challenging surface digitization using a touch probe to accomplish registration of intraoperative data with preoperative anatomical models. This paper presents an off-the-shelf laser scanner for noninvasive registration that enables an increased area of reachable region. METHODS: Our solution uses a standard arthroscope and a light projector with visual markers for real-time extrinsic calibration. Nevertheless, the shift from a touch probe to a laser scanner introduces a new challenge-the presence of a significant amount of outliers resulting from the reconstruction of nonrigid structures. To address this issue, we propose to identify the structures of interest prior to reconstruction using a deep learning-based semantic segmentation technique. RESULTS: Experimental validation using knee and hip phantoms, as well as ex-vivo data, assesses the laser scanner's effectiveness. The integration of the segmentation model improves results in ex-vivo experiments by mitigating outliers. Specifically, the laser scanner with the segmentation model achieves registration errors below 2.2 mm, with the intercondylar region exhibiting errors below 1 mm. In experiments with phantoms, the errors are always below 1 mm. CONCLUSION: The results show the viability of integrating the laser scanner with VBSN as a noninvasive and potential alternative to traditional methods by overcoming surface digitization challenges and expanding the reachable region. Future efforts aim to improve hardware to further optimize performance and applicability in complex procedures.


Subject(s)
Arthroscopy , Imaging, Three-Dimensional , Phantoms, Imaging , Humans , Imaging, Three-Dimensional/methods , Arthroscopy/methods , Video-Assisted Surgery/methods , Surgery, Computer-Assisted/methods , Lasers , Knee Joint/surgery , Knee Joint/diagnostic imaging , Hip Joint/surgery , Hip Joint/diagnostic imaging , Deep Learning
10.
J Dent ; 146: 105072, 2024 07.
Article in English | MEDLINE | ID: mdl-38763387

ABSTRACT

OBJECTIVES: This study aimed to compare the effect the radiographic marker registration (RMR) and markerless tracing registration (MTR) on implant placement accuracy using a dynamic computer-assisted implant surgery system (dCAIS). Additionally, this study aimed to assess the surgical time and whether the implant location influences the accuracy of the two registration methods. METHODS: 136 dental implants were randomly allocated to the RMR or MTR group and were placed with a dCAIS in resin models. Preoperative and postoperative Cone Beam Computer Tomograms (CBCT) were overlaid and implant placement accuracy was assessed. Descriptive and multivariate analysis of the data was performed. RESULTS: Significant differences (P < 0.001) were found for all accuracy variables except angular deviation (RMR:4.30° (SD:4.37°); MTR:3.89° (SD:3.32°)). The RMR had a mean 3D platform deviation of 1.53 mm (SD:0.98 mm) and mean apex 3D deviation of 1.63 mm (SD:1.05 mm) while the MTR had lower values (0.83 mm (SD:0.67 mm) and 1.07 mm (SD:0.86 mm), respectively). In the MTR group, implant placement in the anterior mandible was more accurate (p < 0.05). Additionally, MTR did not significantly increase the surgical time compared with RMR (P = 0.489). CONCLUSIONS: MTR seems to increase the accuracy of implant placement using dCAIS in comparison with the RMR method, without increasing the surgical time. The operated area seems to be relevant and might influence the implant deviations. CLINICAL SIGNIFICANCE: Considering the limitations of this in-vitro study, MTR seems to provide a higher accuracy in implant placement using dCAIS without increasing the surgical time. Furthermore, this method does not require radiographic markers and allows re-registration during surgery.


Subject(s)
Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Dental Implants , Surgery, Computer-Assisted , Humans , Surgery, Computer-Assisted/methods , Cone-Beam Computed Tomography/methods , Dental Implantation, Endosseous/methods , Fiducial Markers , Imaging, Three-Dimensional/methods
11.
Cureus ; 16(4): e59062, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38803732

ABSTRACT

Intraorbital foreign body (IOFB) is a vision-threatening condition that requires careful management. IOFB can manifest clinically from asymptomatic up to severe inflammation and blindness. Diagnosis and treatment are determined by the nature of the IOFB. The type, location, and complications related to the IOFB are taken into consideration when planning the surgery. Here, we report the case of a male in his 20s who was admitted to our clinic with a computed tomography (CT) scan which verified the presence of an IOFB. The patient underwent surgery and the IOFB was removed. Using a surgical navigation system (SNS), it was difficult to pinpoint the IOFB precisely during surgery. We took radiographs with a C-arm to improve our orientation and locate the IOFB. The patient recovered uneventfully, and no issues were noticed one month following surgery. This case report highlights the selection of treatment methods and demonstrates when radiographs can be more helpful than an SNS in the removal of the IOFB.

12.
Cancers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791972

ABSTRACT

Exact biopsy planning and careful execution of needle injection is crucial to ensure successful procedure completion as initially intended while minimizing the risk of complications. This study introduces a solution aimed at helping the operator navigate to precisely position the needle in a previously planned trajectory utilizing a mixed reality headset. A markerless needle tracking method was developed by integrating deep learning and deterministic computer vision techniques. The system is based on superimposing imaging data onto the patient's body in order to directly perceive the anatomy and determine a path from the selected injection site to the target location. Four types of tests were conducted to assess the system's performance: measuring the accuracy of needle pose estimation, determining the distance between injection sites and designated targets, evaluating the efficiency of material collection, and comparing procedure time and number of punctures required with and without the system. These tests, involving both phantoms and physician participation in the latter two, demonstrated the accuracy and usability of the proposed solution. The results showcased a significant improvement, with a reduction in number of punctures needed to reach the target location. The test was successfully completed on the first attempt in 70% of cases, as opposed to only 20% without the system. Additionally, there was a 53% reduction in procedure time, validating the effectiveness of the system.

13.
Head Face Med ; 20(1): 30, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745297

ABSTRACT

BACKGROUND: Computer-guided implant surgery has improved the quality of implant treatment by facilitating the placement of implants in a more accurate manner. This study aimed to assess the accuracy of implant placement in a clinical setting using three techniques: dynamic navigation, static surgical guides, and freehand placement. We also investigated potential factors influencing accuracy to provide a comprehensive evaluation of each technique's advantages and disadvantages. MATERIALS AND METHODS: Ninety-four implants in 65 patients were included in this prospective study. Patients were randomly assigned to one of three groups: dynamic navigation, static surgical guides, or freehand placement. Implants were placed using a prosthetically oriented digital implant planning approach, and postoperative CBCT scans were superimposed on preoperative plans to measure accuracy. Seven deviation values were calculated, including angular, platform, and apical deviations. Demographic and consistency analyses were performed, along with one-way ANOVA and post-hoc tests for deviation values. RESULTS: The mean global platform, global apical, and angular deviations were 0.99 mm (SD 0.52), 1.14 mm (SD 0.56), and 3.66° (SD 1.64°) for the dynamic navigation group; 0.92 mm (SD 0.36), 1.06 mm (SD 0.47), and 2.52° (SD 1.18°) for the surgical guide group; and 1.36 mm (SD 0.62), 1.73 mm (SD 0.66), and 5.82° (SD 2.79°) for the freehand group. Both the dynamic navigation and surgical guide groups exhibited statistically significant differences in all values except depth deviations compared to the freehand group (p < 0.05), whereas only the angular deviation showed a significant difference between the dynamic navigation and surgical guide groups (p = 0.002). CONCLUSION: Our findings highlight the superior accuracy and consistency of dynamic navigation and static surgical guides compared to freehand placement in implant surgery. Dynamic navigation offers precision and flexibility. However, it comes with cost and convenience considerations. Future research should focus on improving its practicality. TRIAL REGISTRATION: This study was retrospectively registered at the Thai Clinical Trials Register-Medical Research Foundation of Thailand (MRF) with the TCTR identification number TCTR20230804001 on 04/08/2023. It was also conducted in accordance with the Declaration of Helsinki and approved by the institutional ethics committee at the Xian Jiaotong University Hospital of Stomatology, Xian, China (xjkqII[2021] No: 043). Written informed consent was obtained from all participants.


Subject(s)
Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Surgery, Computer-Assisted , Adult , Aged , Female , Humans , Male , Middle Aged , Cone-Beam Computed Tomography/methods , Dental Implantation, Endosseous/methods , Prospective Studies , Surgery, Computer-Assisted/methods
14.
Article in English | MEDLINE | ID: mdl-38777946

ABSTRACT

PURPOSE: Calibration of an optical see-through head-mounted display is critical for augmented reality-based surgical navigation. While conventional methods have advanced, calibration errors remain significant. Moreover, prior research has focused primarily on calibration accuracy and procedure, neglecting the impact on the overall surgical navigation system. Consequently, these enhancements do not necessarily translate to accurate augmented reality in the optical see-through head mount due to systemic errors, including those in calibration. METHOD: This study introduces a simulated augmented reality-based calibration to address these issues. By replicating the augmented reality that appeared in the optical see-through head mount, the method achieves calibration that compensates for augmented reality errors, thereby reducing them. The process involves two distinct calibration approaches, followed by adjusting the transformation matrix to minimize displacement in the simulated augmented reality. RESULTS: The efficacy of this method was assessed through two accuracy evaluations: registration accuracy and augmented reality accuracy. Experimental results showed an average translational error of 2.14 mm and rotational error of 1.06° across axes in both approaches. Additionally, augmented reality accuracy, measured by the overlay regions' ratio, increased to approximately 95%. These findings confirm the enhancement in both calibration and augmented reality accuracy with the proposed method. CONCLUSION: The study presents a calibration method using simulated augmented reality, which minimizes augmented reality errors. This approach, requiring minimal manual intervention, offers a more robust and precise calibration technique for augmented reality applications in surgical navigation.

15.
Cureus ; 16(4): e59307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38813334

ABSTRACT

Three-dimensional computed tomography (3D CT) scan images are useful as they can provide information essential for surgical support, particularly in orthopedic surgery. In the case of anterior cruciate ligament (ACL) reconstruction, a 3D CT scan is important in preoperative simulation. Furthermore, it is associated with a reduced risk of revision surgery because the angle of the foramen magnum changes with the femoral muscle mass. However, the CT scan system geometry has several limitations. For example, the patient's posture is limited during the procedure. Herein, we report an original CT scan method and 3D imaging process for surgical support of the ACL.

16.
Article in English | MEDLINE | ID: mdl-38748051

ABSTRACT

PURPOSE: A patient registration and real-time surgical navigation system and a novel device and method (Noctopus) is presented. With any tracking system technology and a patient/target-specific registration marker configuration, submillimetric target registration error (TRE), high-precise application accuracy for single or multiple anatomical targets in image-guided neurosurgery or ENT surgery is realized. METHODS: The system utilizes the advantages of marker-based registration technique and allows to perform automatized patient registration using on the device attached and with patient scanned four fiducial markers. The best possible sensor/marker positions around the patient's head are determined for single or multiple region(s) of interest (target/s) in the anatomy. Once brought at the predetermined positions the device can be operated with any tracking system for registration purposes. RESULTS: Targeting accuracy was evaluated quantitatively at various target positions on a phantom skull. The target registration error (TRE) was measured on individual targets using an electromagnetic tracking system. The overall averaged TRE was 0.22 ± 0.08 mm for intraoperative measurements. CONCLUSION: An automatized patient registration system using optimized patient-/target-specific marker configurations is proposed. High-precision and user-error-free intraoperative surgical navigation with minimum number of registration markers and sensors is realized. The targeting accuracy is significantly improved in minimally invasive neurosurgical and ENT interventions.

17.
Int J Comput Assist Radiol Surg ; 19(6): 1193-1201, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38642296

ABSTRACT

PURPOSE: Preventing positive margins is essential for ensuring favorable patient outcomes following breast-conserving surgery (BCS). Deep learning has the potential to enable this by automatically contouring the tumor and guiding resection in real time. However, evaluation of such models with respect to pathology outcomes is necessary for their successful translation into clinical practice. METHODS: Sixteen deep learning models based on established architectures in the literature are trained on 7318 ultrasound images from 33 patients. Models are ranked by an expert based on their contours generated from images in our test set. Generated contours from each model are also analyzed using recorded cautery trajectories of five navigated BCS cases to predict margin status. Predicted margins are compared with pathology reports. RESULTS: The best-performing model using both quantitative evaluation and our visual ranking framework achieved a mean Dice score of 0.959. Quantitative metrics are positively associated with expert visual rankings. However, the predictive value of generated contours was limited with a sensitivity of 0.750 and a specificity of 0.433 when tested against pathology reports. CONCLUSION: We present a clinical evaluation of deep learning models trained for intraoperative tumor segmentation in breast-conserving surgery. We demonstrate that automatic contouring is limited in predicting pathology margins despite achieving high performance on quantitative metrics.


Subject(s)
Breast Neoplasms , Deep Learning , Margins of Excision , Mastectomy, Segmental , Humans , Breast Neoplasms/surgery , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Mastectomy, Segmental/methods , Ultrasonography, Mammary/methods , Surgery, Computer-Assisted/methods
18.
Comput Biol Med ; 174: 108453, 2024 May.
Article in English | MEDLINE | ID: mdl-38636327

ABSTRACT

PURPOSE: Biopsies play a crucial role in determining the classification and staging of tumors. Ultrasound is frequently used in this procedure to provide real-time anatomical information. Using augmented reality (AR), surgeons can visualize ultrasound data and spatial navigation information seamlessly integrated with real tissues. This innovation facilitates faster and more precise biopsy operations. METHODS: We have developed an augmented reality biopsy navigation system characterized by low display latency and high accuracy. Ultrasound data is initially read by an image capture card and streamed to Unity via net communication. In Unity, navigation information is rendered and transmitted to the HoloLens 2 device using holographic remoting. Concurrently, a retro-reflective tool tracking method is implemented on the HoloLens 2, enabling the simultaneous tracking of the ultrasound probe and biopsy needle. Distinct navigation information is provided during in-plane and out-of-plane punctuation. To evaluate the effectiveness of our system, we conducted a study involving ten participants, assessing puncture accuracy and biopsy time in comparison to traditional methods. RESULTS: Ultrasound image was streamed from the ultrasound device to augmented reality headset with 122.49±11.61ms latency, while only 16.22±11.25ms was taken after data acquisition from image capture card. Navigation accuracy reached 1.23±0.68mm in the image plane and 0.95±0.70mm outside the image plane, within a depth range of 200 millimeters. Remarkably, the utilization of our system led to 98% and 95% success rate in out-of-plane and in-plane biopsy, among ten participants with little ultrasound experience. CONCLUSION: To sum up, this paper introduces an AR-based ultrasound biopsy navigation system characterized by high navigation accuracy and minimal latency. The system provides distinct visualization contents during in-plane and out-of-plane operations according to their different characteristics. Use case study in this paper proved that our system can help young surgeons perform biopsy faster and more accurately.


Subject(s)
Augmented Reality , Humans , Ultrasonography/methods , Ultrasonography/instrumentation , Image-Guided Biopsy/instrumentation , Image-Guided Biopsy/methods
19.
Health Sci Rep ; 7(4): e2033, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38655421

ABSTRACT

Background and Aims: Lower extremity fracture reduction surgery is a key step in the treatment of lower extremity fractures. How to ensure high precision of fracture reduction while reducing secondary trauma during reduction is a difficult problem in current surgery. Methods: First, segmentation and three-dimensional reconstruction are performed based on fracture computed tomography images. A cross-sectional point cloud extraction algorithm based on the normal filtering of the long axis of the bone is designed to obtain the cross-sectional point clouds of the distal bone and the proximal bone, and the optimal reset target pose of the broken bone is obtained by using the iterative closest point algorithm. Then, the optimal reset sequence of reset parameters was determined, combined with the broken bone collision detection algorithm, a surgical planning algorithm for lower limb fracture reset was proposed, which can effectively reduce the reset force while ensuring the accuracy of the reset process without collision. Results: The average error of the reduction of the model bone was within 1.0 mm. The reduction operation using the planning and navigation system of lower extremity fracture reduction surgery can effectively reduce the reduction force. At the same time, it can better ensure the smooth change of the reduction force. Conclusion: Planning and navigation system of lower extremity fracture reduction surgery is feasible and effective.

20.
Neurospine ; 21(1): 97-103, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38569635

ABSTRACT

OBJECTIVE: Practical applications of nerve decompression using neurosurgical robots remain unexplored. Our ongoing research and development initiatives, utilizing industrial robots, aim to establish a secure and efficient neurosurgical robotic system. The principal objective of this study was to automate bone grinding, which is a pivotal component of neurosurgical procedures. METHODS: To achieve this goal, we integrated an endoscope system into a manipulator and conducted precision bone machining using a neurosurgical drill, recording the grinding resistance values across 3 axes. Our study encompassed 2 core tasks: linear grinding, such as laminectomy, and cylindrical grinding, such as foraminotomy, with each task yielding unique measurement data. RESULTS: In linear grinding, we observed a proportional increase in grinding resistance values in the machining direction with acceleration. This observation suggests that 3-axis resistance measurements are a valuable tool for gauging and predicting deep cortical penetration. However, problems occurred in cylindrical grinding, and a significant error of 10% was detected. The analysis revealed that multiple factors, including the tool tip efficiency, machining speed, teaching methods, and deflection in the robot arm and jig joints, contributed to this error. CONCLUSION: We successfully measured the resistance exerted on the tool tip during bone machining with a robotic arm across 3 axes. The resistance ranged from 3 to 8 Nm, with the measurement conducted at a processing speed approximately twice that of manual surgery performed by a surgeon. During the simulation of foraminotomy under endoscopic grinding conditions, we encountered a -10% error margin.

SELECTION OF CITATIONS
SEARCH DETAIL
...