Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
J Med Virol ; 96(4): e29607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628076

ABSTRACT

Hepatitis B e antigen (HBeAg) seropositivity during the natural history of chronic hepatitis B (CHB) is known to coincide with significant increases in serum and intrahepatic HBV DNA levels. However, the precise underlying mechanism remains unclear. In this study, we found that PreC (HBeAg precursor) genetic ablation leads to reduced viral replication both in vitro and in vivo. Furthermore, PreC impedes the proteasomal degradation of HBV polymerase, promoting viral replication. We discovered that PreC interacts with SUV39H1, a histone methyltransferase, resulting in a reduction in the expression of Cdt2, an adaptor protein of CRL4 E3 ligase targeting HBV polymerase. SUV39H1 induces H3K9 trimethylation of the Cdt2 promoter in a PreC-induced manner. CRISPR-mediated knockout of endogenous SUV39H1 or pharmaceutical inhibition of SUV39H1 decreases HBV loads in the mouse liver. Additionally, genetic depletion of Cdt2 in the mouse liver abrogates PreC-related HBV replication. Interestingly, a negative correlation of intrahepatic Cdt2 with serum HBeAg and HBV DNA load was observed in CHB patient samples. Our study thus sheds light on the mechanistic role of PreC in inducing HBV replication and identifies potential therapeutic targets for HBV treatment.


Subject(s)
Hepatitis B virus , Hepatitis B, Chronic , Animals , Humans , Mice , DNA, Viral , Hepatitis B e Antigens , Hepatitis B virus/genetics , Methyltransferases , Repressor Proteins/genetics , Virus Replication
2.
PeerJ ; 12: e17222, 2024.
Article in English | MEDLINE | ID: mdl-38650654

ABSTRACT

Targeting tumor angiogenesis is an important approach in advanced tumor therapy. Here we investigated the effect of the suppressor of variegation 3-9 homolog 1 (SUV39H1) on tumor angiogenesis in oral squamous cell carcinoma (OSCC). The GEPIA database was used to analyze the expression of SUV39H1 in various cancer tissues. The expression of SUV39H1 in OSCC was detected by immunohistochemistry, and the correlation between SUV39H1 and Notch1 and microvascular density (MVD) was analyzed. The effect of SUV39H1 inhibition on OSCC was investigated in vivo by chaetocin treatment. The migration and tube formation of vascular endothelial cells by conditioned culture-medium of different treatments of oral squamous cell cells were measured. The transcriptional level of SUV39H1 is elevated in various cancer tissues. The transcription level of SUV39H1 in head and neck squamous cell carcinoma was significantly higher than that in control. Immunohistochemistry result showed increased SUV39H1 expression in OSCC, which was significantly correlated with T staging. The expression of SUV39H1 was significantly correlated with Notch1 and CD31. In vivo experiment chaetocin treatment significantly inhibit the growth of tumor, and reduce SUV39H1, Notch1, CD31 expression. The decreased expression of SUV39H1 in OSCC cells lead to the decreased expression of Notch1 and VEGF proteins, as well as the decreased migration and tube formation ability of vascular endothelial cells. Inhibition of Notch1 further enhance this effect. Our results suggest inhibition of SUV39H1 may affect angiogenesis by regulating Notch1 expression. This study provides a foundation for SUV39H1 as a potential therapeutic target for OSCC.


Subject(s)
Carcinoma, Squamous Cell , Methyltransferases , Mouth Neoplasms , Neovascularization, Pathologic , Receptor, Notch1 , Repressor Proteins , Humans , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Mouth Neoplasms/pathology , Mouth Neoplasms/metabolism , Mouth Neoplasms/drug therapy , Mouth Neoplasms/blood supply , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Animals , Repressor Proteins/metabolism , Repressor Proteins/genetics , Methyltransferases/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/genetics , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/blood supply , Cell Line, Tumor , Mice , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Angiogenesis
3.
J Transl Med ; 22(1): 216, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424632

ABSTRACT

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, but the early diagnosis rate is low. The RNA-binding ubiquitin ligase MEX3C promotes tumorigenesis in several cancers but its mechanism of action in LUAD is unclear. In this study, the biological activity of MEX3C was assessed in LUAD. MEX3C and RUNX3 mRNA levels in the tissues of LUAD patients were determined using reverse transcription­quantitative PCR. The involvement of MEX3C in the growth and metastasis of LUAD cells was measured by EdU assay, CCK-8, colony formation, Transwell assay, TUNEL, and flow cytometry. Expression of apoptosis and epithelial-mesenchymal transition related proteins were determined using western blotting analysis. LUAD cells transfected with si-MEX3C were administered to mice subcutaneously to monitor tumor progression and metastasis. We found that MEX3C is strongly upregulated in LUAD tissue sections, and involved in proliferation and migration. A549 and H1299 cells had significantly higher levels of MEX3C expression compared to control HBE cells. Knockdown of MEX3C dramatically decreased cell proliferation, migration, and invasion, and accelerated apoptosis. Mechanistically, we demonstrate MEX3C induces ubiquitylation and degradation of tumor suppressor RUNX3. Moreover, RUNX3 transcriptionally represses Suv39H1, as revealed by RNA pull-down and chromatin immunoprecipitation assays. The in vivo mice model demonstrated that knockdown of MEX3C reduced LUAD growth and metastasis significantly. Collectively, we reveal a novel MEX3C-RUNX3-Suv39H1 signaling axis driving LUAD pathogenesis. Targeting MEX3C may represent a promising therapeutic strategy against LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Animals , Humans , Mice , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic , Ligases/genetics , Ligases/metabolism , Lung Neoplasms/pathology , MicroRNAs/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitination
4.
J Biol Chem ; 300(3): 105714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309502

ABSTRACT

Inhibition of protein kinase C (PKC) efficiently promoted the self-renewal of embryonic stem cells (ESCs). However, information about the function of PKC inhibition remains lacking. Here, RNA-sequencing showed that the addition of Go6983 significantly inhibited the expression of de novo methyltransferases (Dnmt3a and Dnmt3b) and their regulator Dnmt3l, resulting in global hypomethylation of DNA in mouse ESCs. Mechanistically, PR domain-containing 14 (Prdm14), a site-specific transcriptional activator, partially contributed to Go6983-mediated repression of Dnmt3 genes. Administration of Go6983 increased Prdm14 expression mainly through the inhibition of PKCδ. High constitutive expression of Prdm14 phenocopied the ability of Go6983 to maintain` mouse ESC stemness in the absence of self-renewal-promoting cytokines. In contrast, the knockdown of Prdm14 eliminated the response to PKC inhibition and substantially impaired the Go6983-induced resistance of mouse ESCs to differentiation. Furthermore, liquid chromatography-mass spectrometry profiling and Western blotting revealed low levels of Suv39h1 and Suv39h2 in Go6983-treated mouse ESCs. Suv39h enzymes are histone methyltransferases that recognize dimethylated and trimethylated histone H3K9 specifically and usually function as transcriptional repressors. Consistently, the inhibition of Suv39h1 by RNA interference or the addition of the selective inhibitor chaetocin increased Prdm14 expression. Moreover, chromatin immunoprecipitation assay showed that Go6983 treatment led to decreased enrichment of dimethylation and trimethylation of H3K9 at the Prdm14 promoter but increased RNA polymerase Ⅱ binding affinity. Together, our results provide novel insights into the pivotal association between PKC inhibition-mediated self-renewal and epigenetic changes, which will help us better understand the regulatory network of stem cell pluripotency.


Subject(s)
DNA-Binding Proteins , Mouse Embryonic Stem Cells , Protein Kinase C , Animals , Mice , DNA Methylation , DNA-Binding Proteins/metabolism , Indoles/pharmacology , Maleimides/pharmacology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/enzymology , Mouse Embryonic Stem Cells/physiology , Protein Kinase C/genetics , Protein Kinase C/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Protein Kinase Inhibitors/pharmacology
5.
Phytother Res ; 38(3): 1313-1328, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38194947

ABSTRACT

5-Fluorouracil is a commonly used chemotherapy drug for colorectal cancer. Resistance to 5-Fluorouracil remains a challenge. This research aimed to explore the mechanism of 5-Fluorouracil resistance in colorectal cancer. RT-qPCR and Western blot were used to determine the RNA and protein expression in both cells and exosome. Assays in vitro and in vivo were performed to measure the role of miR-149-5p in colorectal cancer cells. RIP, luciferase activity report, and RNA pulldown assay were applied to detect the association of PTOV1-AS1, SUV39H1, miR-149-5p, and FOXM1. MiR-149-5p was down-expressed in 5-Fluorouracil-resistant cells. MiR-149-5p enhanced the effectiveness of 5-Fluorouracil both in vitro and in vivo. Sensitive colorectal cancer cells released exosomal miR-149-5p to sensitize resistant cells to chemotherapy. Mechanistically, miR-149-5p targeted the FOXM1 to inactivate Wnt/ß-catenin pathway, and PTOV1-AS1 recruited SUV39H1 to suppress miR-149-5p transcription, in turn activating Wnt/ß-catenin pathway, and forming a positive feedback loop with FOXM1. PTOV1-AS1 inhibits miR-149-5p by a positive feedback loop with FOXM1-mediated Wnt/ß-catenin pathway, which provides insights into a potential novel target for enhancing the effectiveness of chemotherapy in colorectal cancer patients.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , MicroRNAs/genetics , beta Catenin/metabolism , Cell Line, Tumor , Feedback , Cell Proliferation , Wnt Signaling Pathway , Fluorouracil , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , RNA, Long Noncoding/genetics , Neoplasm Proteins/metabolism , Biomarkers, Tumor/therapeutic use
6.
Mol Neurobiol ; 61(1): 487-497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37626270

ABSTRACT

Histone post-translational modifications play an important role in the regulation of long-term memory and modulation of expression of neuronal immediate early genes (IEGs). The lysine methyltransferase KMT1A/ Suv39h1 (a mammalian ortholog of the Drosophila melanogaster SU (VAR) 3-9) aids in the methylation of histone H3 at lysine 9. We previously reported that age-related memory decline is associated with an increase in Suv39h1 expression in the hippocampus of male mice. The scopolamine-induced amnesic mouse model is a well-known animal model of memory impairment. In the current study, we have made an attempt to find a link between the changes in the H3K9 trimethylation pattern and memory decline during scopolamine-induced amnesia. It was followed by checking the effect of siRNA-mediated silencing of hippocampal Suv39h1 on memory and expression of neuronal IEGs. Scopolamine treatment significantly increased global levels of H3K9me3 and Suv39h1 in the amnesic hippocampus. Suv39h1 silencing in amnesic mice reduced H3K9me3 levels at the neuronal IEGs (Arc and BDNF) promoter, increased the expression of Arc and BDNF in the hippocampus, and improved recognition memory. Thus, these findings suggest that the silencing of Suv39h1 alone or in combination with other epigenetic drugs might be effective for treating memory decline during amnesia.


Subject(s)
Brain-Derived Neurotrophic Factor , Scopolamine , Animals , Male , Mice , Amnesia/chemically induced , Amnesia/drug therapy , Amnesia/genetics , Brain-Derived Neurotrophic Factor/metabolism , Drosophila melanogaster/metabolism , Histones/metabolism , Lysine/metabolism , Mammals/metabolism , Memory Disorders/drug therapy
7.
Neuro Oncol ; 26(4): 735-748, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38011799

ABSTRACT

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPG/DMG) are devastating pediatric brain tumors with extraordinarily limited treatment options and uniformly fatal prognosis. Histone H3K27M mutation is a common recurrent alteration in DIPG and disrupts epigenetic regulation. We hypothesize that genome-wide H3K27M-induced epigenetic dysregulation makes tumors vulnerable to epigenetic targeting. METHODS: We performed a screen of compounds targeting epigenetic enzymes to identify potential inhibitors for the growth of patient-derived DIPG cells. We further carried out transcriptomic and genomic landscape profiling including RNA-seq and CUT&RUN-seq as well as shRNA-mediated knockdown to assess the effects of chaetocin and SUV39H1, a target of chaetocin, on DIPG growth. RESULTS: High-throughput small-molecule screening identified an epigenetic compound chaetocin as a potent blocker of DIPG cell growth. Chaetocin treatment selectively decreased proliferation and increased apoptosis of DIPG cells and significantly extended survival in DIPG xenograft models, while restoring H3K27me3 levels. Moreover, the loss of H3K9 methyltransferase SUV39H1 inhibited DIPG cell growth. Transcriptomic and epigenomic profiling indicated that SUV39H1 loss or inhibition led to the downregulation of stemness and oncogenic networks including growth factor receptor signaling and stemness-related programs; however, D2 dopamine receptor (DRD2) signaling adaptively underwent compensatory upregulation conferring resistance. Consistently, a combination of chaetocin treatment with a DRD2 antagonist ONC201 synergistically increased the antitumor efficacy. CONCLUSIONS: Our studies reveal a therapeutic vulnerability of DIPG cells through targeting the SUV39H1-H3K9me3 pathway and compensatory signaling loops for treating this devastating disease. Combining SUV39H1-targeting chaetocin with other agents such as ONC201 may offer a new strategy for effective DIPG treatment.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Imidazoles , Pyridines , Pyrimidines , Child , Humans , Epigenesis, Genetic , Histones/genetics , Diffuse Intrinsic Pontine Glioma/genetics , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Methyltransferases/genetics , Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Piperazines
8.
BMC Cancer ; 23(1): 1159, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017386

ABSTRACT

BACKGROUND: As a histone methyltransferase, suppressor of variegation 3-9 homolog 1 (SUV39H1) plays an important role in the occurrence and development of cancer. To explore the mechanism and biological function of SUV39H1 in hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC) can gain an insight into the pathogenesis of HBV-HCC. METHODS: The effect of HBV infection on SUV39H1 in hepatoma cells was detected. CCK-8, colony growth assay and wound healing assay were used to assess the proliferation and migration of HBV-positive hepatoma cells. RNA sequencing (RNA-seq) was applied to find differential genes and enriched pathways. The serum SUV39H1 level in HBV-HCC patients was detected and its correlation with clinical indicators was analyzed. RESULTS: SUV39H1 was increased by HBV infection and promoted the proliferation and migration of hepatoma cells. SUV39H1 could upregulate the expression of mitochondrial oxidative phosphorylation (OXPHOS) pathway-related genes. OXPHOS pathway inhibitors could reduce the capacity of proliferation and migration of hepatoma cells after overexpressing SUV39H1. Serum SUV39H1 levels were higher in chronic hepatitis B (CHB) patients than in healthy controls and higher in HBV-HCC patients than in CHB patients. In the diagnosis of HCC, the predictive value of SUV39H1 combined with alpha-fetoprotein (AFP) was better than that of AFP alone. CONCLUSION: SUV39H1 is regulated by HBV infection and promotes the proliferation and migration of hepatoma cells by targeting OXPHOS pathway. It indicates that SUV39H1 may be a new biomarker of the diagnosis of HCC.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Hepatitis B virus/metabolism , alpha-Fetoproteins/metabolism , Liver Neoplasms/pathology , Oxidative Phosphorylation , Biomarkers , Hepatitis B/complications , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Methyltransferases/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism
9.
Cells ; 12(20)2023 10 11.
Article in English | MEDLINE | ID: mdl-37887281

ABSTRACT

Salivary gland tumors (SGTs) are rare and complex neoplasms characterized by heterogenous histology and clinical behavior as well as resistance to systemic therapy. Tumor etiology is currently under elucidation and an interplay of genetic and epigenetic changes has been proposed to contribute to tumor development. In this work, we investigated epigenetic regulators and histone-modifying factors that may alter gene expression and participate in the pathogenesis of SGT neoplasms. We performed a detailed bioinformatic analysis on a publicly available RNA-seq dataset of 94 ACC tissues supplemented with clinical data and respective controls and generated a protein-protein interaction (PPI) network of chromatin and histone modification factors. A significant upregulation of TP53 and histone-modifying enzymes SUV39H1, EZH2, PRMT1, HDAC8, and KDM5B, along with the upregulation of DNA methyltransferase DNMT3A and ubiquitin ligase UHRF1 mRNA levels, as well as a downregulation of lysine acetyltransferase KAT2B levels, were detected in ACC tissues. The protein expression of p53, SUV39H1, EZH2, and HDAC8 was further validated in SGT tissues along with their functional deposition of the repressive histone marks H3K9me3 and H3K27me3, respectively. Overall, this study is the first to detect a network of interacting proteins affecting chromatin structure and histone modifications in salivary gland tumor cells, further providing mechanistic insights in the molecular profile of SGTs that confer to altered gene expression programs.


Subject(s)
Histones , Salivary Gland Neoplasms , Humans , Histones/metabolism , Chromatin , Methyltransferases/metabolism , Epigenesis, Genetic , Salivary Gland Neoplasms/genetics , Protein-Arginine N-Methyltransferases/metabolism , Repressor Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Histone Deacetylases/metabolism
10.
Cancer Genomics Proteomics ; 20(6): 582-591, 2023.
Article in English | MEDLINE | ID: mdl-37889057

ABSTRACT

BACKGROUND/AIM: The role of postoperative radiotherapy (RT) combined with chemotherapy (CT) for lymph node-positive (LN+) triple-negative breast cancer (TNBC) remains controversial. SUV39H1-mediated epigenetic regulation is associated with cancer cell migration, invasion, metastasis, and treatment resistance. This study aims to identify the role of SUV39H1 in TNBCs. MATERIALS AND METHODS: Overall, 498 TNBCs with SUV39H1 RNA-seq profiles were retrieved from TCGA-BRCA and analyzed; the X-tile algorithm was used to stratify the population into low, intermediate, and high SUV39H1. Furthermore, we performed an in vitro clonogenic cell survival assay using the MDA-MB-231 cell line to assess the effects of SUV39H1 on cellular responses. RESULTS: The results showed that SUV39H1 was significantly higher in TNBC than normal tissue and luminal subtype breast cancer. Notably, SUV39H1 is significantly expressed in the basal-like 1 (BL1) and immunomodulatory (IM) subgroups, compared to other subtypes. Compared to patients with a low or medium expression of SUV39H1, omitting RT only worsens disease-free survival (DFS) in those with high SUV39H1 expression. The experimental results showed SUV39H1 was suppressed by si-SUV39H1, and SUV39H1 knockdown in MDA-MB-231-IV2-1 cells enhanced the cellular toxicity of doxorubicin and paclitaxel. CONCLUSION: Targeting SUV39H1 may provide a potential guiding indication of omitting RT to avoid over-treatment and chemosensitivity for TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/radiotherapy , Cell Line, Tumor , Epigenesis, Genetic , Paclitaxel/therapeutic use , Lymph Nodes/pathology , Methyltransferases/metabolism , Methyltransferases/therapeutic use , Repressor Proteins/metabolism
11.
Cell Transplant ; 32: 9636897231198167, 2023.
Article in English | MEDLINE | ID: mdl-37811706

ABSTRACT

Peripheral arterial disease (PAD), characterized by atherosclerosis of the peripheral arteries or even amputation, has threatened public life and health. However, the underlying mechanism remains largely obscure. SUV39H1, a histone methyltransferase, could specifically methylate lysine 9 of histone H3 and act as a repressor in transcriptional activity. The study aimed to investigate the role of SUV39H1 in limb ischemia. C57BL/6 male mice were randomly divided into Sham or Model groups to investigate the expression of SUV39H1 in the ischemic limbs. Then, pharmaceutical inhibition or genetic deletion of SUV39H1 in the limb ischemia mice model was performed to confirm its effect on limb ischemia. The blood perfusion was quantified by laser speckle contrast imaging (LSCI). Capillary density and muscle edema were measured by CD31 immunohistochemical staining and HE staining. The expressions of SUV39H1 and Catalase were confirmed by western blot. Transcriptome sequencing of siSUV39H1 in human umbilical vein endothelial cells (HUVECs) was used to explore the regulation mechanism of SUV39H1 on angiogenesis. The results showed that SUV39H1 was highly expressed in the ischemic muscle tissue of the mice. Pharmaceutical inhibition or genetic deletion of SUV39H1 significantly improved blood perfusion, capillary density, and angiogenesis in ischemic muscle tissue. Cell experiments showed that SUV39H1 knockdown promoted cell migration, tube formation, and mitochondrial membrane potential in endothelial cells under oxidative stress. The transcriptome sequencing results unmasked mechanisms of the regulation of angiogenesis induced by SUV39H1. Finally, Salvianolic acid B and Astragaloside IV were identified as potential drug candidates for the improvement of endothelial function by repressing SUV39H1. Our study reveals a new mechanism in limb ischemia. Targeting SUV39H1 could improve endothelial dysfunction and thus prevent limb ischemia.


Subject(s)
Ischemia , Neovascularization, Physiologic , Male , Humans , Mice , Animals , Mice, Inbred C57BL , Ischemia/metabolism , Human Umbilical Vein Endothelial Cells , Disease Models, Animal , Pharmaceutical Preparations , Hindlimb/blood supply , Muscle, Skeletal , Methyltransferases/genetics , Repressor Proteins/genetics
12.
Mech Ageing Dev ; 215: 111868, 2023 10.
Article in English | MEDLINE | ID: mdl-37666472

ABSTRACT

Aging-related diseases are closely associated with the state of inflammation, which is known as "inflammaging." Senescent cells are metabolically active, as exemplified by the secretion of inflammatory cytokines, chemokines, and growth factors, which is termed the senescence-associated secretory phenotype (SASP). Epigenetic regulation, especially the structural regulation of chromatin, is closely linked to the regulation of SASP. In our previous study, the suppressor of variegation 3-9 homolog 1 (SUV39H1) was elucidated to interact with Lhx8 and determine the cell fate of mesenchyme stem cells. However, the function of SUV39H1 during aging and the underlying mechanism of its epigenetic regulation remains controversial. Therefore, the C57BL/6 J CAG-Cre; SUV39H1fl/fl knockout mice and irradiation-induced cellular senescence model were built in this study to deepen the understanding of epigenetic regulation by SUV39H1 and its relation to SASP. In vivo and in vitro studies demonstrated that SUV39H1 decreased with aging and served as an inhibitor of SASP, especially IL-6, MCP-1, and Vcam-1, by altering H3K9me3 enrichment in their promoter region. These results provide new insights into the epigenetic regulation of SASP.


Subject(s)
Epigenesis, Genetic , Histones , Senescence-Associated Secretory Phenotype , Animals , Mice , Aging , Cellular Senescence , Histone Methyltransferases/metabolism , Histones/metabolism , Mice, Inbred C57BL , Stem Cells/metabolism , Senescence-Associated Secretory Phenotype/genetics
13.
Biochemistry (Mosc) ; 88(7): 968-978, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37751867

ABSTRACT

Epigenetic genome regulation during malignant cell transformation is characterized by the aberrant methylation and acetylation of histones. Vorinostat (SAHA) is an epigenetic modulator actively used in clinical oncology. The antitumor activity of vorinostat is commonly believed to be associated with the inhibition of histone deacetylases, while the impact of this drug on histone methylation has been poorly studied. Using HeLa TI cells as a test system allowing evaluation of the effect of epigenetically active compounds from the expression of the GFP reporter gene and gene knockdown by small interfering RNAs, we showed that vorinostat not only suppressed HDAC1, but also reduced the activity of EZH2, SUV39H1, SUV39H2, and SUV420H1. The ability of vorinostat to suppress expression of EZH2, SUV39H1/2, SUV420H1 was confirmed by Western blotting. Vorinostat also downregulated expression of SUV420H2 and DOT1L enzymes. The data obtained expand our understanding of the epigenetic effects of vorinostat and demonstrate the need for a large-scale analysis of its activity toward other enzymes involved in the epigenetic genome regulation. Elucidation of the mechanism underlying the epigenetic action of vorinostat will contribute to its more proper use in the treatment of tumors with an aberrant epigenetic profile.


Subject(s)
Epigenesis, Genetic , Vorinostat/pharmacology , Histone Methyltransferases , Genes, Reporter , Blotting, Western
14.
Clin. transl. oncol. (Print) ; 25(8): 2438-2450, aug. 2023. ilus
Article in English | IBECS | ID: ibc-222421

ABSTRACT

Background The tumor microenvironment plays a crucial role in the oncogenesis and treatment of diffuse large B-cell lymphoma (DLBCL). The H3K9me3-specific histone methyltransferase Suppressor of variegation 3-9 homolog 1 (SUV39H1) is a significant gene that promotes the progression of various malignancies. However, the specific expression of SUV39H1 in DLBCL remains unclear. Methods By retrieving data from GEPIA, UCSC XENA and TCGA public databases, we observed the high expression of SUV39H1 in DLBCL. Combined with an immunohistochemical validation assay, we analyzed our hospital’s clinical characteristics and prognosis of 67 DLBCL patients. The results showed that high SUV39H1 expression was closely associated with age over 50 years (P = 0.014) and low albumin levels (P = 0.023) of patients. Furthermore, the experiments in vitro were deployed to evaluate the regulation of SUV39H1 on the DLBCL immune microenvironment. Results The results showed that high SUV39H1 expression was closely associated with age over 50 years (P = 0.014) and low albumin levels (P = 0.023) of patients. The prognostic analysis showed that the high SUV39H1 expression group had a lower disease-free survival (DFS) rate than the low SUV39H1 expression group (P < 0.05). We further discovered that SUV39H1 upregulated the expression of CD86+ and CD163+ tumor-associated macrophages by DLBCL patients’ tissues and cell experiments in vitro (P < 0.05). And SUV39H1-associated T lymphocyte subsets and cytokines IL-6/CCL-2 were downregulated in DLBCL (P < 0.05). Conclusions In summary, SUV39H1 might be not only a potential target for treating DLBCL but also a clinical indicator for doctors to evaluate the trend of disease development (AU)


Subject(s)
Humans , Middle Aged , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/immunology , Biomarkers, Tumor , Tumor Microenvironment , Albumins/therapeutic use , Cytokines/metabolism , Methyltransferases/metabolism , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Prognosis
15.
Cancer Cell ; 41(6): 1118-1133.e12, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37267951

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) is the major sensor for cytosolic DNA and activates type I interferon signaling and plays an essential role in antitumor immunity. However, it remains unclear whether the cGAS-mediated antitumor activity is affected by nutrient status. Here, our study reports that methionine deprivation enhances cGAS activity by blocking its methylation, which is catalyzed by methyltransferase SUV39H1. We further show that methylation enhances the chromatin sequestration of cGAS in a UHRF1-dependent manner. Blocking cGAS methylation enhances cGAS-mediated antitumor immunity and suppresses colorectal tumorigenesis. Clinically, cGAS methylation in human cancers correlates with poor prognosis. Thus, our results indicate that nutrient stress promotes cGAS activation via reversible methylation, and suggest a potential therapeutic strategy for targeting cGAS methylation in cancer treatment.


Subject(s)
Chromatin , Methionine , Humans , Chromatin/genetics , Methionine/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , DNA , Immunity, Innate , Demethylation , CCAAT-Enhancer-Binding Proteins/genetics , Ubiquitin-Protein Ligases/genetics
16.
Clin Transl Oncol ; 25(8): 2438-2450, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37029239

ABSTRACT

BACKGROUND: The tumor microenvironment plays a crucial role in the oncogenesis and treatment of diffuse large B-cell lymphoma (DLBCL). The H3K9me3-specific histone methyltransferase Suppressor of variegation 3-9 homolog 1 (SUV39H1) is a significant gene that promotes the progression of various malignancies. However, the specific expression of SUV39H1 in DLBCL remains unclear. METHODS: By retrieving data from GEPIA, UCSC XENA and TCGA public databases, we observed the high expression of SUV39H1 in DLBCL. Combined with an immunohistochemical validation assay, we analyzed our hospital's clinical characteristics and prognosis of 67 DLBCL patients. The results showed that high SUV39H1 expression was closely associated with age over 50 years (P = 0.014) and low albumin levels (P = 0.023) of patients. Furthermore, the experiments in vitro were deployed to evaluate the regulation of SUV39H1 on the DLBCL immune microenvironment. RESULTS: The results showed that high SUV39H1 expression was closely associated with age over 50 years (P = 0.014) and low albumin levels (P = 0.023) of patients. The prognostic analysis showed that the high SUV39H1 expression group had a lower disease-free survival (DFS) rate than the low SUV39H1 expression group (P < 0.05). We further discovered that SUV39H1 upregulated the expression of CD86+ and CD163+ tumor-associated macrophages by DLBCL patients' tissues and cell experiments in vitro (P < 0.05). And SUV39H1-associated T lymphocyte subsets and cytokines IL-6/CCL-2 were downregulated in DLBCL (P < 0.05). CONCLUSIONS: In summary, SUV39H1 might be not only a potential target for treating DLBCL but also a clinical indicator for doctors to evaluate the trend of disease development.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Humans , Middle Aged , Prognosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology , Cytokines/metabolism , Albumins/therapeutic use , Tumor Microenvironment , Methyltransferases/metabolism , Repressor Proteins/metabolism
17.
Biochem Biophys Res Commun ; 640: 56-63, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36502632

ABSTRACT

Carcinogenesis is often associated with alteration of epigenetic marks, including histone modifications. The global level and local distribution of specific histone modifications have been revealed to be prognostic factors in many cancers. However, the functional roles of histone modifications in oral squamous cell carcinoma (OSCC) remain unclear. This study investigates the levels of various histone modifications in 6 types of OSCC cell lines. We found that the level of H3K9me3 was significantly high in metastatic cell lines. In addition, the loss of H3K9me3 by SUV39H1 and SUV39H2 knockdown suppressed cell proliferation and cell migration. Our results indicate that a high level of H3K9me3 could be a marker of metastasis and possibly a therapeutic target for OSCC treatment.


Subject(s)
Histones , Mouth Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Cell Line, Tumor , Histones/metabolism , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology
18.
Recent Pat Anticancer Drug Discov ; 18(3): 397-407, 2023.
Article in English | MEDLINE | ID: mdl-36065932

ABSTRACT

BACKGROUND: Gliotoxin, a secondary metabolite isolated from marine-derived Aspergillus fumigatus, has demonstrated anti-tumor properties in several cancers. Ferroptosis, a recently discovered type of programmed cell death that depends on the accumulation of iron and lipid peroxides, participates in the occurrence and development of various diseases, including cancer. A recent patent, US20200383943, has suggested that the promotion of ferroptosis is a method of cancer treatment. Therefore, the development of drugs that induce ferroptosis in cancer cells would constitute a novel therapeutic approach. OBJECTIVE: Gliotoxin is a natural compound which has exhibited anti-tumor properties in multiple cancers, however, studies of the effect of gliotoxin on esophageal cancer are lacking. Although cancer treatment has shown great progress, including traditional surgery, chemotherapy, radiotherapy, and immunotherapy, the prognosis of esophageal cancer is still poor. Therefore, the development of new treatment approaches for esophageal cancer is necessary. METHODS: The effects of gliotoxin on esophageal cancer cells were determined by functional assays, such as CCK-8, wound healing and transwell assays. We used online tools to predict the target genes of gliotoxin, followed by further verification using Western blotting assays. To assess the role of gliotxin in inducing ferroptosis in esophageal cancer, we detected characteristics associated with ferroptosis including ROS, MDA, GSH and Fe2+. RESULTS: Using online tools SEA and SwissTargetPrediction, we predicted that SUV39H1 was the gliotoxin target gene. Furthermore, in esophageal cancer tissues, SUV39H1 was expressed at higher levels than in normal tissues, while in patients with Esophageal Squamous Cell Carcinoma (ESCC), high expression levels of SUV39H1 indicated a poor prognosis. In vitro, we observed that gliotoxin increased ESCC cell death and inhibited cell migration. We treated ESCC cells with pan-caspase inhibitor Z-VAD-FMK or ferroptosis inhibitors, including Fer-1 and DFO. Our results showed that Fer-1 and DFO reduced the toxic effects of gliotoxin, while Z-VAD-FMK did not. Furthermore, gliotoxin treatment reduced tumor weight and volume in the xenograft tumor mouse model. CONCLUSION: In summary, our findings indicate that gliotoxin downregulated SUV39H1 expression in ESCC cells and induced ferroptosis, suggesting a novel natural therapy for ESSC.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Ferroptosis , Gliotoxin , Humans , Animals , Mice , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gliotoxin/pharmacology , Gliotoxin/therapeutic use , Cell Line, Tumor , Patents as Topic , Cell Proliferation/genetics , Methyltransferases , Repressor Proteins
19.
Clin Epigenetics ; 14(1): 181, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36536372

ABSTRACT

BACKGROUND: Overproduction of cAMP-responsive element modulator α (CREMα) in total T cells from patients with systemic lupus erythematosus (SLE) can inhibit IL-2 and increase IL-17A. These ultimately promote progression of SLE. This study aims to investigate the expression of CREMα in SLE CD4+ T cells and find out the mechanisms for the regulation of CREMα in SLE CD4+ T cells. RESULTS: CREMα mRNA was overexpressed in CD4+ T cells from SLE patients. The levels of histone H3 lysine 9 trimethylation (H3K9me3) and suppressor of variation 3-9 homolog 1 (SUV39H1) at the CREMα promoter of SLE CD4+ T cells were markedly decreased. Down-regulating SUV39H1 in normal CD4+ T cells elevated the levels of CREMα, IL-17A, and histone H3 lysine 4 trimethylation (H3K4me3) in the CREMα promoter region, and lowered IL-2, H3K9me3, DNA methylation, and DNA methyltransferase 3a (DNMT3a) enrichments within the CREMα promoter, while no sharp change in SET domain containing 1 (Set1) at the CREMα promoter. Up-regulating SUV39H1 in SLE CD4+ T cells had the opposite effects. The DNA methylation and DNMT3a levels were obviously reduced, and H3K4me3 enrichment was greatly increased at the CREMα promoter of CD4+ T cells from SLE patients. The Set1 binding in the CREMα promoter region upgraded significantly, and knocking down Set1 in SLE CD4+ T cells alleviated the H3K4me3 enrichment within this region, suppressed CREMα and IL-17A productions, and promoted the levels of IL-2, CREMα promoter DNA methylation, and DNMT3a. But there were no obviously alterations in H3K9me3 and SUV39H1 amounts in the region after transfection. CONCLUSIONS: Decreased SUV39H1 in the CREMα promoter region of CD4+ T cells from SLE patients contributes to under-expression of H3K9me3 at this region. In the meantime, the Set1 binding at the CREMα promoter of SLE CD4+ T cells is up-regulated. As a result, DNMT3a and DNA methylation levels alleviate, and H3K4me3 binding increases. All these lead to overproduction of CREMα. Thus, the secretion of IL-2 down-regulates and the concentration of IL-17A up-regulates, ultimately promoting SLE.


Subject(s)
Cyclic AMP Response Element Modulator , Histones , Lupus Erythematosus, Systemic , Methyltransferases , Repressor Proteins , Humans , Autoimmunity/genetics , CD4-Positive T-Lymphocytes/metabolism , DNA Methylation , DNA Methyltransferase 3A , Histones/metabolism , Interleukin-17/genetics , Interleukin-2/genetics , Interleukin-2/metabolism , Lupus Erythematosus, Systemic/genetics , Lysine/metabolism , Methyltransferases/genetics , Promoter Regions, Genetic , Repressor Proteins/genetics , T-Lymphocytes/metabolism , Cyclic AMP Response Element Modulator/metabolism
20.
Niger J Clin Pract ; 25(9): 1387-1392, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36149194

ABSTRACT

Background: Androgen receptor (AR) contributes to the growth of both early- and late-stage prostate cancer. Overexpression of suppressor of variegation 3-9 homolog 1 (SUV39H1) increases migration of prostate cancer cells, while depletion of SUV39H1 suppresses migration of prostate cancer cells. Aim: In this study, the aim was to show the relationships of AR and SUV39H1 with adenomyomatous hyperplasia (AH) and prostate adenocarcinoma (PCa). Materials and Methods: 70 AH and 70 PCa preparations in Pathology Department from 2013 to 16 were retrospectively investigated. Samples with immunohistochemical staining for AR and SUV39H1 were evaluated with a light microscope. After pathologic investigation of samples, AR and SUV39H1 expressions were scored. The changes in the frequencies of the obtained scores in the AH and PCa groups were analyzed statistically. Results: AR expression was observed to be greater in AH compared to PCa. This difference was found to be statistically significant (p = 0.003). SUV39H1 expression was identified to be greater in PCa compared to AH and this showed statistical significance (p = 0.031). PCa samples were identified to have nearly 1.5 times more SUV39H1 mild staining compared to AH samples and this increase was two times for SUV39H1 strong staining. Conclusion: In our study, AR expression was greater in AH compared to PCa samples. This situation is inverse to the known mechanism and cannot be clearly explained. It needs to be supported with large series and other prognostic parameters. This study observed increased SUV39H1 values in PCa compared to AH and from this aspect, it may be considered an important poor prognosis parameter.


Subject(s)
Adenocarcinoma , Methyltransferases , Prostatic Hyperplasia , Prostatic Neoplasms , Receptors, Androgen , Repressor Proteins , Adenocarcinoma/pathology , Humans , Hyperplasia , Male , Methyltransferases/metabolism , Prostatic Hyperplasia/pathology , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...