Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.623
Filter
1.
Talanta ; 278: 126499, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968652

ABSTRACT

To enhance personalized diabetes management, there is a critical need for non-invasive wearable electrochemical sensors made from flexible materials to enable continuous monitoring of sweat glucose levels. The main challenge lies in developing glucose sensors with superior electrochemical characteristics and high adaptability. Herein, we present a wearable sensor for non-enzymatic electrochemical glucose analysis. The sensor was synthesized using hydrothermal and one-pot preparation methods, incorporating gold nanoparticles (AuNPs) functionalized onto aminated multi-walled carbon nanotubes (AMWCNTs) as an efficient catalyst, and crosslinked with carboxylated styrene butadiene rubber (XSBR) and PEDOT:PSS. The sensors were then integrated onto screen-printed electrodes (SPEs) to create flexible glucose sensors (XSBR-PEDOT:PSS-AMWCNTs/AuNPs/SPE). Operating under neutral conditions, the sensor exhibits a linear range of 50 µmol/L to 600 µmol/L, with a limit of detection limit of 3.2 µmol/L (S/N = 3), enabling the detection of minute glucose concentrations. The flexible glucose sensor maintains functionality after 500 repetitions of bending at a 180° angle, without significant degradation in performance. Furthermore, the sensor exhibits exceptional stability, repeatability, and resistance to interference. Importantly, we successfully monitored changes in sweat glucose levels by applying screen-printed electrodes to human skin, with results consistent with normal physiological blood glucose fluctuations. This study details the fabrication of a wearable sensor characterized by ease of manufacture, remarkable flexibility, high sensitivity, and adaptability for non-invasive blood glucose monitoring through non-enzymatic electrochemical analysis. Thus, this streamlined fabrication process presents a novel approach for non-invasive, real-time blood glucose level monitoring.

2.
J Chromatogr A ; 1730: 465136, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38968663

ABSTRACT

Widespread consumption of drugs of abuse worldwide has caused concern: it adversely affects public health, individual safety, and social structures. Experts are particularly alarmed because new psychoactive substances have been increasingly detected in biological samples. In recent years, several studies have focused on developing methods to identify psychoactive substances in alternative biological matrices, such as sweat. This approach holds promise for monitoring substance use, especially in individuals undergoing rehabilitation. Among the commonly employed analytical procedures, extraction using disposable DPX tips stands out as a novel, miniaturized, and promising technique. This study aimed to validate and to apply a method to analyze various substances, including amphetamine, methamphetamine, MDMA, MDA, MDEA, cocaine, cocaethylene, anhydroecgonine methyl ester, dibutylone, N-ethylpentylone, 25E-NBOMe, 25CNBOMe, 2CC, 2C-E, fentanyl, and carfentanil, in sweat samples simultaneously. In this method, sweat is collected by using laboratory-developed patches, and extraction is conducted with DPX-SCX tips. Gas chromatography coupled to mass spectrometry is employed to separate, to identify, and to quantify the analytes. Validation results indicated that the quantification limit ranged from 2 to 30 ng of analyte/patch, and that the method was linear for analyte concentrations ranging from 2 to 1100 ng/patch. The validated method was applied to analyze 30 sweat samples collected from volunteers drug users and processed by using both the selected ion mode (SIM) and full scan. The method was able to detect and to quantify substances such as cocaine, cocaethylene, anhydroecgonine methyl ester, MDMA, MDA, nicotine, cotinine, caffeine, procaine, lidocaine, and ethylamphetamine simultaneously. The recovery rates ranged from 72.4 % to 97.1 %. The analytes were stable in the biological matrix. In conclusion, the validated method proved effective and allowed the target analytes to be quantified in sweat samples, highlighting that sweat is a viable matrix for analyzing drugs of abuse.

3.
Anal Chim Acta ; 1316: 342852, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38969409

ABSTRACT

BACKGROUND: With the advent of personalized medical approaches, precise and tailored treatments are expected to become widely accepted for the prevention and treatment of diabetes. Paper-based colorimetric sensors that function in combination with smartphones have been rapidly developed in recent years because it does not require additional equipment and is inexpensive and easy to perform. In this study, we developed a portable, low-cost, and wearable sweat-glucose detection device for in situ detection. RESULTS: The sensor adopted an integrated biomimetic nanoenzyme of glucose oxidase (GOx) encapsulated in copper 1, 4-benzenedicarboxylate (CuBDC) (GOx@CuBDC) through a biomimetic mineralization process. CuBDC exhibited a peroxide-like effect, cascade catalytic effect with the encapsulated GOx, and increased the enzyme stability. GOx@CuBDC and 3,3,5,5-tetramethylbenzidine were combined to form a hybrid membrane that achieved single-step paper-based glucose detection. SIGNIFICANCE AND NOVELTY: This GOx@CuBDC-based colorimetric glucose sensor was used to quantitatively analyze the sweat-glucose concentration with smartphone readings. The sensor exhibited a good linear relationship over the concentration range of 40-900 µM and a limit of detection of 20.7 µM (S/N = 3). Moreover, the sensor performed well in situ monitoring and in evaluating variations based on the consumption of foods with different glycemic indices. Therefore, the fabricated wearable sweat-glucose sensors exhibited optimal practical application performance.


Subject(s)
Biosensing Techniques , Colorimetry , Copper , Glucose Oxidase , Glucose , Smartphone , Sweat , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Copper/chemistry , Sweat/chemistry , Humans , Glucose/analysis , Wearable Electronic Devices , Limit of Detection , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism
4.
J Cyst Fibros ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38969603

ABSTRACT

BACKGROUND: Sweat chloride concentration is used both for CF diagnosis and for tracking CFTR modulator efficacy over time, but the relationship between sweat chloride and lung health is heterogeneous and informed by CFTR genotype. Here, we endeavored to characterize ion transport in eccrine sweat glands (ESGs). METHODS: First, ESGs were microdissected from a non-CF skin donor to analyze individual glands. We established primary cultures of ESG cells via conditional reprogramming for functional testing of ion transport by short circuit current measurement and examined cell composition by single-cell RNA-sequencing (scRNA-seq) comparing with whole dissociated ESGs. Secondly, we cultured nasal epithelial (NE) cells and ESGs from two people with CF (pwCF) to assess modulator efficacy. Finally, NEs and ESGs were grown from one person with the CFTR genotype F312del/F508del to explore genotype-phenotype heterogeneity. RESULTS: ESG primary cells from individuals without CF demonstrated robust ENaC and CFTR function. scRNA-seq demonstrated both secretory and ductal ESG markers in cultured ESG cells. In both NEs and ESGs from pwCF homozygous for F508del, minimal baseline CFTR function was observed, and treatment with CFTR modulators significantly enhanced function. Notably, NEs from an individual bearing F312del/F508del exhibited significant baseline CFTR function, whereas ESGs from the same person displayed minimal CFTR function, consistent with observed phenotype. CONCLUSIONS: This study has established a novel primary culture technique for ESGs that allows for functional ion transport measurement to assess modulator efficacy and evaluate genotype-phenoytpe heterogeneity. To our knowledge, this is the first reported application of conditional reprogramming and scRNA-seq of microdissected ESGs.

5.
Article in English | MEDLINE | ID: mdl-38958653

ABSTRACT

Hydrogels, as flexible materials, have been widely used in the field of flexible sensors. Human sweat contains a variety of biomarkers that can reflect the physiological state of the human body. Therefore, it is of great practical significance and application value to realize the detection of sweat composition and combine it with human motion sensing through a hydrogel. Based on mussel-inspired chemistry, polydopamine (PDA) and gold nanoparticles (AuNPs) were coated on the surface of cellulose nanocrystals (CNCs) to obtain CNC-based nanocomposites (CNCs@PDA-Au), which could simultaneously enhance the mechanical, electrochemical, and self-healing properties of hydrogels. The CNCs@PDA-Au was composited with poly(vinyl alcohol) (PVA) hydrogel to obtain the nanocomposite hydrogel (PVA/CNCs@PDA-Au) by freeze-thaw cycles. The PVA/CNCs@PDA-Au has excellent mechanical strength (7.2 MPa) and self-healing properties (88.3%). The motion sensors designed with PVA/CNCs@PDA-Au exhibited a fast response time (122.9 ms), wide strain sensing range (0-600.0%), excellent stability, and fatigue resistance. With the unique electrochemical redox properties of uric acid, the designed hydrogel sensor successfully realized the detection of uric acid in sweat with a wide detection range (1.0-100.0 µmol/L) and low detection limit (0.42 µmol/L). In this study, the dual detection of human motion and uric acid in sweat was successfully realized by the designed PVA/CNCs@PDA-Au nanocomposite hydrogel.

6.
Small ; : e2404137, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990076

ABSTRACT

Developing Janus fabrics with excellent one-way sweat transport capacity is an attractive way for providing comfort sensation and protecting the health during exercise. In this work, a 3D wetting gradient Janus fabric (3DWGJF) is first proposed to address the issue of excessive sweat accumulation in women's breasts, followed by integration with a sponge pad to form a 3D wetting gradient Janus sports bra (3DWGJSB). The 3D wetting gradient enables the prepared fabric to control the horizontal migration of sweat in one-way mode (x/y directions) and then unidirectionally penetrate downward (z direction), finally keeping the water content on the inner side of 3DWGJF (skin side) at ≈0%. In addition, the prepared 3DWGJF has good water vapor transmittance rate (WVTR: 0.0409 g cm-2 h-1) and an excellent water evaporation rate (0.4704 g h-1). Due to the high adhesion of transfer prints to the fabrics and their excellent mechanical properties, the 3DWGJF is remarkably durable and capable of withstanding over 500 laundering cycles and 400 abrasion cycles. This work may inspire the design and fabrication of next-generation moisture management fabrics with an effective sweat-removal function for women's health.

7.
Pediatr Pulmonol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990093

ABSTRACT

BACKGROUND: New York (NY) State implemented a new cystic fibrosis (CF) newborn screen (NBS) algorithm in December 2017 with improvement in positive predictive value and unanticipated increased identification of infants with cystic fibrosis transmembrane conductance regulator (CFTR)-related metabolic syndrome (CRMS). Repeat sweat testing is recommended in infants with CRMS. During the COVID-19 pandemic infants with CRMS were lost to follow up. With this quality improvement (QI) initiative, we aimed to perform repeat sweat testing in 25% of infants lost to follow up. We also describe consensus recommendations for CRMS from the NY CF NBS Consortium. METHODS: Our QI team identified the primary drivers contributing to absent follow up, outreached to families, and created a questionnaire to evaluate parental understanding of CRMS using QI-based strategies. RESULTS: Of 350 infants diagnosed with CRMS during the study period, 179 (51.1%) infants were lost to follow up. A total of 31 (17.3%) were scheduled for repeat sweat tests and followed up at CF Centers. Families reported high satisfaction with the CRMS knowledge questionnaire. CONCLUSIONS: With this QI-based approach, we effectively recaptured infants with CRMS previously lost to follow up during the COVID-19 pandemic. Ongoing concerns about infection risk and lack of understanding on the part of families and pediatricians likely contributed to patients with CRMS lost to follow up. Consensus recommendations for CRMS include annual visits with repeat sweat testing until 2-6 years of age and education for adolescents about clinical and reproductive implications of CRMS.

8.
Clin Chim Acta ; : 119857, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986861

ABSTRACT

Alzheimer's disease (AD) is among the most common neurodegenerative disorders. AD is characterized by deposition of neurofibrillary tangles and amyloid plaques, leading to associated secondary pathologies, progressive neurodegeneration, and eventually death. Currently used diagnostics are largely image-based, lack accuracy and do not detect early disease, ie, prior to onset of symptoms, thus limiting treatment options and outcomes. Although biomarkers such as amyloid-ß and tau protein in cerebrospinal fluid have gained much attention, these are generally limited to disease progression. Unfortunately, identification of biomarkers for early and accurate diagnosis remains a challenge. As such, body fluids such as sweat, serum, saliva, mucosa, tears, and urine are under investigation as alternative sources for biomarkers that can aid in early disease detection. This review focuses on biomarkers identified through proteomics in various biofluids and their potential for early and accurate diagnosis of AD.

9.
Polymers (Basel) ; 16(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38932055

ABSTRACT

Herein, we investigate the potential application of a composite consisting of PEDOT:PSS/Graphene, deposited via spray coating on a flexible substrate, as an autonomous conducting film for applications in wearable biosensor devices. The stability of PEDOT:PSS/Graphene is assessed through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and linear polarization (LP) during exposure to an artificial sweat electrolyte, while scanning electron microscopy (SEM) was employed to investigate the morphological changes in the layer following these. The results indicate that the layers exhibit predominant capacitive behavior in the potential range of -0.3 to 0.7 V vs. Ag/AgCl, with a cut-off frequency of approximately 1 kHz and retain 90% capacity after 500 cycles. Aging under exposure to air for 6 months leads only to a minor increase in impedance, demonstrating potential for storage under non-demanding conditions. However, prolonged exposure (>48 h) to the artificial sweat causes significant degradation, resulting in an impedance increase of over 1 order of magnitude. The observed degradation raises important considerations for the long-term viability of these layers in wearable biosensor applications, prompting the need for additional protective measures during prolonged use. These findings contribute to ongoing efforts to enhance the stability and reliability of conducting materials for biosensors in health care and biotechnology applications.

10.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891945

ABSTRACT

Porocarcinoma (PC) is a rare adnexal tumor, mainly found in the elderly. The tumor arises from the acrosyringium of eccrine sweat glands. The risk of lymph node and distant metastasis is high. Differential diagnosis with squamous cell carcinoma is difficult, although NUT expression and YAP1 fusion products can be very useful for diagnosis. Currently, wide local excision is the main surgical treatment, although Mohs micrographic surgery is promising. To date, there is no consensus regarding the role of sentinel lymph node biopsy and consequential lymph node dissection. No guidelines exist for radiotherapy, which is mostly performed based on tumor characteristics and excision margins. Only a few studies report systemic treatment for advanced PC, although therapy with pembrolizumab and EGFR inhibitors show promise. In this review, we discuss epidemiology, clinical features, histopathological features, immunohistochemistry and fusion products, surgical management and survival outcomes according to stage, surgical management, radiotherapy and systemic therapy.


Subject(s)
Eccrine Porocarcinoma , Humans , Eccrine Porocarcinoma/pathology , Eccrine Porocarcinoma/therapy , Eccrine Porocarcinoma/metabolism , Eccrine Porocarcinoma/diagnosis , Immunohistochemistry , Sweat Gland Neoplasms/pathology , Sweat Gland Neoplasms/therapy , Sweat Gland Neoplasms/metabolism , Sweat Gland Neoplasms/diagnosis , Biomarkers, Tumor/metabolism , YAP-Signaling Proteins
11.
ACS Sens ; 9(6): 3413-3422, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38887933

ABSTRACT

In recent years, wearable devices have been widely used for human health monitoring. Such monitoring predominantly relies on the principles of optics and electronics. However, electronic detection is susceptible to electromagnetic interference, and traditional optical fiber detection is limited in functionality and unable to simultaneously detect both physical and chemical signals. Hence, a wearable, embedded asymmetric color-blocked optical fiber sensor based on a hydrogel has been developed. Its sensing principle is grounded in the total internal reflection within the optical fiber. The method for posture sensing involves changes in the light path due to fiber bending with color blocks providing wavelength-selective modulation by absorption changes. Sweat pH sensing is facilitated by variations in fluorescence intensity triggered by sweat-induced conformational changes in Rhodamine B. With just one fiber, it achieves both physical and chemical signal detection. Fabricated using a molding technique, this fiber boasts excellent biocompatibility and can accurately discern single and multiple bending points, with a recognition range of 0-90° for a single segment, a detection limit of 0.02 mm-1 and a sweat pH sensing linear regression R2 of 0.993, alongside great light propagation properties (-0.6 dB·cm-1). With its extensive capabilities, it holds promise for applications in medical monitoring.


Subject(s)
Hydrogels , Optical Fibers , Posture , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Sweat/chemistry , Humans , Hydrogels/chemistry , Posture/physiology , Rhodamines/chemistry , Biosensing Techniques/methods , Monitoring, Physiologic/methods , Monitoring, Physiologic/instrumentation
12.
Biosensors (Basel) ; 14(6)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38920598

ABSTRACT

A microfluidic sweat monitoring patch that collects human sweat for a long time is designed to achieve the effect of detecting the rise and fall of human sweat glucose over a long period of time by increasing the use time of a single patch. Five collection pools, four serpentine channels, and two different valves are provided. Among them, the three-dimensional valve has a large burst pressure as a balance between the internal and external air pressures of the patch. The bursting pressure of the two-dimensional diverter valve is smaller than that of the three-dimensional gas valve, and its role is to control the flow direction of the liquid. Through plasma hydrophilic treatment of different durations, the optimal hydrophilic duration is obtained. The embedded chromogenic disc detects the sweat glucose value at two adjacent time intervals and compares the information of the human body to increase or reduce glucose. The patch has good flexibility and can fit well with human skin, and because polydimethylsiloxane (PDMS) has good light transmission, it reduces the measurement error caused by the color-taking process and makes the detection results more accurate.


Subject(s)
Sweat , Humans , Sweat/chemistry , Hypoglycemia , Glucose/analysis , Biosensing Techniques , Microfluidics , Dimethylpolysiloxanes/chemistry , Blood Glucose/analysis
13.
Int J Mol Sci ; 25(12)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38928100

ABSTRACT

Rich biological information in sweat provides great potential for health monitoring and management. However, due to the complexity of sweat, the development of environmentally friendly green electronic products is of great significance to the construction of ecological civilization. This study utilized a simple combination of polystyrene sulfonate sodium (PSS) and filter paper (FP) to prepare cellulose materials coated with conductive polymers, developing an electrochemical sensor based on the modified materials. The mechanical and electrochemical properties of the fabricated PSS/FP membrane were optimized by adjusting the feeding dosage of PSS. The realized PSS/FP composite containing 7% PSS displayed good conductivity (9.1 × 10-2 S/m), reducing electric resistance by 99.2% compared with the original FP membrane (6.7 × 10-4 S/m). The stable current of the membrane in simulated sweat under different pH environments is highly correlated with the pH values. Additionally, when the membrane is exposed to simulated sweat with varying ion concentrations, the current signal changes in real time with the concentration variations. The response time averages around 0.3 s.


Subject(s)
Cellulose , Electric Conductivity , Polystyrenes , Sweat , Sweat/chemistry , Cellulose/chemistry , Hydrogen-Ion Concentration , Polystyrenes/chemistry , Polymers/chemistry , Humans , Electrochemical Techniques/methods , Biosensing Techniques/methods
14.
Int J Antimicrob Agents ; : 107231, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38918168

ABSTRACT

BACKGROUND: Insufficient exposure and poor compliance with anti-tuberculosis (TB) medications are risk factors for treatment failure and the development of drug resistance. Measurement of drugs in biological samples, such as blood and saliva, can be used to assess adherence and make dose adjustments by therapeutic drug monitoring (TDM). Finger sweat testing is a convenient and non-invasive method to monitor patients. OBJECTIVES: To assess the feasibility of finger sweat testing for medication adherence and as a semi-quantitative tool for TDM analysis. METHODS: Ten patients provided finger sweat, blood and saliva samples following a controlled dose of isoniazid. Samples were analysed by liquid chromatography-mass spectrometry. RESULTS: Isoniazid can be detected in finger sweat 1-6 h following administration at typically prescribed dosages. The normalisation of isoniazid to creatinine increases the correlation between finger sweat and serum isoniazid concentration and provides a means to account for inconsistent sample volumes. CONCLUSION: We describe the time-course measurement of isoniazid (or drug-to-creatinine ratio) in finger sweat compared to the pharmacokinetic profile in blood for the first time. This technique, adaptable for other drugs, could reduce the burden on clinics and improve patient experience.

15.
Anat Histol Embryol ; 53(4): e13077, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38899430

ABSTRACT

The endangered Saimaa ringed seal (Pusa hispida saimensis) is an endemic freshwater subspecies inhabiting Lake Saimaa in Finland. The Baltic ringed seal (Pusa hispida botnica) inhabits the brackish Baltic Sea, which is almost entirely landlocked. Recent research shows that Saimaa and Baltic ringed seals may be genetically even further apart from each other than from other ringed seal subspecies. We documented histologically the integument microstructure of Saimaa and Baltic ringed seals to determine whether the geographic and genetic isolation was manifested as variation in the integument microstructure of these subspecies adapted to icy aquatic environments. The skin structures of these subspecies were similar to those of other phocids. The association of the sweat glands with hair follicles in both subspecies suggested that they were small apocrine sweat glands described previously in terrestrial or aquatic mammals. None of the apocrine glands had large lumina, and some of the ducts were relatively straight and short. Further studies analysing the mode of secretion, for example, apocrine versus eccrine, in the sweat glands are necessary to confirm the types of sweat glands in seals.


Subject(s)
Seals, Earless , Skin , Animals , Seals, Earless/anatomy & histology , Skin/anatomy & histology , Sweat Glands/anatomy & histology , Hair Follicle/anatomy & histology , Male , Apocrine Glands/anatomy & histology , Female , Finland
16.
J Dtsch Dermatol Ges ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899945

ABSTRACT

BACKGROUND AND OBJECTIVES: Malignant sweat gland tumors are rare, with the most common being eccrine porocarcinoma (EP). Approximately 18% of benign eccrine poroma (EPO) transit to EP. Previous research has provided first insights into the mutational landscape of EP. However, only few studies have performed gene expression analyses. This leaves a gap in the understanding of EP biology and potential drivers of malignant transformation from EPO to EP. METHODS: Transcriptome profiling of 23 samples of primary EP and normal skin (NS). Findings from the EP samples were then tested in 17 samples of EPO. RESULTS: Transcriptome profiling revealed diversity in gene expression and indicated biologically heterogeneous sub-entities as well as widespread gene downregulation in EP. Downregulated genes included CD74, NDGR1, SRRM2, CDC42, ANXA2, KFL9 and NOP53. Expression levels of CD74, NDGR1, SRRM2, ANXA2, and NOP53 showed a stepwise-reduction in expression from NS via EPO to EP, thus supporting the hypothesis that EPO represents a transitional state in EP development. CONCLUSIONS: We demonstrated that EP is molecularly complex and that evolutionary trajectories correspond to tumor initiation and progression. Our results provide further evidence implicating the p53 axis and the EGFR pathway. Larger samples are warranted to confirm our findings.

17.
Exp Physiol ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847458

ABSTRACT

Female development includes significant morphological changes across the breast. Yet, whether differences in breast surface area (BrSA) modify sweat gland density and output remains unclear. The present study investigated the relationship between BrSA and sweat gland density and output in 22 young to middle-aged women (28 ± $\ \pm \ $ 10 years) of varying breast sizes (BrSA range: 147-561 cm2) during a submaximal run in a warm environment (32  ± $ \pm \ $ 0.6°C; 53  ± $ \pm \ $ 1.7% relative humidity). Local sweat gland density and local sweat rate (LSR) above and below the nipple and at the bra triangle were measured. Expired gases were monitored for the estimation of evaporative requirements for heat balance (Ereq, in W/m2). Associations between BrSA and (i) sweat gland density; (ii) LSR; and (iii) sweat output per gland for the breast sites were determined via correlation and regression analyses. Our results indicated that breast sweat gland density decreased linearly as BrSA increased (r = -0.76, P < 0.001), whereas sweat output per gland remained constant irrespective of BrSA (r = 0.29, P = 0.28). This resulted in LSR decreasing linearly as BrSA increased (r = -0.62, P = 0.01). Compared to the bra triangle, the breast had a 64% lower sweat gland density (P < 0.001), 83% lower LSR (P < 0.001) and 53% lower output per gland (P < 0.001). BrSA (R2 = 0.33, P = 0.015) explained a greater proportion of variance in LSR than Ereq (in W/m2) (R2 = 0.07, P = 0.538). These novel findings extend the known relationship between body morphology and sweat gland density and LSR, to the female breast. This knowledge could innovate user-centred design of sports bras by accommodating breast size-specific needs for sweat management, skin wetness perception and comfort.

18.
Exp Dermatol ; 33(6): e15110, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38884423

ABSTRACT

Botulinum toxin A (BTX) and microwave thermolysis (MWT) are standard axillary hyperhidrosis treatments, but comparison of their subclinical effects is lacking. Line-field confocal optical coherence tomography (LC-OCT) is a promising non-invasive imaging tool for visualizing tissue-interactions. This study aimed to describe subclinical effects of BTX and MWT for axillary hyperhidrosis with LC-OCT-imaging compared to histology. This study derived from an intra-individual, randomized, controlled trial, treating axillary hyperhidrosis with BTX versus MWT. Subclinical effects based on LC-OCT images from baseline and 6-month follow-up (n = 8 patients) were evaluated and compared to corresponding histological samples. At baseline, LC-OCT visualized eccrine pores at the skin surface and ducts in the upper dermis (500 µm), but not deeper-lying sweat glands. Histology identified entire sweat glands. Six months post-treatment, LC-OCT revealed no detectable morphology changes in any BTX-treated axillae (100%), while recognizing obstructed eccrine pores and atrophy of eccrine ducts in most MWT-treated axillae (75%). Histology corroborated LC-OCT findings, while also showing substantial changes to entire sweat glands. LC-OCT enabled visualization of subclinical alterations of superficial eccrine ducts after MWT and unchanged morphology after BTX. LC-OCT is a promising tool for non-invasive assessment of treatment-specific tissue-interactions that can be complementary to histology.


Subject(s)
Axilla , Botulinum Toxins, Type A , Hyperhidrosis , Microwaves , Tomography, Optical Coherence , Hyperhidrosis/drug therapy , Hyperhidrosis/diagnostic imaging , Humans , Tomography, Optical Coherence/methods , Botulinum Toxins, Type A/administration & dosage , Adult , Female , Male , Sweat Glands/diagnostic imaging , Sweat Glands/drug effects , Young Adult , Middle Aged , Eccrine Glands/diagnostic imaging , Eccrine Glands/drug effects
19.
Talanta ; 278: 126356, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38905963

ABSTRACT

Abnormal amount of dopamine (DA) in human body is closely relate to various diseases, such as Parkinson's disease, pheochromocytoma. Real-time monitoring DA is crucial for disease warning, diagnosis and treatment. Currently, most methods rely on invasive blood testing for detecting DA, which is only completed with the aid of the medical staffs in hospitals. Herein, a non-invasive fluorescence visual strategy is developed for the real-time monitoring DA, based on luminescent nanoparticles and modified mesoporous zeolite imidazole framework (ZIF-8-NH2) dodecahedrons. During the reaction process, DA is enriched through the spatial configuration of ZIF-8-NH2 and hydrogen bonding effect. The luminescence of Cr3+-doped zinc gallate (ZnGa2O4:Cr3+, ZGC) is inhibited by the photo-induced electron transfer (PET) mechanism to realize sensitively detecting DA. The intelligent sensing platform based on the designed fluorescence probe and color recognition system is structured for real-time detection of DA in urine. Furthermore, a skin-fitting hydrogel patch is prepared by combining a fluorescent probe with chitosan, which enables sensitive and accurate detection of DA in sweat without the complex sample pretreatment. The non-invasive fluorescence detection method provides an effective strategy for quantitatively monitoring DA in human fluids.

20.
Hum Pathol ; 150: 1-8, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876201

ABSTRACT

Sweat gland neoplasms represent a challenging area of dermatopathology, as they are relatively uncommon and often histopathologically complex. Recent studies have uncovered distinct immunohistochemical and molecular profiles in several sweat gland neoplasms, including digital papillary adenocarcinoma (DPA), papillary eccrine adenoma/tubular apocrine adenoma (PEA/TAA), poroid family tumors (PFT)/porocarcinoma, and clear cell hidradenoma (CCH)/clear cell hidradenocarcinoma (CCHCa). To further evaluate the diagnostic utility of ancillary studies in various sweat gland neoplasms, we performed an independent validation study in a cohort of patients with acral and non-acral tumors (9 DPA, 8 PEA/TAA, 13 PFT, 5 porocarcinoma, 23 CCH, 7 CCHCa, 6 sweat gland carcinoma not otherwise specified). p63 immunohistochemistry (IHC) demonstrated a myoepithelial pattern in 8/8 DPA and 4 of 4 tested PEA/TAA cases, and showed a ductal pattern in all tested PFT/porocarcinoma and CCH/CCHCa cases (42/42). All PEA/TAA (8/8) cases were positive for BRAF V600E IHC. 5 of 12 tested PFT and 5/5 porocarcinoma cases showed either positive staining with NUT IHC or harbored YAP1::NUTM1 fusion gene by RNA sequencing. MAML2 fluorescence in situ hybridization (FISH) was positive in all CCH and CCHCa cases (23/23 and 7/7, respectively). Our results further support the usefulness of appropriate ancillary studies in precise classification of sweat gland tumors, which may be routinely applied in diagnostic pathology practice when morphologic evaluation is in doubt.

SELECTION OF CITATIONS
SEARCH DETAIL
...